
Information and Measurement - 1 - Free PDF version (larger page)

Information and Measurement

J. C. G. Lesurf
Physics and Astronomy Dept

University of St Andrews, Scotland

Institute of Physics Publishing

Bristol and Philadelphia



Information and Measurement - 2 - Free PDF version (larger page)

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN  0  7503  0823  0

Library of Congress Cataloging-in-Publication Data available

First published 1995 (Hardback)

Revised and extended second edition published 2002 (Paperback)      

  Free PDF issued 2018.

        

      

       

  

The right of James Lesurf to be identified as the author of this work has been asserted by him in accordance with the
Copyrights, Designs, and Patents Act, 1988.

Originally: Published by Institute of Physics Publishing, wholly owned by

The Institute of Physics, London

To Chris, as always, for making everything worthwhile.

Special thanks to Mike Glover and Bob Pollard

at Icon Technology for TechWriter, the

technical desktop publisher which

made writing this book a pleasure!



Information and Measurement - 3 - Free PDF version (larger page)

Contents

Preface 6

Chapter 1 � Where does information come from?              8

    1.1  Introduction 8

    1.2  What is information? 8

    1.3  Accuracy and resolution 10

Chapter 2 � Signals and messages 13

    2.1  Sending information 13

    2.2  How much information in a message? 15

Chapter 3 � Noise 18

    3.1  The sources of noise 18

    3.2  Johnson noise 18

    3.3  Shot noise 20

    3.4  An alternative way to describe noise 21

    3.5  Other sorts of noise 23

Chapter 4 � Uncertain measurements 25

    4.1  Doubtful information and errors 25

Chapter 5 � Surprises and redundancy 30

Chapter 6 � Detecting and correcting mistakes 36

    6.1  Errors and the law! 36

    6.2  Parity and blocks 37

    6.3  Choosing a code system 40

Chapter 7 � The sampling theorem 44

    7.1  Fourier transforms and signals of finite length 44

    7.2  The sampling theorem and signal reconstruction 47

Chapter 8 � The information carrying capacity of a channel 51

    8.1  Signals look like noise! 51

    8.2  Shannon's equation 52

    8.3  Choosing an efficient transmission system 53

    8.4  Noise, quantisation, and dither 55

Chapter 9 � The CD player as an information channel 59

    9.1  The CD as an information channel 59

    9.2  The CD encoding process 61

Chapter 10 � The CD player as a measurement system 67

Chapter 11 � Oversampling, noise shaping, and digital filtering 74

     11.1  The CD player as a digital signal processing system 74



Information and Measurement - 4 - Free PDF version (larger page)

Chapter 12 � Analog or digital? 79

    12.1  Is the world �analog�? 79

    12.2  The �digital� defects of the long playing record 80

Chapter 13 � Sensors and amplifiers 86

    13.1  Basic properties of sensors 86

    13.2  Amplifier noise 87

    13.3  Specifying amplifier noise 91

Chapter 14 � Power coupling and optimum S/N 94

    14.1  Optimising signal/noise ratio 94

    14.2  Behaviour of cascaded amplifiers and transmission lines 95

Chapter 15 � Signal averaging 99

    15.1  Measuring signals in the presence of noise 99

    15.2  The problems of simple averaging 99

Chapter 16 � Phase sensitive detection 106

Chapter 17 � Synchronous integration 113

    17.1  �Boxcar� detection systems 113

    17.2  Multiplexed and digital systems 117

Chapter 18 � Data compression 120

    18.1  Run-length encoding 120

    18.2  Huffman coding 123

Chapter 19 � Data thinning 128

    19.1  The discrete cosine transform 128

    19.2  JPEG compression 131

    19.3 ATRAC audio compression 134

Chapter 20 � Chaos rules! 139

    20.1  Driven nonlinear systems and bifurcations 139

    20.2  Chaotic oscillators 143

    20.3  Noise generators 144

Chapter 21 � Spies and secret messages 147

    21.1  Substitution codes 147

    21.2  One time pads 148

    21.3  Mechanical �randomising� algorithms 149

    21.4  Electronic encryption 151

Chapter 22 � One bit more 155

    22.1  Problems with many bits 155

    22.2  One bit at a time 156

    22.3  From many to one 159

    22.4  First order delta�sigma conversion 159

    22.5  One last bit of chaos! 161

Chapter 23 � What have we here? 165

    23.1  Distinguishing messages 165



Information and Measurement - 5 - Free PDF version (larger page)

    23.2  Correlation 166

    23.3  The effects of noise 169

    23.4  Signal recognition using correlation 171

Chapter 24 � Time and frequency 175

    24.1  The meaning of frequency 175

    24.2  Time and counting 177

    24.3  Effect of noise on counting methods 179

    24.4  Relationship between SNR and jitter level 182

Chapter 25 � Frequency measurement systems 185

    25.1  Phase lock methods 185

    25.2  Resonators and filters 187

    25.3  Fourier transform spectroscopy 190

Appendix 1 � Solutions to numerical questions 196

Appendix 2 � Programs 203

    Getting the message 203

    Fourier transforms 204

    Fast Fourier transformation 206

    Sinc oversampling 208

    Encrypting information 211

    Finding prime numbers 213



Information and Measurement - 6 - Free PDF version (larger page)

Preface to the 2nd Edition

This new edition contains over 50 pages of new material. Most of this is contained in three
entirely new chapters. These deal with counting,  frequency measurement, and the use of
correlation to detect and identify signal patterns. In addition, the original version of Chapter 19
on Data Thinning has been replaced by an entirely new chapter. The version in first edition was
relatively brief and chose the ill-fated example of DCC (Digital Compact Cassette). The new
version in this book is substantially longer and uses JPEG and MiniDisc as its examples. As well as
these major changes, the opportunity has been taken to correct some minor errors and omissions.

The flavour and intent of the book remains unchanged, but I hope that the changes will enhance
the book�s usefulness. As before, the approach I have taken is to base explanations upon the
underlying physics and use examples which the reader may be familiar with and find interesting.

Jim Lesurf

February 2001

Preface to the 1st Edition

Information has many faces. A physicist may take a course called Instrumentation or Measurement
Techniques. An engineer may study Information Technology, and a computer scientist or
mathematician Information Theory. Courses under these and similar names all tend to offer partial
views of a bigger underlying subject. 

The specialisation of students taking different degree subjects has tended to lead to a visible
fragmentation in the coverage of existing textbooks. On the one hand there are many theoretical
books dealing with the mathematics of information theory which ignore the engineering required
to put theory into practice. On the other hand there are engineering books on instrumentation
technology which fail to give a clear explanation of the concepts which underpin their operation.
However, to collect information we have to make measurements. We need real, practical
instruments to collect and process this information. A pattern of numbers on a computer disc or
a waveform on an oscilloscope screen tells us nothing unless we know how it was produced. 

The main purpose of this book is to provide a readable and interesting  introduction to a subject
area wide enough to be useful to almost every scientist and engineer. The emphasis is on width
and clarity rather than an attempt to include every detail. In my experience many undergraduate
students find information theory textbooks too abstract and mathematical. This tends to deter all
but the most theoretically minded from understanding the subject. Yet information technology is
arguably the most important scientific topic of all for anyone who wants to understand and
participate in the new technologies which dominate our society. To be useful, the mathematics of
information theory has to be based on the properties of the real world and lead to practical
applications. As a result, the apparently distinct topics often called information theory,
measurement, and instrumentation are best understood by recognising that they are facets of the
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same jewel. 

The approach I have taken in this book differs from most other texts. I have deliberately mixed
together the basic maths, engineering, and physics in order to show how they are linked in real
situations. I have chosen to illustrate the basic techniques of measurement and information
processing using examples which are likely to be of interest to most science and engineering
students (and, I suspect, their teachers!). For this reason a large portion of the book concentrates
on the Compact Disc audio system. There are also chapters on Encryption (secret codes) as well as
chaos and its uses. The CD system is particularly useful � both because most of us will have
encountered it, and because it provides an excellent illustration of how measurement and
information technology go together in the real world. The other examples show the range and
power of the subject.

For engineers and scientists �absolute truth� is a matter of personal judgement, not objective fact.
In information theory this means that every measurement and message only conveys a finite
amount of information. In the real world nothing is absolutely certain or precise. Our state of
knowledge is always imperfect, limited, and subject to later improvement. I have tried to to avoid
the error � sadly common in textbooks � of presenting every detail and ramification of an
argument and burying understanding under a mound of facts. This book explains the concepts of
information theory on a �successive approximation� basis. The explanations given in each chapter
are intended to be simple enough to guide the reader through the subject without causing
confusion. Later explanations give further details as required when more sophisticated
techniques are introduced. 

If the book has a theme it is that �The best place to start is the physics of the real world's
behaviour�. The form of the book is designed to make it suitable as a �course book� for an
undergraduate course of up to a couple of dozen one-hour lectures. Each chapter provides the
material for one lecture topic. Each finishes with a summary which the reader can use to check
that they have learned the main points. Most chapters are also followed by a set of tutorial
questions. Detailed answers to the numerical questions are provided in an appendix. The correct
answer value is also included (in bold type) at the end of each numerical question. You can use
this to check your answer before consulting the back of the book. There is an additional appendix
listing a number of programs in both BASIC and �C�. The purpose of these questions and
programs is to help the reader to discover how the ideas presented in the book are put into
practice.

I hope that I have produced a book which will be useful to a wide range of physical scientists,
engineers, mathematicians, and computer scientists. If I have been successful this book will help
illuminate how their individual interests and skills link together to form a greater body of
understanding. Finally, I would like to thank all the students and others who helped me to
discover and correct the mistakes which earlier versions of this book contained. They provided a
powerful error correction mechanism I haven't described in the book!

Jim Lesurf

July 1994
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Chapter 1

Where does information come from?

1.1 Introduction

This book is designed to provide you with an explanation of the basic concepts of information
collecting and processing systems. To do this we will examine examples ranging from secret codes
to compact disc players. Using these practical examples you should be able to see how the
mathematics of Information Theory can be applied in practical situations to make Instruments which
perform useful tasks. This first chapter is intended to a be a general outline. Most of the concepts
introduced here will be looked at more carefully later.

Scientists and engineers devote considerable attention to the processing and storage of
information, yet questions relating to how information is produced generally attract less
consideration. To some extent, this blind spot seems to stem from a belief that any interest in this
area smells strongly of philosophy, not engineering. In general, practically minded scientists don't
want to �waste their time� with philosophy � although there are many notable exceptions to this
rule.

This book is not about philosophy. No time will be devoted to questions like:

�What is the meaning of meaning?�

�How do we know what we know?�

 etc.

Despite this, when trying to understand information based systems it's vital to have some idea of
how information is created or captured.

1.2 What isinformation?

For our purposes, we can say that information initially comes from some form of sensor or
transducer. This generates some form of response which can then be measured. It is this
measurement or detection which �creates� information. (In fact, the sensor is reacting to the
arrival of some input pattern of energy or power. It would be fairer to say it �picks up� the
information, but we'll ignore this fact.) Once we adopt this starting point it becomes clear that the
topics of instrumentation and measurement form the basis of all practical information systems.

This viewpoint provides us with a double advantage over someone who is studying information
theory purely as a branch of mathematics. Firstly, it gives us a way to understand information
processing systems in terms of the physical properties of the real world. Secondly, it helps us sort
out questions related to the �value� or �meaning� of information without the risk of being dragged
into metaphysics. Instead we can simply ask, �How was this information produced?�

What is an �instrument�? At first glance, it can appear to science and engineering students that the
subject called Instrumentation is obsessed with describing how voltmeters and oscilloscopes work.
Yet the subject covers a much wider and more important area. A colour TV is an instrument. A
digital computer is an instrument. Each senses some form of input and responds by producing an
appropriate output. The TV responds to an electromagnetic wave from a distant transmitter to
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produce a corresponding picture on a screen and sound from a loudspeaker. The computer can
be affected by various sorts of input, from a keyboard, a mouse, or by reading a magnetic disc. It
can respond by altering the electronic pattern held in its memory, by altering its monitor display,
or recording something on a disc.

Most of the examples we'll look at in this book will be electronic or optical. This is because optical
and electronic methods are powerful and widely used. Despite this, it's important to realise that
the basic points made in this book aren't only true in these areas. To emphasise this, we can start
by considering a simple mechanical measurement system � a kitchen balance � to make some
fundamental points which apply to all measurement (information gathering) systems.

The balance has a pan or plate supported by a spring. When we place something on the pan the
added weight presses down on the spring, compressing it. The pan moves downwards until the
compression force from the squeezed spring balances the force of the increased weight. Most
balances have a rotary dial with a pointer attached to the pan. The movement caused by the
weight rotates the pointer to give us a �reading� of the weight.

Downward
movement

Kitchen technology measurement system.Figure 1.1

The first point to note is that, like most measurement systems, this one is indirect. What we actually
observe is a movement (rotation) of the pointer. We don't actually see the magnitude of the
weight. If, for example, we put an iron on the pan we might see the pointer move around through
120 degrees. If we liked, we could also use a ruler to find that the pan moved down 2 cm.
However, we don't usually quote weights in degrees or centimetres! In order to make sense of
these observed values we have to calibrate the balance. To do this we can place two or three
different known weights on the scales and make a note of how far the pointer goes around (or the
pan falls) each time. We can then use these results to make a series of calibration marks on the
face of the dial. Now, when we put something � e.g an iron � on the scales we can read off its
weight from the dial. This calibration process means that the balance provides us with a means to
compare the weight of the iron with a set of other �standard� weights. In general, all
measurements are Comparisons with some defined standard.

Usually, we buy a kitchen balance which should already be calibrated (i.e. its dial is marked in kg,
lb, etc, not degrees) and we don't bother to calibrate the weighing instrument for ourselves.
However, when we consider the need for a calibration process an awkward question springs to
mind � where did the �known� weights come from that were used to calibrate the readings? If all
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measurements are comparisons, how were the values of those weights known? They, too, would
need to have been weighed on some weight measurement system. If so, how was that system
calibrated?

Any measurement we make is the last link in a chain of similar measurements. Each one calibrates
a system or a �standard� (e.g. a known weight) which can be used for the next step. Right back at
the beginning of this chain (at the National Physical Laboratory in the UK and other standards
labs around the world) there will a Primary Reference system or standard which is used to define
what we mean by �1 kg�, or �1 second� or whatever. In effect, when we plonk something on the
pan of a kitchen balance we're indirectly comparing it with the standard kg weight kept under a
glass cover at the NPL.

When we place an iron on the pan we have to wait a second or two to let  the system settle down
and allow the pointer to stop moving. Similarly, when we remove the iron the system takes a short
time to recover. The second point we can make about the measurement system is, therefore, that
it has a finite Response Time �  i.e. we have to wait for a specific time after any change in the
weight before we can make a reliable reading. This limits our ability to measure any changes
which take place too quickly for the system.

The third point to note is fairly obvious from our choice of an iron. If we put too large a weight
on the pan the pointer will go right around and move �off scale�. (If the iron is very heavy we may
even smash the scales!) No matter how well we search the shops, we can't find scales which can
accurately measure any weight, no matter how big. Every real instrument is limited to operate
over some finite Range. Beyond this range it won't work properly and Overloads or Saturates to give
a meaningless response.

The fourth and final basic point is something we won't usually notice using ordinary scales since
the effect is relatively small. All of the atoms in the scales, including those in its spring, will be at
room temperature. (In a kitchen this probably means at or above 20 Celsius or 293 Kelvin.) As a
result, they'll be moving around with random thermal motions. Compared to the effect of placing
an iron on the scales these movements are quite small. However, if we looked at the pointer very
carefully with a powerful microscope we'd see its angle fluctuating randomly up and down a little
bit because of the motions of the atoms in the spring. As a result, if we wanted to measure the
weight very accurately this thermal jittering would limit the precision of our reading. As a result,
no matter how good the scales, our ability to make extremely accurate measurements is limited by
thermal random effects or thermal noise.

1.3 Accuracy and resolution

It is important to realise that the amount of information we can collect is always finite. The
example of kitchen scales has introduced us to the limiting effects of clipping, noise, and
response time. It doesn't matter how clever we are, these problems occur in all physical systems
since they are consequences of the way the real world works. To see some of the other problems
which arise when we're collecting information, consider the system in figure 1.2. This diagram
represents a diffraction grating being used to measure the power/frequency spectrum produced
by a light source. 
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The system is intended to provide us with information about how bright the light source is at
various light wavelengths. It relies upon the reflection properties of a surface made with a series of
parallel ridges called a Reflection Grating. For an ordinary plane mirror, the angle of reflection
equals the angle of incidence. For a grating, the angle of reflection also depends upon the
wavelength of the light and the details of the grooved surface pattern. Hence the arrangement
shown acts as a sort of adjustable filter. Only those light wavelengths which reflect at the
appropriate angle will make their way through the output slit onto the detector. 

Simple diffraction grating spectrometer.Figure 1.2

V

Light
source

Input
slit

Diffraction
Grating

Output
slit

Detector
(Light Sensor)

AmplifierVoltmeter

As with the kitchen scales, the system provides an indirect way to measure the light's spectrum. We
use the angle of the diffraction grating to tell us the wavelength being observed. The voltage
displayed on the meter indicates the light power falling on the detector. To discover the light's
spectrum we slowly rotate the grating (or move the output lens/slit/detector) and note how the
voltmeter reading varies with the grating angle. To convert these angles and voltages into
wavelengths and light powers we then need to know the Sensitivity of the detector/amplifier
system and the angles at which various wavelengths would be reflected by the grating � i.e. the
system must be calibrated.

In most cases the instrument will be supplied with appropriate display scales. The voltmeter will
have a dial marked in units of light power, not volts. The grating angle display will be marked in
wavelengths, not degrees. These scales will have been produced by a calibration process. If the
measurements we're making are important it will probably be sensible to check the calibration by
making some measurements of our own on a �known� light source.

As with the kitchen balance, our ability to measure small changes in the light level will be limited
by random noise � in this case random movements of the electrons in the measurement system
and fluctuations in the rate at which photons strike the detector. The accuracy of the power
measurement will depend upon the ratio of the light power level hitting the detector to the
random noise. We could increase the light level and improve the precision of the power
measurement by widening the slits and allowing more light through. However, this would have
the disadvantage of allowing light reflected over a wider range of angles to reach the detector.
Since the angle of reflection depends upon the light wavelength this means we are allowing
through a wider range of wavelengths.

In fact, looking at the system we can see that it always allows through a range of wavelengths.
Unless the slits are narrowed down to nothing (cutting off all the light!) it will always allow light
reflected over some range of angles,  (and hence having a range of wavelengths, ) to get∆Θ ∆λ
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through. As a result there is an unavoidable �trade off� between the instrument's power sensitivity
and its frequency Resolution or ability to distinguish variations in power confined to a narrow
frequency interval. This kind of trade off is very common in information collection systems. It
stems from basic properties of the physical world and means that the amount of information we
can collect is always finite � i.e. we can never make perfect measurements with absolute accuracy
or precision or certainty.

Summary

You should now know that information is collected by Instruments which perform some kind of
Measurement. That measurement systems usually give an Indirect indication of the measured
quantity and that all measurements are Comparisons which have to be Calibrated in some way. The
amount of information we can collect is always finite, limited by the effects of Noise, Saturation (or
Overload), and Response Time. That many information gathering techniques involve a Trade-Off
between various quantities � for example, between the Resolution of a wavelength measurement
and the Sensitivity of a related power measurement. That these limitations arise from the
properties of the physical world, not poor instrument design.
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Chapter 2

Signals and messages

2.1 Sending information

In the first chapter we looked at how measurement instruments can produce information. The
information produced and processed by these systems will be in the form of a Signal which carries
a message (specific set of information). In the case of the grating spectrometer shown in figure 1.2
the signal was a voltage communicated from the light detector to the voltmeter. This voltage will
vary in a specific pattern as the grating angle is altered. It is this pattern which carries the
message.

All information handling systems have the same basic form. Firstly, there will be some type of
information Source. This can take many forms, from the microphone in a telephone to the
keyboard of a computer. The source will be connected to a Receiver by some sort of Channel. In the
case of a telephone, the receiver will be an earpiece in another telephone and the information
carrying channel between them may be a set of wires. Information is sent along the wires in the
form of a varying voltage and current which acts as a signal whose details carry the actual
information or message.

In this book we will tend to talk about signals being �transmitted�. Despite this it's important to
realise that � from the theoretical point of view � there isn't any real difference between
transmitting signals, storing them on discs/tapes etc to read later, and processing them in a
computer. Most of the basic comments and properties outlined in this book apply to information
processing systems in general. They aren't restricted to telephones or TV broadcasts! For this
reason the concept of signals is of fundamental importance to information theory. Before the
invention of the telephone, people could send messages by posting written letters, or by getting a
chain of other people to stand on hilltops and wave semaphore flags, or even by lighting bonfires!
Before the desktop computer there was pen and paper. Modern systems are more convenient, but
if you really wanted to you could do it some other old-fashioned way!

No matter how it's done, before a signal can be used to communicate some specific information
in the form of a Message, the sender and receiver must have agreed on the details of how the
actual signals are to be used. It is not enough to agree that someone will stand on a hilltop and
wave flags. We have to arrange that, �These flags held like this represent the letter �A�; these held
like this represent �B��� i.e there must be some sort of pre-arranged Code for sending the
information. It is also clearly important that we can distinguish one code Symbol (�A�, �B�, �C�, etc
are examples of distinct symbols) from another, otherwise we will make mistakes.
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On the basis of ‘A=000, B=001, C=010, etc...’ this signal
could be sampled at the points shown and then sent in the
form, ‘GGGHHFED...’, etc.

Figure 2.1
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It's important to realise that the same message can be conveyed in any form we like provided we
obey the basic rules of information theory. As an example, consider the message illustrated in
figure 2.1. This shows a varying voltage coming from a sensor. At this point it doesn't matter very
much where this pattern has come from or what it represents. It might be coming from a
telephone mouthpiece and carrying information about what someone is saying. It might be from
the light detector in figure 1.2 and indicates how the light level varies as the grating angle is
altered. What matters is that the details of the signal pattern constitute the message which carries
the information. In the case of the instrument shown in figure 1.2 the information is signalled
from detector to voltmeter by a smoothly varying voltage whose level is roughly proportional to
the detected light level. Signals of this type are called Analog since the varying level (the voltage)
is treated as a mathematical analog of the original (light power in this case) pattern. We can
therefore imagine that the shape of the curve plotted in figure 2.1 holds the information about
the spectrum of the light being observed.

If we wanted to communicate this information to someone we could connect up some amplifiers
and wires and send it as an analog voltage level which varies as shown. (In this case, the various
voltage levels which we can distinguish from one another are the �symbols�, although it's not
normal for analog signals to be described in that way.) Alternatively, we can adopt other ways to
communicate or store the same information. For example, we can choose to Sample the signal
waveform and convert it into a series of binary numbers. To do this we proceed as follows.

We begin by defining a specific maximum Signal Range which is wide enough to ensure that the
signal level is always inside the chosen range. We then choose a point on the waveform and ask,
�Is the point in the top half of the range?�. If it is we write down a �1�, if not we write down a �0�.
We then define a new range which only covers that half of the original one which contains the
point and ask the question again to obtain another �1� or �0� answer. This provides a two-digit
number which tells us which quarter of the original range the point occupies. In principle, this
process of halving the range, asking the question, getting a yes/no answer, and noting the result
as a one or zero can be repeated as many times as we like. We can then repeat this whole process
for a series of points along the waveform. This process is called Sampling the waveform. Note that
if the signal level ever moves out of the initial signal range we've chosen we won't have any way of
indicating its actual level. Should this happen, the signal is said to have been Clipped since we can
only indicate its value by the nearest available set of �1�s and �0�s.
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In the example shown in figure 2.1 the question and answer process is performed three times for
each chosen point. This gives us a series of three-digit values which tell us which eighth of the
signal range contains each sample. The result is a series of binary numbers whose pattern holds
the information required to define or reconstruct the actual waveform. We could therefore
transmit these numbers to someone and they could then use them to draw out the original
waveform shape. 

The process considered above converts the waveform information into a signal encoded in Binary
Digital form. Digital numbers are very convenient to transmit and are ideal for storing and
processing in modern digital computers. We can, however, encode the same information in any
way we find convenient. For example, if we wanted to record in a notebook, we could represent
each possible digital number as a letter. For example, as shown in the diagram, we could choose
000 = �A�, 001 = �B�, 010 = �C�, etc. The information in the waveform could then be written down
as �GGGHHFED��. It doesn't matter what form of code we choose. Provided we have Encoded it
correctly, the same information will be preserved. The message will remain the same although the
form of the signal used (analog voltage, digital numbers, letters in a book) will be different.

2.2 How much information in a message?

In the above example we asked three yes/no questions about each chosen point on the initial
waveform. Yes/no questions like this are the simplest we can ask. Each answer is a yes/no or �1�/
�0� which gives us the minimum possible amount of extra information. This minimum possible
quantity of information is called a Bit. Having asked three yes/no questions per point we
therefore obtain a series of values, each of which contains just three bits worth of information. In
general, asking n questions per sample produces a series of n-bit binary numbers, each of which
defines which th of the signal range each point occupies. There are only  possible n-bit
numbers. Hence we require  distinct symbols (�A�, �B�, �C�, � �H� or �000�, �001�, �010�, � �111�,
or whatever) to convey the information. The limited range of possible values means we can use a
limited �alphabet� of  symbols.

1 / 2n 2n

2n

2n

The amount of information we collect about the waveform depends upon how many points we
sample and how many yes/no answers we get for each. We can therefore hope to get twice as
much information by taking double the number of samples. However, although asking an extra
question per sample doubles the number of symbols required it doesn't provide twice as much
information. In the example considered above, asking an extra question per sample would mean
each binary result would have four bits instead of three. This means we would collect four-thirds
as much information not twice as much! The basic rule of information theory is that the total
amount of information, H, collected will be

H = N n ... (2.1)

where N is the number of samples and n the number of bits (questions and answers) per sample.
Given an initial signal which lasts for a period of time, T, sampled at a series of instant t apart, we
would therefore obtain a total amount of sampled information

H =
T n

t
= (T

t ) log2 {M } ... (2.2)

where  is the number of symbols available to convey the message.M = 2n

In practice, the amount of information we can communicate in a given time will be limited by the
properties of the channel (the wires, amplifiers, optical fibres, etc) we use. We therefore often
need to know the information carrying capacity of a channel to decide if it is up to a given task.
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Consider the example of a varying analog voltage sent along some wires to be measured with an
Analog to Digital Convertor (ADC). Here the wires are the channel and the ADC is the signal
receiver. How many bits worth of information could an ideal ADC obtain from the analog signal
in a given time? The input seen by the ADC will be a combination of the transmitted signal level
and a small amount of random noise. This determines the size of the smallest signal details we
can expect to observe. There will also be a limit to how great a signal voltage can be transmitted
without �clipping� or serious distortion. For the sake of example, let's assume that the channel has
a noise level of around 1 mV and can handle a maximum range of 1 V. 

Ideally, the ADC's range should equal that of the input channel, i.e. the ADC should in this case
start with a voltage range,  of 1 V. An n-bit ADC could then determine the signal level at any
instant with an accuracy of . An 8-bit ADC could divide the input 1 V range into

 bands, each  V wide, and determine which of these bands the input was
in at any instant. A 10-bit ADC could divide the 1 V range into  bands, each

 V wide. We might therefore expect to extract more information and obtain a
more accurate result by using a 10-bit ADC instead of an 8-bit one. However, if we tried using an
even better ADC giving 11 or more bits per sample we wouldn't obtain any extra information
about the signal. This is because the 10-bit ADC already divides the input range into bands just
0·97 mV wide � i.e. slightly smaller than the amount by which the random noise jitters the input
up and down. There's no point trying to determine the voltage level more accurately than this.
We'll simply be looking at the effects of the noise. So it would a waste of effort to use an 11-bit
ADC in this case as the �extra� bits wouldn't tell us anything useful.

V r a ng e

V r a ng e / 2n

28 = 256 1 / 28 = 0·0039
210 = 1024

1 / 210 = 0·00097

This effect arises because the input signal has a finite Dynamic Range � the ratio of maximum
possible signal size to the minimum detail detectable over the random noise. The dynamic range,
D, of an analog signal is defined as a power ratio given in decibels between the maximum possible
signal level and the mean noise level, i.e. we can say that

D = 10 log {Pma x

Pn
} = 10 log





V 2
ma x

v 2
n



 ... (2.3)

where  and  represent the rms maximum signal and rms noise. This dynamic range should
be distinguished from the actual signal to noise ratio (SNR), at any time

V ma x v n

SNR = 10 log { Ps

Pn
} ... (2.4)

where  is the actual signal power level which is usually less than .Ps Pma x

There will also be a limitation on how quickly the voltage being transmitted along the wires can
be changed. This is due to the finite response time of any system. Here, for example, we can
assume that (due, perhaps to stray capacitances) the wires take a microsecond to react to a
change. This means we can't expect to obtain any extra information by making the ADC sample
the input it sees more often than once a microsecond, choosing a sampling rate above 1 MHz (106

samples per second) won't therefore provide any extra information. 

If it takes the channel (the wires) a microsecond to respond to a voltage rise and a microsecond
to respond to a fall, the highest signal frequency we can expect it to carry will be one cycle (one
up and down) every two microseconds � a maximum signal frequency of 0·5 MHz. The
Bandwidth of a channel is the range of frequencies it can carry. In most cases we can assume that
this range extends down to �d.c.� so the maximum frequency and the bandwidth usually have the
same value. In this case we see that the sensible sampling rate is about 1 MHz and the bandwidth
of the analog channel is 0·5MHz. This implies that, in general, we can expect the required



Information and Measurement - 17 - Free PDF version (larger page)

sampling rate to be double the bandwidth.

In this case, the combination of 1 mV of noise, a signal voltage range of 1 V, and a 1 µS response
time mean that there is no point in using an ADC which tries to collect more than 10 bits per
microsecond. It is important to note that this limitation of the rate the ADC collects information
is imposed by the channel which transmits the analog signal to it, not a defect of the ADC itself. A
better ADC wouldn't give us any extra information since 10×10  bits per second is all this
particular analog signal channel can carry. The analysis we've carried out here is just a rough
approximation. We'll be considering the question of the information carrying capacity of a
channel more carefully in a later chapter. However, we can already see that the effects of random
noise, clipping, and response time/bandwidth combine to limit the information carrying capacity
of any information channel no matter what form of signal it uses.

6

Summary

In this chapter you saw how all information processing systems can be regarded as consisting of an
information Source connected to a Receiver by some form of Channel. That any particular set of
information is a Message which is sent as a Signal pattern using some form of Code made up of
appropriate Symbols. You saw how an analog (continuously varying) signal can be Sampled to
recover all the information it contains. That the amount of information a channel carrying an
analog signal can convey is finite, limited by the biggest unclipped level it can manage (Clipping),
the Noise level, and the time it takes to respond to a changed input (the channel's Response Time or
Bandwidth).

Questions

 1) Sketch a diagram of a typical analog Signal pattern. Use the diagram to help explain how such
a signal can be Sampled, and what we mean by a Bit of information.

2) An analog voltage Channel is used to transmit a signal to an Analog to Digital Converter (ADC).
The input voltage can vary over the range from +2 to  V and the channel Noise  level
corresponds to ±1 mV. How many bits per sample must the ADC produce to be able to measure
the input voltage level at any moment without any loss of information? How many different code
Symbols would be required to record all the possible values produced by the ADC? [11 bits/
sample. Minimum of 2000 symbols needed to cover all the levels. The 11-bit ADC actually
provides 2048 symbols.]

−2

3) The channel used for 2) can carry signal frequencies (sinewaves) from 0 Hz up to 150 kHz.
What is the value of the channel's Response Time? How many samples per second must the ADC
take to ensure that all the analog information is converted into digital form? [Response time = 3·3
µs. 300,000 samples/s.]

4) A Message takes 10 seconds to transmit along the analog channel. How many bits of of
information is it likely to contain? [33 million.]

5) Explain the difference between the Dynamic Range of a channel or system and the Signal to Noise
Ratio of a signal. Write down an equation giving the S/N ratio in decibels in terms of the signal
power and noise power.
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Chapter 3

Noise

3.1 The sources of noise

Whenever we try to make accurate measurements we discover that the quantities we are observing
appear to fluctuate randomly by a small amount. This limits our ability to make quick, accurate
measurements and ensures that the amount of information we can collect or communicate is
always finite. These random fluctuations are called Noise. They arise because the real world
behaves in a quantised or �lumpy� fashion. A common question when designing or using
information systems is, �Can we do any better?� In some cases it's possible to improve a system by
choosing a better design or using it in a different way. In other cases we're up against
fundamental limits set by unavoidable noise effects. To decide whether it is worth trying to build a
better system we need to understand how noise arises and behaves. Here we will concentrate on
electronic examples. However, you should bear in mind that similar results arise when we
consider information carried in other ways (e.g. by photons in optonics systems). 

3.2 �Johnson noise�

In 1927 J. B. Johnson observed random fluctuations in the voltages across electrical resistors. A
year later H. Nyquist published a theoretical analysis of this noise which is thermal in origin.
Hence this type of noise is variously called Johnson noise, Nyquist noise, or Thermal noise.

A resistor consists of a piece of conductive material with two electrical contacts. In order to
conduct electricity the material must contain some charges which are free to move. We can
therefore treat it as �box� of material which contains some mobile electrons (charges) which move
around, interacting with each other and with the atoms of the material. At any non-zero
temperature we can think of the moving charges as a sort of Electron Gas trapped inside the
resistor box. The electrons move about in a randomised way � similar to Brownian motion �
bouncing and scattering off one another and the atoms. At any particular instant there may be
more electrons near one end of the box than the other. This means there will be a difference in
electric potential between the ends of the box (i.e. the non-uniform charge distribution produces
a voltage across the resistor). As the distribution fluctuates from instant to instant the resulting
voltage will also vary unpredictably. 

V

+-

Resistor

D.C. Amplifier

D.C. Voltmeter

Mobile
Electrons

Fluctuating voltage produced by random

 movements of mobile electrons.

Figure 3.1
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Figure 3.1 illustrates a resistor connected connected via an amplifier to a centre-zero d.c.
voltmeter. Provided that the gain of the amplifier and the sensitivity of the meter are large
enough we will see the meter reading alter randomly from moment to moment in response to the
thermal movements of the charges within the resistor. We can't predict what the precise noise
voltage will be at any future moment. We can however make some statistical predictions after
observing the fluctuations over a period of time. If we note the meter reading at regular intervals
(e.g. every second) for a long period we can plot a histogram of the results. To do this we choose
a �bin width�, , and divide up the range of possible voltages into small �bins� of this size. We
then count up how often the measured voltage was in each bin, divide those counts by the total
number of measurements, and plot a histogram of the form shown in figure 3.2.

d V

We can now use this plot to indicate the likelihood or probability, , that any future
measurement of the voltage will give a result in any particular small range, . This
type of histogram is therefore called a display of the Probability Density Distribution of the
fluctuations. From the form of the results, two conclusions become apparent:

p {V } .d V
V → V + d V

Firstly, the average of all the voltage measurements will be around zero volts. This isn't a surprise
since there's no reason for the electrons to prefer to concentrate at one end of the resistor. For
this reason, the average voltage won't tell us anything about how large the noise fluctuations are.

Histogram of some noise voltage measurements.Figure 3.2

dV

p(V)

V
0

V
DC

Secondly, the histogram will approximately fit what's called a Normal (or Gaussian) distribution of
the form

p {V }  . d V ∝ Exp {−2V 2

σ2 } ... (3.1)

(Note that you'll only get these results if you make lots of readings. One or two measurements
won't show a nice Gaussian plot with its centre at zero!) The value of σ which fits the observed
distribution indicates how wide the distribution is, hence it's a useful measure of the amount of
noise. 

The σ value is useful for theoretical reasons since the probability distribution is Gaussian. In
practice, however, it is more common to specify a noise level in terms of an rms or root-mean-square
quantity. Here we can imagine making a series of m voltage measurements,  ,
of the fluctuating voltage. We can then calculate the rms voltage level which can be defined as

v 1 ,  v 2  ,  �  v j � v m

v r m s ≡ ∑
m

j = 1

v 2
j

m
... (3.2)

In general in this book we can simplify things by using the �angle brackets�, , to indicate an〈 〉
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averaged quantity. Using this notation expression 3.2 becomes

v r m s = 〈v 2
j 〉 ... (3.3)

Since  will be positive when and when  we can expect  to always be positive
whenever the Gaussian noise distribution has a width greater than zero. The wider the
distribution, the larger the rms voltage level. Hence, unlike the mean voltage, the rms voltage is a
useful indicator of the noise level. The rms voltage is of particular usefulness in practical
situations because the amount of power associated with a given voltage varies in proportion with
the voltage squared. Hence the average power level of some noise fluctuations can be expected to
be proportional to .

v 2
j v j > 0 v j < 0 v r m s

v 2
r m s

Since thermal noise comes from thermal motions of the electrons we can only get rid of it by
cooling the resistor down to absolute zero. More generally, we can expect the thermal noise level
to vary in proportion with the temperature.

3.3 �Shot noise�

Many forms of random process produce Gaussian/Normal noise. Johnson noise occurs in all
systems which aren't at absolute zero, hence it can't be avoided in normal electronics. Another
form of noise which is, in practice, unavoidable is Shot Noise. As with thermal noise, this arises
because of the quantisation of electrical charge. Imagine a current flowing along a wire. In reality
the current is actually composed of a stream of carriers, the charge on each being q, the
electronic charge (1·6 × 10  Coulombs). To define the current we can imagine a surface
through which the wire passes and count the number of charges, n, which cross the surface in a
time, t. The current, i, observed during each interval will then simply be given by

−19

i =
q n

t
... (3.4)

Now the moving charges will not be aligned in a precise pattern, crossing the surface at regular
intervals. Instead, each carrier will have its own random velocity and separation from its
neighbours. When we repeatedly count the number of carriers passing in a series of m successive
time intervals of equal duration, t, we find that the counts will fluctuate randomly from one
interval to the next. Using these counts we can say that the typical (average) number of charges
seen passing during each time t  is

〈n 〉 = ∑
m

j = 1

n j

m
... (3.5)

where  is the number observed during the j th interval. The mean current flow observed during
the whole time, , will therefore be

n j

m t

I =
〈n 〉 q

t
... (3.6)

During any specific time interval the observed current will be

i j =
n jq

t
... (3.7)

which will generally differ from I  by an unpredictable amount. The effect of these variations is
therefore to make it appear that there is a randomly fluctuating noise current superimposed on
the nominally steady current, I. The size of the current fluctuation, , during each time period
can be defined in terms of the variation in the numbers of charges passing in the period,  , i.e.
we can say that

∆i j

∆n j
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∆i j =
q ∆n j

t
   where    ∆n j = n j − 〈n 〉 ... (3.8)

As with Johnson noise, we can make a large number of counts and determine the magnitude of
the noise by making a statistical analysis of the results. Once again we find that the resulting
values have a Normal distribution. By definition we can expect that  (since  is
arranged to be the value which makes this true). Hence, as with Johnson noise, we should use the
mean-squared variation, not the mean variation, as a measure of the amount of noise. In this case,
taking many counts and performing a statistical analysis, we find that

〈∆n 〉 = 0 〈n 〉

〈∆n 2〉 ≈ 〈n 〉 ... (3.9)

Note that � as with the statement that thermal noise and shot noise exhibit Gaussian probability
density distributions � this result is based on experiment. In this book we will not take any
interest in why these results are correct. It is enough for our purposes to take it as an
experimentally verified fact that these statements are true. Combining the above expressions we
can link the magnitude of the current fluctuations to the mean current level and say that

〈∆i 2〉 =
q 2 〈∆n 2〉

t 2
=

q 2 〈n 〉
t 2

=
q 2

t 2
×

I t

q
=

q I

t
... (3.10)

Hence we find that the rms size of the random current fluctuations is approximately proportional
to the average current. Since some current and voltage is always necessary to carry a signal this
noise is unavoidable (unless there's no signal) although we can reduce its level by reducing the
magnitude of the signal current.

3.4 An alternative way to describe noise

Up to now we've looked at the statistical properties of noise in terms of its overall rms level and
probability density function. This isn't the only way to quantify noise. Figure 3.3 shows an
alternative which is often more convenient.

V

e n

R
T Ri n

Amplifier Band-Pass Filter

RMS Volts

Spectral noise measurement.Figure 3.3

at
deg.

As in figure 3.1 we're looking at the Johnson noise produced by a resistor. In this case the voltage
fluctuations are amplified and passed through a band-pass filter to an rms voltmeter. The filter only
allows through frequencies in some range, . The filter is said to pass a bandwidth,

.  is the input resistance of the amplifier. Note that this diagram uses a
common conventional �trick� of pretending that the noise generated in the resistor is actually
coming from an invisible random voltage generator, , connected in series with an �ideal� (i.e.
noise-free) resistor. If we build a system like this we find that the rms fluctuations seen by the
meter imply that the (imaginary) noise generator produces an average voltage-squared

f min < f < f ma x

B = f ma x − f min Rin

e n

〈e 2
n〉 = 4kT BR ... (3.11)



Information and Measurement - 22 - Free PDF version (larger page)

where: k is Boltzmann's Constant (=1·38 × 10  Ws/K); T is the resistor's temperature in Kelvin; R
is it's resistance in Ohms; and B is the bandwidth (in Hz) over which the noise voltage is observed.
(Note that, as with the earlier statements about Normal Distribution, etc, this result is not being
proved, but given as a matter of experimental fact.) In practice, the amplifier and all the other
items in the circuit will also generate some noise. For now, however, we will assume that the
amount of noise produced by R is large enough to swamp any other sources of random
fluctuations. Applying Ohm's law to figure 3.3 we can say that the current entering the amplifier
(i.e. flowing through ) must be

−23

Rin

i =
e n

(R + Rin) ... (3.12)

The corresponding voltage seen at the amp's input (across ) will beRin

v = iRin =
e nRin

(R + Rin) ... (3.13)

hence the mean noise power entering the amplifier will be

N = 〈i v 〉 =
〈e 2

n〉 Rin

(R + Rin)2
... (3.14)

For a given resistor, R, we can maximise this by arranging that  when we obtain the
Maximum Available Noise Power,

Rin = R

N ma x =
〈e 2

n〉
4R

  which, from eqn 3.8   = kT B ... (3.15)

This represents the highest thermal noise power we can get to enter the amplifier's input
terminals from the resistor. To achieve this we have to match (i.e. equalise) the source and
amplifier input resistances. From this result we can see that the maximum available noise power
does not depend upon the value of the resistor whose noise output we are examining. 

The Noise Power Spectral Density (NPSD) at any frequency is defined as the noise power in a 1 Hz
bandwidth at that frequency. Putting  into eqn 3.15 we can see that Johnson noise has a
maximum available NPSD of just  � i.e. it only depends upon the absolute temperature and
the value of Boltzmann's constant. This means that Johnson noise has an NPSD which doesn't
depend upon the fluctuation frequency. The same result is true of shot noise and many other
forms of noise. Noise which has this character is said to be White since we the see the same power
level in a fixed bandwidth at every frequency. 

B = 1
kT

Strictly speaking, no power spectrum can be truly white over an infinite frequency range. This is
because the total power, integrated over the whole frequency range, would be infinite! (Except,
of course, for the trivial example of a NPSD of zero.) In any real situation, the noise generating
processes will be subject to some inherent mechanism which produces a finite noise bandwidth.
In practice, most systems we devise to observe noise fluctuations will only be able to respond to a
range of frequencies which is much smaller than the actual bandwidth of the noise being
generated. This in itself will limit any measured value for the total noise power. Hence for most
purposes we can consider thermal and shot noise as �white� over any frequency range of interest.
However the NPSD does fall away at extremely high frequencies, and this ensures that the total
noise power is always finite.

It is also worth noting that electronic noise levels are often quoted in units of Volts per root Hertz or
Amps per root Hertz. In practice, because noise levels are � or should be! � low, the actual units
may be nV/  or pA/ . These figures are sometimes referred to as the NPSD. This is

because most measurement instruments are normally calibrated in terms of a voltage or current.

Hz Hz
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For white noise we can expect the total noise level to be proportional to the measurement
bandwidth. The �odd� units of NPSD's quoted per root Hertz serve as a reminder that � since
power ∝ volts  (or current ) � a noise level specified as an rms voltage or current will increase
with the square root of the measurement bandwidth.

2 2

3.5 Other sorts of noise

A wide variety of physical processes produce noise. Some of these are similar to Johnson and shot
noise in producing a flat noise spectrum. In other cases the noise level produced can be strongly
frequency dependent. Here we will only briefly consider the most common form of frequency-
dependent noise:   noise. Unlike Johnson or shot noise which depend upon simple physical
parameters (the temperature and current level respectively)  noise is strongly dependent
upon the details of the particular system. In fact the term '  noise' covers a number of noise
generating processes, some of which are poorly understood. For this form of noise the NPSD, ,
varies with frequency approximately as

1 / f
1 / f

1 / f
S n

S n ≈ f  − n ... (3.16)

where the value of the index, n, is typically around 1 but varies from case to case over the range,
.0.5 < n < 2

As well as being widespread in electronic devices, random variations with a  spectrum appear
in processes as diverse as the traffic flow in and out of Tokyo and the radio emissions from distant
galaxies! In recent years the subject of  noise has taken on a new interest as it appears that
some �Chaotic� systems may produce this form of unpredictable fluctuations. 

1 / f

1 / f

Summary

This chapter has shown how random noise arises from the quantised behaviour of the real world.
Two types of noise � Johnson Noise and Shot Noise � were described in detail and their nature
shows that they are, in practice, essentially unavoidable. You should now know that noise can only
be predicted or quantified on a statistical basis because its precise voltage/current at any future
instant is unpredictable. That its magnitude is quantified in terms of averaged rms voltages/
currents or mean power levels. The concepts of the Maximum Available Noise Power and Noise Power
Spectral Density were introduced and we saw that Johnson Noise (and also Shot Noise) have a
uniform NPSD � i.e. they have a White power spectrum. Other forms of noise can show different
noise spectra, most commonly a �1/f � pattern.

Questions

1)  Explain with the help of a diagram how Thermal Noise arises. Explain why the mean noise
voltage, when averaged over a long time, is almost zero.

2) Explain what's meant by the Power Spectral Density of a signal. Thermal and Shot Noise are often
said to have a �white� Noise Power Spectral Density (NPSD). What does this tell us about them?

3) A 10 kΩ resistor at 300 K is connected to the input of an amplifier whose input resistance is 22
kΩ. Given that Boltzmann's constant, k = 1·38 × 10-23 Ws/K, calculate the noise power spectral
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density of the thermal noise the resistor puts into the amplifier.  [3·5×10 - 21 W/Hz.]

4) What value of amplifier input resistance would draw the Maximum Available Noise Power from a
10 kΩ resistor? What is the thermal NPSD entering an amplifier with this input resistance when
the the 10 kΩ resistor is at 300 K? [10kΩ. 4·12×10 - 21 W/Hz.]

5) How does 1/f noise differ from Shot and Thermal noise?
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Chapter 4

Uncertain measurements

4.1 Doubtful information and errors

Random noise has the effect of making the result of any quantitative measurement uncertain to
some extent. This lack of perfect precision is often referred to in terms of producing a given level
of Error in any result. Alas, many students are rather unhappy with the whole subject of errors.
After all, who likes to admit they may have made a �mistake�? In the minds of many, �more errors
= less marks�! For this reason it's useful to realise that the errors produced by unavoidable random
noise aren't something to be embarrassed about. They're a consequence of the real world we're
all stuck with. We'll be looking at ways to cope with the effects of noise later on. (We will also see
that there are situations where random errors are actually useful!) In this chapter we'll examine
how noise affects our ability to communicate information. 

To see how noise affects information transmission, consider the situation illustrated in figure 4.1.

Transmitter Receiver
Signal

Noise

V 0

V 1

Transmitted Signal Received Signal + Noise

Digital communication over a noisy channel.Figure 4.1

Here a message is being sent as a stream of binary digits, i.e. it is in the form of a Serial Digital
signal. The transmitter uses one voltage level, , to signal a �1� and another voltage, , to signal
a �0�. The information is therefore carried by the voltage pattern. Some random noise is
introduced during transmission. As a result, the received signal is a combination of the intended
signal voltage pattern and this added noise. For simplicity we can assume that the transmitter and
receiver are in themselves �perfect�, i.e. they don't generate any noise of their own. In reality this
won't be true. For our purposes here it doesn't really matter where the noise comes from. Any
actual noise coming from the transmitter/receiver circuits would have an identical effect to the
same total noise level injected onto the channel from an external source.

V 1 V 0

In the absence of any noise the receiver could repeatedly measure the input it sees and decide, �If
this is  I've received a �0�, if it's  I've received a �1�.� However, the noise means that the input
it sees is hardly ever actually equal to or . It therefore requires some other recipe for
deciding whether it's received a �0� or �1�. The simplest way to do this is to define a sensible
Decision Level, , mid-way between  and 

V 0 V 1

V 0 V 1

V ′ V 0 V 1

V ′ ≡
V 0 + V 1

2
... (4.1)
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The effect of noise on the voltages seen by the receiver.Figure 4.2

p {V }

p {V }

The receiver now works by saying, �If I see a voltage  I've received a �1�, if I see a voltage
I've received a �0�.� 

≥ V ′ < V ′

The results of decoding a noisy digital message in this way can be understood by looking at figure
4.2.

The effects of the noise can be assessed by making a large number of measurements of the
received voltage levels and plotting a probability distribution of the results. The top graph shows a
plot of the distribution of voltages seen by the receiver when the transmitter is sending . In this
situation the received voltage will be  where  varies randomly from one measurement
to another. Since the average noise voltage of lots of measurements is essentially zero the
resulting spread of voltages has its mean at . For Normal noise the distribution therefore has a
Gaussian shape with its peak at . A similar result, shown in the lower graph, arises when the
transmitter is trying to send , but in this case the average (and peak of the shape) are at .

V 0

V 0 + v n v n

V 0

V 0

V 1 V 1

Since the receiver decides that any voltage above  is a �1� and any voltage below  is a �0� we
can predict the frequency of mistakes by calculating the fraction of the plots which are the wrong
side of . When the transmitter is trying to send  the probability or relative frequency, ,
with which the received voltage is seen to be in a small interval, , centred at some voltage, V,
will be

V ′ V ′

V ′ V 1 p {V }
d V

p {V } .d V = A. Exp {−2 (V − V 1)2

σ2 } .d V ... (4.2)

Since the observed voltage must always be somewhere in the range from  to  we can say that
the value of the coefficient, A, must be such that

−∞ +∞

∫
 + ∞

 − ∞
A. Exp {−2 (V − V 1)2

σ2 }  d V = 1 ... (4.3)

i.e. the probability that the observed voltage is somewhere between  and  is unity. Since the
total area under the distribution shape isn't affected by the choice of , this is equivalent to
saying that

−∞ +∞
V 1

1

A
≡ ∫

 + ∞

 − ∞
Exp {−2V 2

σ2 }  d V ... (4.4)
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When  is being sent, the chance, , it will be correctly received is determined by the fraction
of the distribution which lays above . This can be determined from integrating over the
appropriate part of the curve to obtain

V 1 C 1

V ′

C 1 = ∫
  ∞

V ′
p {V }  d V = ∫

 ∞ 

 V ′
A. Exp {−2 (V − V 1)2

σ2 }  d V ... (4.5)

In a similar way, the chance , that  will be correctly received is determined by the fraction of
the distribution which is below  when  is being sent, i.e. we can say

C 0 V 0

V ′ V 0

C 0 = ∫
  V ′

−∞
p {V }  d V = ∫

  V ′

−∞
A. Exp {−2 (V 0 − V )2

σ2 }  d V ... (4.6)

Using a book of standard integrals we can find that the above expressions are equivalent to

C 1 =
1

2
 . 

1 + Erf { 2 . (V 1 − V ′)
σ }

 ... (4.7)

C 0 =
1

2
 . 

1 + Erf { 2 . (V ′ − V 0)
σ }

 ... (4.8)

and

A ≡ ( 1

σ)  . 
2

π
... (4.9)

where Erf is a standard mathematical function called the Error Function. Since this isn't a pure
maths book the details of this proof and the precise nature of the error function don't matter very
much. It is enough for us to accept that it is just another function like sine or cos  that we can
look up in a book and which happens to be the right one to solve the integrals. We can now use
the above expressions to see how often the receiver will pick up the correct signal level in the
presence of some noise.

Since we defined  to be mid-way between  we have a situation where .
Hence we only need to look at how one of the above depends upon the chosen voltages and the
noise level. The amplitude of the signal voltage being transmitted is . The rms
amplitude of the typical noise voltage is σ. Since  we can therefore say that the
fractional chance of each �1� or �0� being received correctly will be

V ′ V 0 and  V 1 C 1 = C 0

V s = V 1 − V 0

V ′ = (V 1 + V 0) / 2

C =
1

2
 . 

1 + Erf { V s

2 . σ}
... (4.10)

The dependence of C upon the signal/noise voltage ratio, , can be seen by looking at the
curve plotted in figure 4.3. As we would expect C approaches unity when the signal to noise ratio
is high. In this situation the signal voltage is very big compared to the noise, hence the noise will
have no noticeable effect.

V s /σ

A more curious result is that when the signal/noise ratio is zero  � i.e. the receiver will
correctly pick up 50% of the message's pattern of �1�s and �0�s even when the transmitter doesn't
send the signal! At first sight this seems very odd. Surely, if the signal amplitude is zero the
receiver has no way to know what the message is�

C = 0·5
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Fraction of ‘1’s and ‘0’s received correctly.Figure 4.3

The reason for this odd result can be explained as follows. Imagine that we didn't bother with
using a proper signal receiver but instead just kept tossing a coin. Every time we get a head we
decide the message should contain a �1�. Every tail is taken as a �0�. In this way we can build up a
pattern of �1�s and �0�s without bothering to look at the actual signal. Since there are only two
possibilities (�1� or �0�), every time we throw the coin we have a 50% chance of getting the correct
result. As a consequence 50% of the �1�s and �0�s in our coin-generated version of the message will
be correct. However, this doesn't mean that we have received 50% of the actual information since
we don't know which 50% of the coin-generated bits are the correct ones! This result is just the
same as if we'd used random noise to make the receiver perform the equivalent of �toss coins� to
generate a random string of bits.

This demonstrates an important feature of the way information is communicated and processed.
The amount of information we have doesn't just depend upon how many bits we've gathered. It
also depends upon how confident we are that each bit is correct. The amount of information
received depends upon how certain we are that the pattern is correct. If we're only 50% certain
and there are only 2 possibilities we don't actually have any real information since any other
outcome is just as likely to be the correct one.

Summary

This chapter has shown how the effect of noise is to produce random errors when we
communicate a signal. These random errors mean we can never be absolutely certain that we've
received the correct information. Since noise is present in all real systems this means that we can
never be certain that the information we have is absolutely correct. You should also now know
that the amount of information in a signal pattern depends upon how certain we are that it is
correct.

Questions

N.B. In the following, use the approximation

Erf {x} ≈ 1 −
0·348t − 0·0958t 2 + 0·748t 3

Exp {x 2}
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where

t ≡
1

1 + 0·47x

1) A digital transmission system uses 0·5 V to signal a logical �0� and 4·5 V to signal a logical �1�. A
message is transmitted which consists of a sequence which contains 2000 �1�s and 2000 �0�s. The
channel used to carry the message has a noise level we can characterise by a value of σ = 1·5 V.
How many bits are likely to be received correctly using a receiver whose decision level is set mid-
way beween the logical �0� and �1� levels? [3984 in total.]

2) How many bits would have been received correctly in question 1 if the receiver's decision level
had been set at either a) 3 V, or b) 1 V? (Remember that a chance of a �0� being received correctly
is C0 and the chance of a �1� being received correctly is C1.)[ a) 3953,  b) 3494.]

3) Write a program to calculate how the chance of correct reception in the system described
above varies if the decision level is varied between 0·5 V and 4·5 V.
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Chapter 5

Surprises and redundancy

In the last chapter we saw how the amount of information in a received signal pattern depends
upon how confident we can be that its details are correct. We also saw how the probability that a
digital bit of information will be correctly received is

C =
1

2

1 + Erf { V s

2 . σ}
... (5.1)

where  is the peak-to-peak size of the signal voltage and σ is a measure of the width of the noise
voltage's probability density pattern (histogram). This expression is theoretically fine, but it can
be awkward to use in practice. In most real situations it is more convenient to deal with signal and
noise powers or rms voltages. We therefore need to turn expression 5.1 into a more useful form.

V s

A square-wave of peak-to-peak amplitude, , will have a mean power  where  is
the appropriate resistance across which the observed voltage appears. Hence we can use

V s S = (V s / 2R )2 R

V s = 2 RS ... (5.2)

to replace the signal voltage in the above expression. To establish the noise power in terms of the
width, σ, we have to evaluate the noise's rms voltage level, . To do this we can argue as follows:v r m s

In chapter 3 we saw that the noise level can be represented in terms of a probability distribution
of the form

p {V } .d V = A Exp {− 
2V 2

σ2 } .d V ... (5.3)

where, to ensure that the actual voltage always lies between + ∞ and  , we can say that− ∞

A ≡
1

σ

2

π
... (5.4)

To compute the rms voltage we take many voltage readings, square them, add them together,
divide by the number of readings, and take the square root of the result. This is mathematically
equivalent to 

v r m s = ∫
+∞

−∞
V 2p {V }  d V ... (5.5)

This is because, when we make lots of voltage measurements, the fraction of them which falls
between  and  is . By solving the above integral we discover thatV V + d V p {V } .d V

v r m s =
σ

2
... (5.6)

The noise power level will be  and hence we can say that N = v 2
r m s / R

σ = 2 RN ... (5.7)

We can now use 5.2 and 5.7 to replace  and σ in expression 5.1 and obtain the resultV s

C =
1

2




1 + Erf





S

2N








... (5.8)

This expression tells us the chance that bits will be received correctly in terms of two easily
measurable quantities � the signal power, S, and the noise power, N. 
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Whenever possible we should make the signal/noise power ratio as large as we can to minimise
the possibility of errors. If this is done we can often neglect the information loss produced by
random noise. It should be remembered, however, that the signal/noise ratio will always be finite.
Hence we can never get rid of this problem altogether. Despite this, a S/N power ratio of just 10
gives C = 0·999214 � i.e. around 99·98% of the bits in a typical message received with this S/N
would be correct. A slightly better S/N ratio of 25 gives C = 0·9999997. This is equivalent to an
Error Rate of around 3 bits in every ten million (3:10,000,000).

It may seem that an error rate below �one in a million� isn't really worth making a fuss about. Alas,
there are some factors which we have not, as yet, taken into account.

• We will usually be sending a number of bits to indicate a code word and these words may be
built up into a longer message. A given message may be composed of a lot of bits.

• Whilst a 1:1,000,000 error rate may be acceptable for many purposes, it may be a disaster in
other circumstances. 

For example, consider one of the systems used to signal to strategic defence nuclear submarines.
These submarines are designed to cruise hidden below the ocean surface. They should remain
hidden up until such time as they might be required to launch a nuclear attack. For this reason
they avoid transmitting any radio signals which would give away their location to an enemy. Their
standing orders include an instruction to �launch retaliation� if their home county is destroyed by
a �sneak attack�. The question therefore arises, �How can they tell if their home country has been
flattened?�. A country that has been destroyed may not have any radio transmitters left to transmit
a signal to the subs, ordering them to attack.

To get around this problem the military devised a �fail disaster� system. The home country
regularly transmits a sequence of coded messages at prearranged moments. The sub pops up a
radio buoy at these times, listens for these broadcasts, and verifies that the codes are correct. The
submarine commander then uses the absence of these messages as a �signal� to the effect that,
�Home has been wiped out, attack enemy number 1�. An incorrectly coded message is interpreted
as a �signal� that, �We have been taken over by an enemy and forced to make this broadcast
against our will. Attack!�. Clearly, for a signalling system of this kind a single error could be a
genuine disaster. Even a one in a million chance of a mistake is far too high. So steps have to be
taken to make an error practically impossible. The importance of errors varies from situation to
situation, but it should be clear from the above example that we sometimes need to ensure very
low error rates.

When dealing with the effects of errors on messages (rather than on single bits) we must also take
into account how effectively we are using our encoding system to send useful information and
how important the messages are. 

Some messages are quite surprising, whereas others are so predictable that they tell us almost
nothing. To quote some examples from the English language.

1) �This car does 0 � 60 in 0·6 seconds.�

2) �If you want to catch a bus you should q over there.�

3) �Party at 8, bring a bottle.�

The contents of this first message indicate a remarkable car! Although every symbol in this
sentence looks OK by itself, the whole message is clearly rather suspect. We can only guess what
the correct message was. In the second message the error is pretty obvious and we can feel almost
certain that we know what the correct message should be. The third message looks fine, but it may
still be wrong, e.g. the party may be at 9 o'clock and the figure 8 is, in fact, a mistake. It is also
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ambiguous; the party may be at house number 8, not at 8 o'clock.

Messages 1 and 3 contain examples of errors which, if noticed, give no reliable indication of the
correct message. In order to deal with errors of this type we need to include some extra
information in the message.

Message 2 contains an error which can be corrected. In the context of the message and our
knowledge of the English language, the whole word �queue� is unnecessary. The �ueue� is
redundant. This relates to the observation that � in English � the letter �u� is often redundant.
We could replace almost every �qu� in English with �q� without the correct meaning being lost
(although we'd get complaints about our spelling!)

Clearly, it is valuable to choose a system of coding which makes errors obvious and allow us to
correct received messages. To see how it is possible to produce systems which do this we need to
analyse redundancy and its effect on the probability of a message being understood correctly.

In an earlier chapter we saw that the amount of information in a message can be expected to
increase with log  of the number of code symbols available. This, in fact, assumes that all the
available symbols are used (a symbol which isn't used might as well not exist). It also assumes they
are all used with similar frequency. Hence the probability, P, of a particular symbol appearing
would  where M is the number of available code symbols. We can therefore say that the
amount of information would vary with 

2

= 1 / M

log2 {M } = log2 {1

P} = − log2 {P} ... (5.9)

Consider the situation where we use a set of M symbols, , , , � , for sending messages.
By collecting a large number of messages and examining them we can discover how often each
symbol tends to occur in a typical message. We can then define a set of probability values

X 1 X 2 X 3 X M

Pi ≡
N i

N
... (5.10)

from knowing that each symbol,  , occurs  times in a typical message N symbols long. In a
situation where all the symbols tend to appear equally often we can expect that  for every
symbol  � i.e. all the symbols are equally probable. More generally, the symbols appear with
various frequencies and each  value indicates how often each symbol appears.

X i N i

Pi = 1
M

X i

Pi

When all the symbols are equally probable the amount of information provided by each
individual symbol occurrence in the message will be . The total amount of information in
a typical message N symbols long would then be

log2 {M }

H = N . log2 {M } = −N . log2 {P} ... (5.11)

where  for all i, since in this case the probabilities all have the same value. This expression
giving the total amount of information in terms of symbol probabilities indicates how we can
define the amounts of information involved when the symbols occur with differing frequencies.
We can then say that the amount of information provided just by the occurrences of, say, the
symbol will be

P = Pi

X i

H i = −N i log2 {Pi} = −N Pi log2 {Pi} ... (5.12)

From this expression we can see that the smaller the probability of a particular symbol, the more
informative it will be when it appears. Surprising (i.e. rare) messages convey more information
than boringly predictable ones! The total amount of information in the message will therefore be
the sum of the amounts carried by all the symbols
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H = ∑
M

i = 1

−N i log2 {Pi} = ∑
M

i = 1

−N Pi log2 {Pi} ... (5.13)

From expression 5.12 we can say that every time  appears in a typical message it provides a
typical amount of information per symbol occurrence of 

X i

h i = H i / N i = − log2 {Pi} ... (5.14)

(Note that to make things clearer we will use H to denote total amounts of information and h to
denote an amount per individual symbol occurrence.) From expression 5.14 we can say that the
amount of information per symbol occurrence, averaged over all the possible symbols is

h =
H

N
= ∑

M

i = 1

−Pi log2 {Pi} ... (5.15)

In general, this averaged value will differ from the individual  values unless all the symbols are
equally probable. Then  and 5.15 would become equivalent to

. It's interesting to note that the form of the above expressions
is similar to those used for entropy in thermodynamics. Many books therefore use the term entropy
for the measure of information in a typical message or code.

h i

Pi = 1 / M
h = M × (− (1 / M ) log2 {Pi}) = h i

The above argument gives us a statistical method for calculating the amount of information
conveyed in a typical message. Of course, some messages aren't typical, they're surprising. The
information content of a specific message may be rather more (or less) than is usual.  The above
expressions only tell us the amounts of information we tend to get in an average message.

Consider now a specific message N symbols long where each symbol, , actually occurs  times.
The amount of information provided by each individual symbol in the message is still ,
but there are now  of these, not the  we would expect in a �typical� or average message. We
can therefore substitute  into expression 5.13 and say that the total amount of information in
this particular message is 

X i Ai

�log2 {Pi}
Ai N Pi

Ai

H = − ∑
M

i = 1

Ai . log2 {Pi} ... (5.16)

In order to convey information, every one of the symbols we wish to use must have a defined
meaning (otherwise the receiver can't make sense of them). This is another way of saying that the
number of available symbols, M, must always be finite. Since any particular symbol in a message
must be chosen from those available we can say that 

∑
M

i = 1

Pi = 1 ... (5.17)

In most cases the chance of a particular symbol occurring will depend to some extent upon the
previous symbol (e.g. in English, a �u� is much more likely to follow a �q� than any other letter)
and some combinations of symbols occur more often than others (e.g. �th� or �sh� are more
common than �xz�). The term Intersymbol Influence is used to describe the effect where the
presence (or absence) of some symbols in some places affects the chance of other symbols
appearing elsewhere. To represent this effect we can define a Conditional Probability,  to be
the probability that the j th symbol will follow once the i th has appeared. The chance that the
symbol combination  will appear can then be assigned the Joint Probability, 

Pi → j

X iX j

Pi j = Pi . Pi → j ... (5.18)

Just as the amount of information provided by an individual symbol taken by itself depends upon
its probability, so the extra information provided by a following symbol depends upon how likely
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it is once the previous symbol has already arrived. For example � in English, a �u� is a virtual
certainty after a �q�, hence it doesn't provide very much extra information once the �q� has
arrived. The �u� is said to be redundant once the �q� has arrived. However, although it doesn't
provide any real extra information it is useful as a way of checking the correctness of the received
message.

The term Conditional Entropy is often used to refer to  , the average amount of information
which is communicated by the j th symbol after the i th has already been received. Since h is
proportional to , the joint entropy,  (the amount of information provided by this pair of
symbols taken together), must simply be

h i → j

log2 {P} h i j

h i j = h i + h i → j ... (5.19)

If we wish to maximise the amount of information in a typical message then we would like every
symbol and combination of symbols to be as improbable as possible (i.e. minimise all the P
values). Alas, expression 5.17 means that when we make one symbol or combination less likely
some others must become more probable. We can't make all the existing symbols less likely
without adding some new ones! From the English language example of a �u� following a �q� we
can see that the effect of intersymbol influence is generally to reduce the amount of information
per symbol since the �u� becomes pretty likely after a �q�. Hence we can expect that the
information content of a message is maximised when the intersymbol influence is zero. Under
these conditions 

h i j = h i + h j   (no influence) ... (5.20)

i.e. the amount of information communicated by two symbols is simply double that provided by
either of them taken by itself. In such a situation none of the transmitted symbols are redundant.
Since this is the best we can do, it follows that, more generally

h i → j ≤ h j ... (5.21)

i.e. the average extra information produced by the following symbol can never exceed that which
it would have as an individual if there were no intersymbol influence. 

Summary

You should now understand how the amount of information in a message depends upon the
probabilities (or typical frequencies of occurrence) of the various available symbols. That the
chance of transmission errors depends upon the signal/noise ratio. That the amount of
information in a specific message can differ from an average one depending upon how surprising
it is (how many times specific symbols actually occur in it compared with their usual probability).
That Intersymbol Influence can help us check that a message is correct, but reduces the maximum
information content.

Questions

1) An information transmission system uses just 4 symbols. The symbols appear equally often in
typical messages. How many bits of information does each symbol carry? How much information
(in bits) would a typical message 1024 symbols long contain? [2 bits per symbol. 2048 bits.]

2) An information transmission system uses 6 symbols. Four of these, , have a
typical probability of appearance, . The other two symbols,  have
probabilities, . How much information would a typical message 512 symbols long carry?
How much information would a specific message 512 symbols long carry if it only contained 300

's, 100 's, and 112 's? [1280 bits. 1424 bits.]

X 1 X 2 X 3 and  X 4

P = 0·125 X 5 and  X 6

P = 0·25

X 1 X 3 X 6
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3) Explain what's meant by the term Intersymbol Influence. Say why and when this can be either a
�good thing� or a �bad thing� depending upon the circumstances.
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Chapter 6

Detecting and correcting mistakes

6.1 Errors and the law!

In chapter 4 we saw that random noise will tend to reduce the amount of information transmitted
or collected by making us uncertain that the resulting message pattern is correct. We've also seen
how redundancy can provide a way to check for mistakes and, in some cases, correct them. One of
the advantages of digital signal processing systems is that they are relatively (but not totally)
immune from the effects of noise. A S/N ratio of just 10:1 is enough to ensure that 99·92% of
digital bits will be correct. 

For short, unimportant, messages this level of immunity from errors is fine, but it isn't good
enough for other situations. For example, consider a computer which has to load (read) a
200 kbyte (1·6 million bits) wordprocessing program from a disc. A 0·01% error rate would mean
the loaded program would contain around 160 mistakes! This would almost certainly cause the
program to crash the computer. By the way, note that the term �error rate� doesn't mean the
errors appear at regular intervals. If it did, we could simply count our way along the pattern to
find and correct the errors! The errors will be randomly placed. The rate simply indicates what
fraction of the bits are likely to be wrong, not where they are. The term, �error rate� is therefore
potentially misleading, although it is commonly used.

We can reduce the rate at which errors occur by improving the S/N ratio, but there is, in fact, a
better way, based on deliberate use of redundancy. By introducing some intersymbol influence we
can make some patterns of symbols illegal � i.e. we arrange that they can only occur as the result
of a mistake. This makes it possible to detect that the signal pattern contains an error. The main
disadvantage of this technique is that we have to reduce the amount of information we're trying to
get into a given message since some of the symbols are now being used to �check� others rather
than sending any extra information of their own. (It can be argued that this doesn't really matter
since � if we don't do anything about it � random noise will destroy some of the information
anyway, although we may not know about it!) One of the simplest ways to deal with errors is to
repeat the message. The two versions can then be compared to see if they're the same. 

If the probability that any particular bit or symbol in a message is correct is C, then the chance
that it's an error must be . (It must be either right or wrong!) As a result, when we
send and compare two copies of a message, the chance that both copies have a symbol error in
the same place will be . As an example consider a system whose S/N ratio provides a chance

 that individual bits are correct. This means that  per bit. The chance of
both copies of a specific bit being wrong will therefore be  � i.e. in a typical pair
of repeated messages there is only a 1:1000000 chance that both copies of any particular bit will
be wrong. Now the chance that a particular bit in �copy #1� is correct and �copy #2� is wrong will
be . Similarly, the chance that just the first copy is wrong will be

. The chance that both are correct will be .

E = 1 − C

E
2

C = 0·999 E = 0·001
E

2 = 0·000001

C .E = 0·000999
E .C = 0·000999 C

2 = 0·998001

When we compare two versions of a long message we therefore typically find that
 of the bits agree with their copies and just

 differ. As a result we can see that just under 0·2% of the bit �pairs�
100× (C 2 + E

2) % = 99·8002%
100×2× (C .E ) % = 0·1998%
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disagree. We have detected the presence of the errors which caused these disagreements and
know where in the message they appear. This is the advantage of this �repeat message� technique
over just sending one copy. In this example, sending two copies is �redundant� because they
should both contain the same information. Once we know about the errors we can take
appropriate action (e.g. ask the transmitter to repeat the �uncertain� parts of the message). A
single copy of the message would contain about 0·1% mistakes but we wouldn't know about them
unless we arrange for some redundancy. Hence without redundancy we can't do anything to
recover what we've lost.

The system of using a pair of messages isn't perfect. (What is?) There are still  errors which we
won't spot because both copies have been changed in the same place. As a result there are still
0·0001% undetected errors in the received information. However, this is much better than the

% of undetected errors we'd get if only one copy of the message had been sent.

E
2

E = 0·1

By spotting differences between two copies of the message we can detect nearly all of the places
where there has been a random noise produced error. However, we still don't know which of the
differing versions is correct. A way to overcome this is to go one stage further and use the military
approach called, Tell Me Three Times. This means we send three copies of the same message. Using
the same arguments as before we can now say the chance that all three copies of a specific bit are
correct is  99.70%. The chance that any one version is wrong is  0·2994%. (There
are three chances for one version out of three to be wrong.) Similarly, the chance that two
versions both have an error in any specific bit is   0·0002997%. The chance that all three
are wrong is  0·0000001%. (N.B. These values have all been rounded to 4 significant figures
to make them more readable!)

C
3 = 3C 2

E =

3C .E
2 =

E
3 =

One effect of tell me three times is to reduce the undetected error rate  still further.
However, the main benefit is that nearly all the errors can now be corrected. This is because in most
cases a difference between the three versions of the message occurs because just one of them is
wrong. The signal receiver can therefore work on a �majority vote� system and decide that, �when
two versions agree and one differs, the correct signal is the one shown by the two versions in
agreement�. It then can use this rule to recover the �correct� information. Occasionally, this
means it will make a mistake when two versions have been changed by errors, but from the figures
shown above we can see this will only happen for about one correction in a thousand. Hence the
tell me three times technique allows us to detect and correct most of the errors produced by
random noise. 

(E 3 )

6.2 Parity and blocks

The disadvantage of tell me three times is that we have to send every message three times instead
of being able to send three different sets of information with the same number of bits or symbols.
This makes it a relatively inefficient and slow way to convey (or store) information. Fortunately,
there are various other methods available for detecting and correcting errors which don't reduce
the overall information carrying capacity quite so much. One of the most common digital
techniques is the use of Parity bits. Before explaining these it's useful to consider the concept of
binary Words.

From previous chapters you should already be familiar with the idea of using a set of binary digits
(bits) to represent information. (See, for example, chapter 1 where we represented a series of
sampled voltages as �000�, �001�, etc.) It's usual to refer to groups of eight bits as a Byte of
information. This stems from early computers which mostly handled 8 bits of information at a
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time. More generally, the term word has come to mean a group of bits which carry a convenient
amount of information. Most modern desktop computers have microprocessors which can handle
16 or 32 bits of information at a time. The information in such a processing system is said to be
held as a set of 16 or 32 bit words. Each binary word can then be regarded as a digital Symbol.
These symbols can be built up in patterns to represent the information. Unlike the term �byte�,
�word� can mean any convenient number of associated bits.

To see how Parity Checking can be used to detect and correct errors, imagine a system when the
information is initially held as a series 8-bit words. The system may want to transmit � or process
in some other way � a series of words, %10011100, %10010100, %11100101, etc. (Note that here
a �%� before the number is used to indicate that it's in binary notation.) The parity of each word
can be defined to be odd or even depending upon how many �1�s it contains. On this basis,
%10011100 has even parity, %1101010 has odd parity, %11100101 has odd parity, and so on. We
can now add an extra bit onto each word to represent its parity. For example, we can add a �1�
onto the end if the word was even or a �0� onto the end if it was odd. This converts the initial
words as follows:

 %10011100 ⇒ %100111001

 %10010100 ⇒ %100101000

 %11100101 ⇒ %111001010

We now transmit or process these new 9-bit words instead of the original 8-bit ones. This extra bit
we've tacked onto each original word doesn't carry any fresh information. It's called a parity bit
because it simply confirms the parity of the other bits in the word. This means the patterns we
transmit are now partially redundant and this redundancy can be used by the receiver to check
for errors. Under the system we've chosen every legal 9-bit word has an odd number of �1�s. The
receiver can now read each 9-bit word as it arrives and check that it's parity is, as expected, odd.

Random noise may occasionally change one of the bits in a word during transmission. As a result,
the received 9-bit word will now have an even number of �1�s. The receiver can spot this fact and
use it to recognise that the word is illegal. This means that it's not a pattern which the transmitter
would send. Hence the receiver can discover that it must contain an error. In this way the parity
bits allow error detection. Note that this isn't the only way to implement parity bits. We could put
the extra bits at the start of the words, or somewhere in the middle. We could choose to add a �1�
onto the odd words and a �0� to the even ones to make all the legal 9-bit words have even parity.
The details don't matter so long as the receiver knows what to expect.

Using this example we can now define some ways to quantify the degree of redundancy in the
coding system used to transmit information. In this case, each 9 transmitted bits only contains 8
bits worth of real information. We can define the ratio of  number of bit of information to the
number of bits transmitted to be the Efficiency of the coding system used, i.e. we can say

Efficiency =
number of information bits

number of info bits + number of parity bits
... (6.1)

In this case the ratio is 8/9, hence the transmission system has an efficiency of 0·888. The
redundancy can be defined to be one minus the efficiency,  0·111. These values can be
compared with the �tell me three times� system where we had to send three times as many bits as
were required to contain the original information � i.e. an efficiency of 1/3rd or redundancy of
2/3rds. Note that although the parity system we've described is more efficient than �tell me three
times� it still requires us to send more bits than were needed for the original information. This is a

1 − 8
9 =
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general rule. Every system for detecting (and correcting) mistakes produced by random noise
requires us to communicate or store �extra� bits which essentially repeat some of the information.

Comparing the parity checking system described above with �tell me three times� we can see it can
detect occasional 1-bit errors, but has a much lower redundancy. However, it can't correct errors.
To do that we can use a slightly more complex approach based upon what are called Block Codes.
A simple example is shown below. Here we collect the words we want to transmit into a series of
blocks of the kind illustrated, e.g. a data stream %01011000, %11100011, %00011011,
%11001100, %010�, etc. is collected into blocks of four words to make patterns of 8×4 bits like:

      'row' parity bits

%01011000 → 0

%11100011 → 0

%00011011 → 1

%11001100 → 1

‘column’ parity bits           ↓
%10010011

We now generate a set of �row� parity bits for checking each words. We also generate a set of
�column� parity bits � using the first bit of each number for the first parity bit, then the second
bit of each number for the second, etc. In the example we've chosen this means that each original
block of 8×4=32 bits of information is used to produce an extra 12 bits. We then transmit all 44
bits to a receiver. To see what happens when a random error occurs during transmission we can
assume that the received version of the above turns out to be as shown below

             Received         Computed

%01011000 → 0 0

%11100111 → 0 1

%00011011 → 1 1

%11001100 → 1 1

                ↓
Received %10010011

Computed %10010111

The receiver collects the received block of data and parity bits sent by the transmitter. It then
computes its own version of what the parity bits should be and compares them with the values it
has received. In this example one of the bits has been altered from a �0� to a �1� during
transmission. As a result, the received and computed parity bits won't agree and the receiver can
tell that there's a mistake in the block it has received. It can now use one parity disagreement to
identify which row the error is in and the other to identify the column it is in. As a result it can
locate and correct the mistake. This ability of block codes to both detect and correct mistakes is
an important feature of modern information processing.

Note that there's nothing magic about the choice of choosing an 8×4 block size. We could have
arranged the block as 8×8, or put two words on each row and used 16×16, or even split the words
to make some peculiar arrangement like 11×7. Provided the transmitter and receiver use the same
rules any arrangement may be OK. Note also that we aren't limited to a �two-dimensional� block.
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We could arrange the bits in a �cube� of, say, 8×8×8 bits, and collect a third set of parity bits
running through the pattern in another �direction�. (In principle, we can arrange the bits in a
many-dimensional pattern although it gets a little hard to visualise!)

The choice of block arrangement depends upon how worried we are about the effects of noise.
The 2-dimensional example shown above works fine for single bit errors, but runs into trouble if
there is more than one error in a block. For example, if there are two errors in a row then the
received and computed parity values for that row will agree. The receiver would then be able to
detect that two columns contained errors, but not which row they were on. Hence this simple
example can correct 1-bit errors but only detect 2-bit errors in a block.

In general, the error detecting and correcting ability of a block code can be defined in terms of
measure called the Minimum Hamming Distance. Block codes work because some transmitted word
patterns of �1�s and �0�s are illegal. The Hamming Distance between any pair of legal words is
defined as the number of bits which have to be changed to convert one word into the other. The
Minimum Hamming Distance is defined as the lowest Hamming Distance value we find between any
pair of legal words in the chosen code system. This provides us with a number which determines
how well a code system can cope with errors.

The properties of well designed code systems with various Minimum Hamming Distances are as
follows:

MHD = 1 No error immunity (every pattern appears legal)

MHD = 2 Detects 1 error, no correction

MHD = 3 Detects and corrects 1 error

MHD = 4 Detects up to 2 errors and can correct 1 error

MHD = 5 Detects 2, corrects 2

etc�

In a given situation we can start by deciding how many errors at a time we want to be able to spot
or correct. Then use the MHD to tell us how many illegal patterns have to �surround� each legal
one. This then tells us how much redundancy and how many parity bits we need.

6.3 Choosing a code system

There is an enormous variety of data encoding systems. It sometimes seems as if theoreticians
keep inventing new ones purely as something to name after themselves! Despite this, many of
them are designed to have features useful in specific situations. Most are designed to combat
random errors and work along the lines described in the last section. We will be looking at an
example of a powerful error correcting code when we examine how Compact Discs work in a later
chapter. Here we will examine two special systems which have properties useful for particular
jobs. The first example is a digital Linear Encoder.
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Simple linear position encoder.Figure 6.1

Figure 6.1 shows a metal plate which has a pattern of insulating material placed upon its surface.
A line of electrical contacts is arranged to press against the plate. When they touch the metal a
current can flow through them. This current will be blocked if they are touching a part of the
surface coated with insulator. The contacts therefore form a set of sensors which produce a
pattern of currents which changes in response to plate movements. In the figure these currents
are shown connected to a row of lights which would light up to indicate the plate position. More
commonly, the sensors would be connected to a computer system to input a binary number which
represents the position of the plate. Hence the system acts as an encoder which provides a signal
which changes as the plate is moved from left to right. The pattern shown in the illustration is
designed to provide a plain binary value which increases as the plate moves from left to right.

The main disadvantage of this arrangement is that it may require more than one bit to change
simultaneously, e.g. consider what happens as the plate moves from position 7 (%0111) to 8
(%1000). This requires all four bits to change at the same time. For any real device, the actual bits
sensed will alter at different instants as the plate moves from position 7 to 8. Hence between the
correct readings of 7 and 8 we may find the encoder gives momentary readings of 15 (%1111), or
13 (%1101), or 12 (%1100), or 3 (%0011). In fact, as every bit has to change between 7 and 8, we
could momentarily get any number from 0 to 15 as the plate moves from one position to the
other. A computer reading the sensed number at the wrong moment would therefore think the
plate was leaping about in a frantic way as it moved from 7 to 8!

To avoid this problem we can replace the simple binary code with a new code system (i.e. change
the pattern on the encoder plate) designed so that only one bit changes between adjacent
locations. Two possible systems are the Gray code and a 'walking' code shown below:

            #              Gray        Walking     #              Gray       Walking

00 %0000 %00000000 08 %1100 %11111111

01 %0001 %00000001 09 %1101   %11111110

02 %0011 %00000011 10 %1111   %11111100

03 %0010 %00000111 11 %1110   %11111000

04 %0110 %00001111 12 %1010   %11110000 

05 %0111 %00011111 13 %1011   %11100000 

06 %0101 %00111111 14 %1001   %11000000

07 %0100 %01111111 15 %1000   %10000000
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Clearly the walking code uses redundancy to achieve its effect as it requires eight bits to cover the
range 0 � 15. The Gray code is more interesting as it is simply a re-arrangement of the pure binary
numbers from 0 � 15. The problem described above occurs because of imperfections in the way
the plate and sensors are built. The errors produced aren't random. As we slowly move across the
number boundaries the pattern of �jumping about� is always the same for a given plate/sensor
system. Errors of this kind are said to be Systematic since they depend upon fixed physical
imperfections of the system we're using. The Gray code example shows that it is sometimes
possible to devise a code which overcomes a specific systematic problem without any loss of
efficiency. Dealing with random errors always requires a drop in efficiency. This is an important
difference between errors produced by random noise and errors produced by repeatable,
systematic effects.

The second example illustrates another weapon we can use to protect ourselves against mistaking
received errors for reliable information. This technique is called Soft Decision Making and it
depends upon being able to spot when received bits are �suspect�. Combined with a block-
checking code, this is a powerful way of reducing the effects of random noise.

To implement this technique we need to think about the transmission method rather than the
code system. A simple example is electronic digital transmission along metal wires. Here bits can
be lost due to momentary loss of contact (e.g. due to a rusty plug/socket somewhere) as well as
random noise. This can produce bursts of errors where a series of bits are missed. The most direct
method is to send, say, TTL voltage levels (between 0 and 1 V for �0� and between 3 and 5 V for
�1�). A momentary loss of signal may produce either 0 V (received as �0�) or allow a receiving TTL
gate to float high (giving a received �1�). Hence, depending upon the receiver circuits used, a
temporary loss of data looks like a string of �0�s or �1�s.

Various systems have been devised to avoid this. The most common is the transmission system
called �RS-232/432�. Here a positive current (typically about +3.5 mA) signals �1� and a negative
one (�3.5 mA) signals a �0�. A momentary signal loss gives zero current which the receiver can
respond to by tagging the appropriate bits as 'don't know'. It is worth noting that this method is
essentially making use of three logic levels to send binary data; �3.5 mA=�1�, +3.5 mA=�0�, and 0
mA= �don't know�, although the transmitter is only attempting to send two of these.

In practice, this technique does have one potentially significant disadvantage which can be
illustrated using the example of the RS232 logic levels. In the absence of any attempt to detect the
�don't know� condition the receiver could decide whether a �1� or �0� was being communicated by
checking whether the received current was above or below 0 mA. Random noise would therefore
have to change the current level by at least 3.5 mA in order to produce an error.

In order to be able to sense message interruptions the receiver must be designed so as to respond
to some range of currents, ± I, centred on 0 mA by deciding that the signal level is �undefined�.
Random noise now only has to alter the received current by an amount (  ) mA, to make a
bit appear unreliable. Similarly, the random noise only needs to produce a momentary current
fluctuation of more than  to make a momentary loss of signal as an apparently reliable �1� or �0�.
This means that we can't avoid this problem by making I  very small without giving up the ability
to spot when data is failing to arrive. As a result, assigning an intermediate range of levels to mean
�undefined� leads to an increase in the frequency of errors produced by random noise. However,
provided that the S/N ratio is high, this increase can be small enough to be an acceptable price
for being able to sense momentary data losses.

3.5 − |I |

|I |
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Summary

You should now know that the effects of random errors can (usually!) be detected and corrected.
In it's simplest forms this can be done using a method like �tell me twice� or �tell me three times�
which repeat all the information. That parity bit generation methods and the use of block codes
�dilute� the amount of information repetition to provide a lower amount of protection but a
higher transmission Efficiency (lower Redundancy) than simple �tell me again�. You should also
understand that the amount of protection from random errors depends upon the amount of
redundancy since we require a given amount of extra �illegal� symbols or bit-patterns in between
the legal ones to be able to deal with random errors. You should also now know that the ability of
a code system to detect and correct errors can be measured in terms of the code system's
Minimum Hamming Distance value.

Finally, the example of the Gray code shows that non-random or Systematic errors can be corrected
without the need for any extra bits or words � i.e. without any redundancy. The example of RS-
232 shows that giving the receiver the ability to spot data losses, called Soft Decision Making, can be
useful in dealing with Bursts of errors produced by problems like temporarily loss of contact with
the transmitter.

Questions

1) A message is transmitted in the form of a series of digital bits. The signal is carried by a channel
with a signal to noise ratio which means that each individual bit has a 0·9 chance of being
received correctly. The message is 10,000 bits long. How many noise-produced random errors is a
single copy of the message likely to contain when received? To try and reduce the effects of noise
the message is sent using the Tell Me Three Times method. After error correction, how many
undetected errors are likely to appear in the received message? [1000. 280.]

2) Explain what is mean by the terms Parity Bit and Parity Checking. A Block Code system groups 16
message bits at a time into a two-dimensional block in order to generate a set of parity bits. Draw a
diagram of this process and explain how it enables single bits errors in a block to be detected and
corrected. Explain why the presence of two bit errors in a block can be detected but not always
corrected using this system. What is the value of the transmitted signal's Efficiency  including the
parity bits? What is the value of the signal's Redundancy? [Efficiency = 16/24. Redundancy =
0·333.]

3) Draw a diagram of a Linear Encoder and use it to explain why the normal binary number
sequence, %0000, %0001, %0010, etc., isn't a very suitable choice for the encoder pattern.
Explain how either Walking Code or Gray Code can overcome the problem. Explain what advantage
Gray Code has over Walking Code.

4) Explain the term Soft Decision Making. Give a brief explanation of how the RS-232 data
transmission system can indicate data losses during transmission.
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Chapter 7

The Sampling Theorem

7.1 Fourier Transforms and signals of finite length

In the first few chapters we saw that the amount of information conveyed along a channel will
depend upon its bandwidth (or response time), the maximum signal power, and the noise level.
The way we estimated the effects of these was fairly rough. We now need to look at this
fundamental question of a channel's information carrying Capacity more carefully. The amount of
information contained in a message can be formally defined using the Sampling Theorem. The
maximum information carrying capacity of a transmission channel can be defined using
Shannon's Equation. Taken together, they provide the basis of the whole structure of Information
Theory. Rather than tackle the Sampling Theorem or Shannon's Equation �head on�, it is useful
to take a diversion and begin by considering the relationship between a time-varying signal and its
Frequency Spectrum. 

0 T 7.1a The observed signal.

7.1d A periodic signal which
has the observed shape within
the interval 0 — T.

A signal observed during the interval, 0 − T.Figure 7.1

7.1b and c Possible forms of the
signal outside the observed
period 0 — T.

A message which requires an infinite time to finish isn't of any practical value. This is because we
can't know what information it contains until it has all arrived! As a result, in practice we can only
observe or deal with signals which have defined �start� and �stop� points. The fact that information
about a real signal or process can only cover a finite duration or interval has some important
consequences.

Consider the situation illustrated in figure 7.1a. This shows how a particular analog signal is seen
to vary over a time interval, t = 0 to t = T. (For simplicity we've �switched on the clock� at the start
of the observation. Note that this doesn't affect our conclusions.) Now the only message
information we have is confined to the chosen time interval. Logically, therefore, we have to
accept that if we had looked at the signal for at other times we might have seen any of the
alternatives shown in figure 7.1b, c, etc. However, the limited information we have doesn't allow
us to know what happened outside our observation. We can, of course, theorise about what we
might have seen if we had observed what was happening at other times. Provided any hypothesis
doesn't conflict with the information we possess it can be accepted for the purpose of argument. 

The signal we have observed can be described by some specific function of time, , which is
only known when . From the argument given above we can, in principle, imagine an

p {t }
0 ≤ t ≤ T
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infinite variety of theoretical functions, , which are defined so thatp′ {t }
p′ {t } = p {t }  ;  0 ≤ t ≤ T ... (7.1)

 but which allow  to do whatever we like at other times.p′ {t }

Using functions like  or  we can describe the behaviour of a signal in terms of its
variations with time. An alternative method for describing a signal is to specify its frequency spectrum
in terms of some suitable function, . We can then consider the signal level at any instant, t, as

p {t } p′ {t }

S {f }

p {t } = ∑ a n Cos {2πf n t + φn} ... (7.2)

i.e. the signal is regarded as being composed of a series of contributions at a set of frequencies, .
The size of each contribution,  and its phase at t = 0, , being defined by the value of  at
the appropriate frequency, . (Note that this means that, in general,  must specify two
values, an amplitude and a phase, hence it is most convenient to treat this as a function which
produces a complex result.)

f n

a n φn S {f }
f n S {f }

Clearly the time domain description, , of a signal and its frequency domain description, ,
must contain identical information if they are both to specify the same signal or message. The two
functions must therefore be linked in some way. Mathematically, this link can be made using the
technique called Fourier Transformation.

p {t } S {f }

Experience shows that it can be a mistake for a student to read more than one book which uses
Fourier analysis! Comparing one text with another reveals a host of odd factors of 2, π, etc., which
seem to pop up and disappear without any obvious reason. The most common result of this is to
make most engineering and science students decide to avoid the topic whenever possible!
Unfortunately, Fourier methods are very useful. Ignoring them is a bit like avoiding using saws
when doing woodwork because you aren't sure which type of saw is best. Since this isn't a maths
book we won't examine Fourier Transforms in detail, but it is worth making a few comments
which may be helpful.

Firstly, we can see from equation 7.2 that to specify the effect of a given frequency component on
a signal we need to have two values. In 7.2. these were an amplitude, , and a phase, . We
could, however, achieve the same effect in other ways. For example, we could define the same
signal in terms of pairs of values, , in an expression like

a n φn

An  and  Bn

p {t } = ∑  An Cos {2πf n t } + Bn Sin {2πf n t } ... (7.3)

or we could use something like

p {t } = ∑ Real [a n Exp {−j2πf n t + φn}] ... (7.4)

All of these are equivalent ways to achieve the same result, but they alter the form of the Fourier
Transform expressions required to link the time and frequency domains.

Secondly, the form of the Fourier Transform expressions depends upon whether we are
interested in knowing the power (or amplitude) of the signal or the total energy it conveys. This
affects whether the expressions have to be multiplied by a factor proportional to  since power =1

T
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energy per unit time. Here we will use the type of expression given in 7.3 and consider the
amplitude (e.g. the voltage) of the signals. This determines the details of the Fourier Integrals
we'll use. In fact, we would come to the same conclusions using any of the other approaches.

Sines and cosines are an example of a set of Orthogonal Functions. The general topic of the
properties of orthogonal functions is beyond the scope of this book. All we have to do is outline
some of their basic properties which are relevant here. In general, a set of functions, , which
satisfy the integral

Fn {z}

∫
 b

a

Fn {z} Fm {z}  d z = 0   when  n ≠ m ... (7.5)

are said to be �orthogonal over the range a to b�. For the case of sine or cosine functions we can
regard  and  as having two different angular frequencies, , . If
we consult a book of integrals or a text on the properties of functions we can find that, provided

Fn {z} Fm {z} ωn ≡ 2πf n ωm ≡ 2πf m

n ≠ m

∫
 π

0

Sin {m x } Sin {nx }  d x = ∫
 π

0

Cos {m x } Cos {nx }  d x = 0 ... (7.6)

where m and n are integers. This is equivalent to saying 

∫
 T

0

Sin {nω0t } Sin {mω0t }  d t = ∫
 T

0

Cos {nω0t } Cos {mω0t }  d t = 0 ... (7.7)

where . We can interpret this as defining a �fundamental frequency', , which
can fit one half-cycle into the interval, T. 

ω0 ≡ π /T f 0 ≡ 1
2T

This orthogonal behaviour is very important for the usefulness of Fourier analysis. The reason for
this can be understood by going back to the signal we considered at the start of this chapter. This
is a signal, , whose value is known only during the interval, .p {t } 0 ≤ t ≤ T

As we have seen, we can imagine a variety of functions, , which are identical to  during
this observed interval but behave however we wish at other times. Provided we always ensure that

 during the signal interval every possible choice of  provides us with exactly the
same information (pattern) during this period as . All these possible choices are
indistinguishable from one another if we only observe this finite interval. This gives us the
freedom to choose any  which is identical to  during the observed interval. We can
therefore select one which is convenient for the purpose of analysing the signal. There is nothing
to stop us from choosing a form for  which is Periodic � i.e. one which repeats itself over and
over again � with a period equal to the observed signal's interval, T. This assumption is
convenient for the purposes of Fourier analysis. If we assume  is periodic in this way it will
take the form shown in figure 7.1d.

p′ {t } p {t }

p′ {t } = p {t } p′ {t }
p {t }

p′ {t } p {t }

p′ {t }

p′ {t }

It should be clear that a signal which repeats itself in this way can only contain frequencies which
are multiples of a fundamental frequency, (plus, perhaps, a non-zero d.c. level). This is
because the presence of any other frequencies would mean each �cycle� of the periodic function
would differ from its neighbours. We can therefore say that the function must be of the form

f 0 = 1 / T

p′ {t } = ∑
N

n = 0

An Cos {2πnf 0t } + Bn Sin {2πnf 0t } ... (7.8)

where N represents the highest frequency present and the  values determine the magnitude
and phase of the n th frequency component of the signal. Note that this expression only contains
a d.c. level ( , a component at the fundamental frequency, , and components at its

An  Bm

n = 0) f 0
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harmonic frequencies, . (As  and  the d.c. level equals .  has no
physical meaning.) Since this function is chosen so as to be indistinguishable from  during
the observed period we can therefore say that  is indistinguishable from

nf 0 Sin {0} = 0 Cos {0} = 1 A0 B0

p {t }
p {t }

p {t } = ∑
N

n = 0

An Cos {2πnf 0t } + Bn Sin {2πnf 0t } ... (7.9)

during the observed period. The coefficients,  may be obtained from  using the
Fourier integrals,

An  and  Bn p {t }

An =
2

T ∫
 T

0

p {t } Cos {2πnf 0t }  d t ... (7.10)

Bn =
2

T ∫
 T

0

p {t } Sin {2πnf 0t }  d t ... (7.11)

These expressions represent the Fourier Transform of the known signal, , and allow us to
calculate the signal's frequency spectrum. (Expressions 7.10 and 7.11 can be seen to be true once
we accept that 7.6 and 7.7 are correct. In effect, the above expressions let us �pick out� the two
coefficients we want from  at any chosen frequency, .)

p {t }

p {t } nf 0

From the above arguments it should be clear that we can freely convert information back and
forth between the time domain and the frequency domain. Given this ability it must be true that
the frequency spectrum contains the same information as the time-varying signal.

7.2 The Sampling Theorem and signal reconstruction

Any real signal will be transmitted along some form of channel which will have a finite bandwidth.
As a result the received signal's spectrum cannot contain any frequencies above some maximum
value, . However, the spectrum obtained using the Fourier method described in the previous
section will be characteristic of a signal which repeats after the interval, T.  This means it can be
described by a spectrum which only contain the frequencies, 0 (d.c.), , where
N is the largest integer which satisfies the inequality . As a consequence we can specify
everything we know about the signal spectrum in terms of a d.c. level plus the amplitudes and
phases of just N frequencies � i.e. all the information we have about the spectrum can be
specified by just 2N +1 numbers. Given that no information was lost when we calculated the
spectrum it immediately follows that everything we know about the shape of the time domain
signal pattern could also be specified by just 2N +1 values. 

f ma x

f 0,  2f 0,  3f 0,  � N f 0

N f 0 ≤ f ma x

For a signal whose duration is T  this means that we can represent all of the signal information by
measuring the signal level at 2N +1 points equally spaced along the signal waveform. If we put the
first point at the start of the message and the final one at its end this means that each sampled
point will be at a distance  from its neighbours. This result is generally expressed in terms of

the Sampling Theorem which can be stated as: �If a continuous function contains no frequencies higher
than  Hz it is completely determined by its value at a series of points less than  apart.�

1
2f ma x

f ma x
1

2 f ma x

Consider a signal, , which is observed over the time interval, , and which we know
cannot contain any frequencies above . We can sample this signal to obtain a series of values,
x , which represent the signal level at the instants, , where i  is an integer in the range 0 to
K . (This means there are  samples.) Provided that , where N is defined as above,
we have satisfied the requirements of the Sampling Theorem. The samples will then contain all of

p {t } 0 ≤ 0 ≤ T
f ma x

i t i = iT
K

K + 1 K ≥ 2N
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the information present in the original signal and make up what is called a Complete Record of the
original.

In fact, the above statement is a fairly �weak� form of the sampling theorem. We can go on to a
stricter form:

�If a continuous function only contains frequencies within a 

 bandwidth, B Hertz, it is completely determined by its value at a series of 

 points spaced less than  seconds apart.�1 / (2B)

This form of the sampling theorem can be seen to be true by considering a signal which doesn't
contain any frequencies below some lower cut-off value, . This means the values of
for low n (i.e. low values of ) will all be zero. This limits the number of spectral components
present in the signal just as the upper limit, , means that there are no components above

. This situation is illustrated in figure 7.2. 
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Spectrum of a band-limited signal of finite length.Figure 7.2

From the above argument a signal of finite length, T, can be described by a spectrum which only
contains frequencies, . If the signal is restricted to a given bandwidth,

, only those components inside the band have non-zero values. Hence we only
need to specify the  values for those components to completely define the signal. The
minimum required sampling rate therefore depends upon the bandwidth, not the maximum
frequency. (Although in cases where the signal has components down to d.c. the two are
essentially the same.)

f 0,  2f 0,  � N f 0

B = f ma x − f min

An  and  Bn

The sampling theorem is of vital importance when processing information as it means that we can
take a series of samples of a continuously varying signal and use those values to represent the
entire signal without any loss of the available information. These samples can later be used to
reconstruct all of the details of the original signal � even recovering details of the actual signal
pattern �in between� the sampled moments. To demonstrate this we can show how the original
waveform can be �reconstructed� from a complete set of samples.

The approach used in the previous section to calculate a signal's spectrum depends upon being
able to integrate a continuous analytical function. Now, however, we need to deal with a set of
sampled values instead of a continuous function. The integrals must be replaced by equivalent
summations. These expressions allow us to calculate a frequency spectrum (i.e. the appropriate
set of  values) from the samples which contain all of the signal information. The mostAn  and  Bn
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obvious technique is to proceed in two steps. Firstly, to take the sample values, , and calculate
the signal's spectrum. Given a series of samples we must use the series expressions

x i

An =
2

K ∑
K

i = 0

x i Cos {2πnf 0t i}       Bn =
2

K ∑
K

i = 0

x i Sin {2πnf 0t i} ... (7.12)

to calculate the relevant spectrum values. These are essentially the equivalent of the integrals, 7.10
and 7.11, which we would use to compute the spectrum of a continuous function. The second
step of this approach is to use the resulting  and  values in the expressionAn Bn

x {t } = ∑
N

n = 0

An Cos {2πnf 0t } + Bn Sin {2πnf 0t } ... (7.13)

to compute the signal level at any time, t, during the observed period. In effect, this second step is
simply a restatement of the result shown in expression 7.9. Although this method works, it is
computationally intensive and indirect. This is because it requires us to perform a whole series of
numerical summations to determine the spectrum, followed by another summation for each
we wish to determine. A more straightforward method can be employed, based upon combining
these operations. Expressions 7.12 and 7.13 can be combined to produce

x {t }

x {t } =

∑
N

n = 0

2

K ∑
K

i = 0

x i [Cos {2πnf 0t i} Cos {2πnf 0t } + Sin {2πnf 0t i} Sin {2πnf 0t }]

... (7.14)

which, by a fairly involved process of algebraic manipulation, may be simplified into the form

x {t } = ∑
K

i = 0

x i Sinc {π (t − t i)
∆t } ... (7.15)

where the Sinc function can be defined as

Sinc {z} ≡
Sin {z}

z
... (7.16)

and  is the time interval between successive samples.∆t = T / K

Given a set of samples, , taken at the instants, , we can now use expression 7.15 to calculate
what the signal level would have been at any time, t, during the sampled signal interval.

x i t i

7.3a Input signal and samples taken.

7.3b Sinc function interpolation from samples.

Signal reconstruction from a series of sampled values.Figure 7.3

samples

Clearly, by using this approach we can calculate the signal value at any instant by performing a
single summation over the sampled values. This method is therefore rather easier (and less prone
to computational errors!) than the obvious technique. Figure 7.2 was produced by a BBC Basic
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program to demonstrate how easily this method can be used.

Although the explanation given here for the derivation of expression 7.15 is based upon the use
of a Fourier technique, the result is a completely general one. Expression 7.15 can be used to
�interpolate' any  given set of sampled values. The only requirement is that the samples have been
obtained in accordance with the Sampling Theorem and that they do, indeed, form a complete
record. It is important to realise that, under these circumstances, the recovered waveform is not a
�guess' but a reliable reconstruction of what we would have observed if the original signal had
been measured at these other moments.

Summary

You should now be aware that the information carried by a signal can be defined either in terms
of its Time Domain pattern or its Frequency Domain spectrum. You should also know that the
amount of information in a continuous analog signal can be specified by a finite number of
values. This result is summarised by the Sampling Theorem which states that we can collect all the
information in a signal by sampling at a rate , where B is the signal bandwidth. Given this
information we can, therefore, reconstruct the actual shape of the original continuous signal at
any instant �in between� the sampled instants. It should also be clear that this reconstruction is
not a guess but a true reconstruction. 

2B

Questions

1) A single microphone is used to make an analog recording of a song 3 minutes long. The
microphone only responds to signals in the 10 Hz to 18 kHz frequency range. How many digital
samples are required to convert all the song's information into a complete digital record? [6·47
million.]

2) A complex signal is digitally recorded for 1 minute. The recorded information is then used to
work out the spectrum of the observed spectrum. What will be the value of the frequency
resolution of the spectrum we obtain? [1/60th of a Hertz.]
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Chapter 8

The information carrying capacity of a channel

8.1 Signals look like noise!

One of the most important practical questions which arises when we are designing and using an
information transmission or processing system is, �What is the Capacity of this system? � i.e. How
much information can it transmit or process in a given time?� We formed a rough idea of how to
answer this question in an earlier chapter. We can now go on to obtain a more well defined
answer by deriving Shannon's Equation. This equation allows us to precisely determine the
information carrying capacity of any signal channel. 

Consider a signal which is being efficiently communicated (i.e. no redundancy) in the form of a
time-dependent analog voltage, . The pattern of voltage variations during a specific time
interval, T, allows a receiver to identify which one of a possible set of messages has actually been
sent. At any two moments,  and , during a message the voltage will be  and . 

V {t }

t 1 t 2 V {t 1} V {t 2}

Using the idea of intersymbol influence we can say that � since there is no redundancy � the
values of  and  will appear to be independent of one another provided that they're
far enough apart (i.e. ) to be worth sampling separately. In effect, we can't tell what
one of the values is just from knowing the other. Of course, for any specific message, both
and  are determined in advance by the content of that particular message. But the receiver
can't know which of all the possible messages has arrived until it has arrived. If the receiver did
know in advance which voltage pattern was to be transmitted then the message itself wouldn't
provide any new information! That is because the receiver wouldn't know any more after its
arrival than before. This leads us to the remarkable conclusion that a signal which is efficiently
communicating information will vary from moment to moment in an unpredictable, apparently
random, manner. An efficient signal looks very much like random noise!

V {t 1} V {t 2}
|t 1 − t 2| > 1

2B

V {t 1}
V {t 2}

This, of course, is why random noise can produce errors in a received message. The statistical
properties of an efficiently signalled message are similar to those of random noise. If the signal
and noise were obviously different the receiver could easily separate the noise from the signal and
avoid making any errors.

To detect and correct errors we therefore have to make the real signal less �noise-like�. This is
what we're doing when we use parity bits to add redundancy to a signal. The redundancy
produces predictable relationships between different sections of the signal pattern. Although this
reduces the system's information carrying efficiency it helps us  distinguish signal details from
random noise. Here, however, we're interested in discovering the maximum possible information
carrying capacity of a system. So we have to avoid any redundancy and allow the signal to have the
�unpredictable� qualities which make it statistically similar to random noise.

The amount of noise present in a given system can be represented in terms of its mean noise
power

N = V 2
N / R ... (8.1)

where R is the characteristic impedance of the channel or system and  is the rms noise voltage.
In a similar manner we can represent a typical message in terms of its average signal power

V N
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S = V 2
S / R ... (8.2)

where  is the signal's rms voltage.V S

A real signal must have a finite power. Hence for a given set of possible messages there must be
some maximum possible power level. This means that the rms signal voltage is limited to some
range. It also means that the instantaneous signal voltage must be limited and can't be beyond
some specific range, .  A similar argument must also be true for noise. Since we are assuming
that the signal system is efficient we can expect the signal and noise to have similar statistical
properties. This implies that if we watched the signal or noise for a long while we'd find that their
level fluctuations had the same peak/rms voltage ratio. We can therefore say that, during a typical
message, the noise voltage fluctuations will be confined to some range

V ′S

±V ′N = ± ηV N ... (8.3)

where the form factor, η, (ratio of peak to rms levels) can be defined from the signal's properties as

η ≡
V ′S
V S

... (8.4)

When transmitting signals in the presence of noise we should try to ensure that S is as large as
possible so as to minimise the effects of the noise. We can therefore expect that an efficient
information transmission system will ensure that, for every typical message, S is almost equal to
some maximum value, . This implies that in such a system, most messages will have a similar
power level. Ideally, every message should have the same, maximum possible, power level. In fact
we can turn this argument on its head and say that only messages with mean powers similar to this
maximum are �typical�. Those which have much lower powers are unusual � i.e. rare.

Pma x

8.2  Shannon's equation

The signal and noise are Uncorrelated � that is, they are not related in any way which would let us
predict one of them from the other.  The total power obtained, , when combining these
uncorrelated, apparently randomly varying quantities is given by

PT

PT = S + N ... (8.5)

i.e. the typical combined rms voltage, , will be such thatV T

V 2
T = V 2

S + V 2
N ... (8.6)

Since the signal and noise are statistically similar their combination will have the same form factor
value as the signal or noise taken by itself. We can therefore expect that the combined signal and
noise will generally be confined to a voltage range . ±ηV T

Consider now dividing this range into  bands of equal size. (i.e. each of these bands will cover
.) To provide a different label for each band we require  symbols or numbers.

We can then always indicate  band the voltage level occupies at any moment in terms of
a unique b-bit binary number. In effect, this process is another way of describing what happens
when we take digital samples with a b-bit analog to digital convertor working over a total range

.

2b

∆V = 2ηV T / 2b 2b

∆Vwhich 

2V T

There is no real point in choosing a value for b which is so large that is smaller than .
This is because the noise will simply tend to randomise the actual voltage by this amount, making
any extra bits meaningless. As a result the maximum number of bits of information we can obtain

∆V 2ηV N
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regarding the level at any moment will given by

2
b =

V T

V N
... (8.7)

i.e.   

2
b =

V 2
T

V 2
N

= (V 2
N

V 2
N

) + ( V 2
S

V 2
N

) = 1 + (S / N ) ... (8.8)

which can be rearranged to produce

b = Log2 {(1 +
S

N )
1/2} ... (8.9)

If we make M, b-bit measurements of the level in a time, T, then the total number of bits of
information collected will be

H = M b = M . Log2 {(1 +
S

N )
1/2} ... (8.10)

This means the information transmission rate, I, bits per unit time, will be

I = (M

T ) Log2 {(1 +
S

N )
1/2} ... (8.11)

From the Sampling Theorem we can say that, for a channel of bandwidth, B, the highest practical
sampling rate, , at which we can make independent measurements or samples of a signal
will be

M / T

M

T
= 2B ... (8.12)

Combining expressions 8.11 and 8.12 we can therefore conclude that the maximum information
transmission rate, C, will be

C = 2B Log2 {(1 +
S

N )
1/2} = B Log2 {1 +

S

N } ... (8.13)

This expression represents the maximum possible rate of information transmission through a
given channel or system. It provides a mathematical proof of what we deduced in the first few
chapters. The maximum rate at which we can transmit information is set by the bandwidth, the
signal level, and the noise level. C is therefore called the channel's information carrying Capacity.
Expression 8.13 is called Shannon's Equation after the first person to derive it.

8.3 Choosing an efficient transmission system

In many situations we are given a physical channel for information transmission (a set of wires
and amplifiers, radio beams, or whatever) and have to decide how we can use it most efficiently.
This means we have to assess how well various information transmission systems would make use
of the available channel. To see how this is done we can compare transmitting information in two
possible forms �  as an analog voltage and a serial binary data stream � and decide which would
make the best use of a given channel.

When doing this it should be remembered that there are a large variety of ways in which
information can be represented. This comparison only tells us which out of the two we've
considered is better. If we really did want to find the �best possible' we might have to compare
quite a few other methods. For the sake of comparison we will assume that the signal power at our
disposal is the same regardless of whether we choose a digital or an analog form for the signal. It
should be noted, however, that this isn't always the case and that any variations in available signal
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power with signal form will naturally affect the relative merits of the choices.

Noise may be caused by various physical processes, some of which are under our control to some
extent. Here, for simplicity, we will assume that the only significant noise in the channel is due to
unavoidable thermal noise. Under these conditions the noise power will be

N = kT B ... (8.14)

where T is the physical temperature of the system, and k is Boltzmann's constant.

Thermal noise has a �white� spectrum � i.e. the noise power spectral density is the same at all
frequencies. Many of the other physical processes which generate noise also exhibit white spectra.
As a consequence we can often describe the overall noise level of a real system in terms of a Noise
Temperature, T, which is linked to the observed total noise by expression 8.14. The concept of a
noise temperature is a convenient one and is used in many practical situations. Its important to
remember, however, that a noisy system may have a noise temperature of, say, one million
Kelvins, yet have a physical temperature of no more than 20 °C! The noise temperature isn't the
same thing as the �real� temperature. A very noisy amplifier doesn't have to glow in the dark or
emit X-rays! 

Most real signals begin in an analog form so we can start by considering an analog signal which we
wish to transmit. The highest frequency component in this signal is at a frequency, W  Hz. The
Sampling Theorem tells us that we would therefore have to take at least 2W samples per second to
convert all the signal information into another form. If we choose to transmit the signal in analog
form we can place a low-pass filter in front of the receiver which rejects any frequencies above W.
This filter will not stop any of the wanted signal from being received, but rejects any noise power
at frequencies above W. Under these conditions the effective channel bandwidth will be equal to
W and the received noise power, N, will be equal to . Using Shannon's equation we can say
that the effective capacity of this analog channel will be

kT W

C ana l o g = W Log2 {1 +
S

kT W } ... (8.15)

In order to communicate the same information as a serial string of digital values we have to be
able to transmit two samples of m bits each during the time required for one cycle at the
frequency, W � i.e. we have to transmit 2mW bits per second. The frequencies present in a
digitised version of a signal will depend upon the details of the pattern of �1�s and �0�s. The
highest frequency will, however, be required when we alternate �1's and �0's. When this happens
each pair of �1's and �0's will look like the high and low halves of a signal whose frequency is mW
(not 2mW). Hence the digital signal will require a channel bandwidth of mW to carry information
at the same rate as the analog version.

Various misconceptions have arisen around the question of the bandwidth required to send a
serial digital signal. The most common of these amongst students (and a few of their teachers!)
are:-

  i) �Since you are sending 2mW bits per second, the required digital bandwidth is 2mW.�

  ii) �Since digital signals are like squarewaves, you have to provide enough bandwidth to keep the �edges
square� so you can tell they're bits, not sinewaves.� 

Neither of the above statements are true. The required signal bandwidth is determined by how
quickly we have to be able to switch level from '1' to '0' and vice versa. The digital receiver doesn't
have to see �square' signals, all it has to do is decide which of the two possible levels is being
presented during the time allotted for any specific bit.
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In order to allow all the digital signal into the receiver whilst rejecting �out of band� noise we must
now employ a noise-rejecting filter in front of the receiver which only rejects frequencies above
mW. The effective capacity of this digital channel will then be

C d ig i t a l = mW Log2 {1 +
S

kT m W } ... (8.16)

This shows the capacity of the channel at our disposal if we can set the bandwidth to the value
required to send the data in digital serial form. Note that this is not the actual rate at which we
wish to send data! The digital data rate is 

I = 2m W ... (8.17)

It will only be possible to transmit the data in digital form if we can satisfy two conditions:

  i) The channel must actually be able to transmit frequencies up to mW.

  ii) The capacity of the channel must be greater or equal to I.

The digital form of signal will only communicate information at a higher rate than the analog
form if 

I > C ana l o g ... (8.18)

so there is no point in digitising the signal for transmission unless this inequality is true. The
number of bits per sample, m, must therefore be such that

m > (1

2) Log2 {1 +
S

kT W } ... (8.19)

Otherwise the precision of the digital samples will be worse than the uncertainty introduced into
an analog version of the signal by the channel noise. As a result, if the digital system is to be better
than the analog one, the number of bits per sample must satisfy 8.19. (Note that this also means
the initial signal has to have a S/N ratio good enough to make it worthwhile taking m bits per
sample!)

Unfortunately, we can't just choose a value for m which is as large as we would always wish. This is
because the data rate, I, cannot exceed the digital channel capacity, . From 8.16 and 8.17
this is equivalent to requiring that

C d ig i t a l

2mW ≤ mW Log2 {1 +
S

kT m W } ... (8.20)

i.e.

m ≤
S

3kT W
... (8.21)

We can therefore conclude that a digitised form of signal will convey more information than an
analog form over the available channel if we can choose a value for m which simultaneously
satisfies conditions 8.19 and 8.21, and the available channel  can carry a bandwidth, mW. If we
can't satisfy these requirements the digital signalling system will be poorer than the analog one.

8.4 Noise, quantisation, and dither

An unavoidable feature of digital systems is that there must always be a finite number of bits per
sample. This affects the way details of a signal will be transmitted. 
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8.1a Typical input signal

8.1b Quantised and
sampled signal

8.1c Result of applying
‘dithering’ before 
quantisation and sampling

8.1d Filtered version
of dithered samples

The use of ‘dithering’ to overcome quantisation distortion.Figure 8.1

Figure 8.1a represents a typical example of an input analog signal. In this case the signal was
obtained from the function  � i.e. an exponentially decaying sinewave. Figure
8.1b shows the effect of converting this into a stream of 4-bit digital samples and communicating
these samples to a receiver which restores the signal into an analog form. Clearly, figures 8.1a and
8.1b are not identical! The received signal (figure 8.1b) has obviously been Distorted during
transmission and is no longer a precise representation of the input. This distortion arises because
the communication system only has 2  = 16 available code symbols or levels to represent the
variations of the input signal. The output of the system is said to be Quantised. It can only produce
one of the sixteen available possible levels at any instant. The difference between adjacent levels is
called the Quantisation Interval. Any smooth changes in the input become converted into a
�staircase� output whose steps are one quantisation interval high.

Sin {ax } Exp {−b x }

4

This form of distortion is particularly awkward when we are interested in the small details of a
signal. Consider, for example, the low-amplitude fluctuations of the �tail� of the signal shown in
figure 8.1a. These variations are totally absent from the received signal shown in figure 8.1b. This
is because the digitising system uses the same symbol for all of the levels of this small tail. As a
result we can expect that any details of the signal which involve level changes smaller than a
quantisation interval may be entirely lost during transmission.

At first sight these quantisation effects seem unavoidable. We can reduce the severity of the
quantisation distortion by increasing the number of bits per sample. In our 4-bit example the
quantisation interval is 1/2  th of the total range (6·25%). If were to replace this with a Compact
Disc standard system using 16-bit samples the quantisation interval would be reduced to 1/2 th
(0.0015%). This reduces the staircase effect, but doesn't banish it altogether. As a result, small
signal details will, it seems, always be lost. Fortunately, there is a way of dealing with this problem.
We can add some random noise to the signal before it is sampled. Noise which has been
deliberately added in this way to a signal before sampling is called Dither.

4

16

Figure 8.1c shows the kind of received signal we will obtain if some noise is added to the initial
signal before sampling. This noise has the effect of superimposing a random variation onto the
staircase distortion. Figure 8.1d shows the effect of passing the output shown in figure 8.1c
through a filter which smooths away the higher frequencies. This essentially produces a �moving
average' of the received signal plus noise. This filtering action can be carried out by passing the
output from the receiver's digital-to-analog convertor through a low-pass analog filter (e.g. a
simple RC time constant). Alternatively, filtering can be carried out by performing some
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equivalent calculations upon the received digital values before reconversion into an analog
output. This �numerical� approach was adopted for the example shown in figure 8.1.

Comparing figures 8.1d and 8.1b we can see that the combination of input dithering and output
filtering can remove the quantisation staircase. We may therefore conclude that Dithering provides
a way to overcome this form of distortion. It can also (as shown) allow the system to communicate
signal details such as the small �tail� of the waveform which are smaller than the quantisation. In
reality any input signal will already contain some random noise, however small. In principle
therefore we don't need to add any extra noise if, instead, we can employ an analog-to-digital
convertor (ADC) which produces enough bits per sample to ensure that the quantisation interval
is less than the pre-existing noise level. All that matters is that the signal presented to the ADC
varies randomly by an amount greater than the quantisation interval. In principle, the amount of
information communicated is not significantly altered by using dithering. However, the form of
information loss changes from a �hard� staircase distortion loss to a �gentle� superimposed
random noise which is often more acceptable � for example, in audio systems, where the human
ear is less annoyed by random noise than periodic distortions. The ability of dithered systems to
respond to tiny signals well below the quantisation level is also useful in many circumstances.
Hence dither is widely used when signals are digitised. 

From a practical point of view using random noise in this way is quite useful. Most of the time
engineers and scientists want to reduce the noise level in order to make more accurate
measurements. Noise is usually regarded as an enemy by information engineers. However when
digitising analog signals we want a given amount of noise to avoid quantisation effects. The noise
allows us to detect small signal details by averaging over a number of samples. Without the noise
these details would be lost since small changes in the input signal level would leave the output
unchanged. 

In fact, the use of dither noise in this way is a special case of a more general rule. Consider as an
example a situation where you are using a 3-digit Digital VoltMeter (DVM) to measure a d.c.
voltage. In the absence of any noise you get a steady reading, something like 1·29 V, say. No
matter how long you stare at the DVM, the value remains the same. In this situation, if you want a
more accurate measurement you may have to get a more expensive DVM which shows more
digits! However, if there is a large enough amount of random noise superimposed on the d.c.
you'll see the DVM reading vary from time to time. If you now regularly note the DVM reading
you'll get some sequence like, 1·29, 1·28, 1·29, 1·27, 1·26, 1·29, etc... Having collected enough
measurements you can now add up all the readings and take their average. This can provide a
more accurate result than the steady 1·29 V you'd get from a steady level in the absence of any
noise.

We'll be looking at the use of Signal Averaging in more detail in a later chapter. Here we need only
note that, for averaging to work, we must have a random level fluctuation which is at least a little
larger than the quantisation interval. In the case of the 3-digit DVM  the quantisation level is the
smallest voltage change which alters the reading � i.e. 0·01 Volts in this example. In the case of
the 4-bit analog to digital/digital to analog system considered earlier it is  of the total range.
Although the details of the two examples differ, the basic usefulness of dither and averaging
remains the same.

1 / 24
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Summary

You should now know that an efficient (i.e. no redundancy or repetition) signal provides
information because its form is unpredictable in advance. This means that its statistical properties
are the same as random noise. You should also now know how to use Shannon's Equation to
determine the information carrying capacity of a channel and decide whether a digital or analog
system makes the best use of a given channel. You should now know how quantisation distortion
arises. It should also be clear that a properly dithered digital information system can provide an
output signal which looks just like an analog �signal plus noise� output without any signs of
quantisation.

Questions

1) Explain what we mean by the Capacity of an information carrying channel. A channel carries a
signal whose maximum possible peak-to-peak voltage is  V and has a peak-to-peak noise
voltage,  V. The bandwidth of the channel is  kHz. Derive Shannon's Equation
and use it to calculate the value of the channel's capacity. [199,314 bits/second.]

V S = 1
V N = 0·001 B = 10

2) Explain what we mean by the Noise Temperature of a system. A channel has a bandwidth of 100
kHz and is used to carry a serial digital signal. The signal is produced by an 8-bit analog to digital
convertor fed by an analog input. How many samples per second can the system carry? The signal
power level is 1 µW. What is the highest noise temperature value which would still let the system
carry the digital signal successfully? [25,000 samples/second. 2·4×1011 K.]

3) Using the same channel as above, what is the highest noise temperature which would be
acceptable if the channel were used to carry the information in its original analog form? [8·8×107

K.]

4) Explain what we mean by the term Dither and say how it can be used to overcome Quantisation
Distortion effects.



Information and Measurement - 59 - Free PDF version (larger page)

Chapter 9

The CD player as an information channel

9.1 The CD as an information channel

The next few chapters use the example of the CD audio system to show some of the basic
properties of instruments used to gather and process information. CD has been selected for
various reasons. It provides an excellent example of many digital data processing methods and
allows us to explore the relationship between signals held in equivalent analog and digital forms.
Both the source information gathering (i.e. the recording studio, etc.) and the information replay
system (the CD player) can be used to illustrate a variety of highly effective measurement and
information processing techniques. The CD system can also be simultaneously regarded as:

 i) A measurement system, collecting audio information.

ii) A signal processing system.

 iii) An information communication channel/storage system.

The decision to choose CD for close examination is also based upon the thought that most
science and engineering students will have a CD player and will be interested in understanding
how it works.

Usually, texts on information theory tend to concentrate on systems where an information source
and a receiver are directly connected by some channel. Information is then communicated
through the channel in Real Time. Arrangements which store information for recovery at a later
time can also be considered as communication systems. In general, the ideas and techniques of
information theory can be applied equally well to both real time and stored or �delayed�
messages. The disc recording process then becomes an information transmitter or source. The
CD player is a form of information �receiver�, and the disc itself is an information �channel�.

When designing or choosing any information transmission system we must start by defining the
properties of the signals we wish it to carry.  The Compact Disc has to communicate two channels
of Audio information, recorded in a form which can be used to reconstruct a Stereo soundfield. As
with most human forms of communication the actual requirements would vary from one case to
another. For example, some people can hear sounds at frequencies well above 20 kHz whereas
others cannot hear 14 kHz. As a result there is not an �obviously correct� choice for the required
signal bandwidth. We will not consider whether a �better� specification for the CD system would
have produced an audible improvement. We shall simply examine the system as it has been
implemented.

The CD system has been based upon the assumption that high fidelity sound reproduction
requires a uniform frequency response from below 10 Hz to above 20 kHz and a dynamic range of
more than 90 dB. This led to the decision to sample each of the stereo channels (left and right)
44,100 times per second, and to take 16-bit digital samples.
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Using 16-bit words, the ratio of the largest possible signal (which does not go out of range) to the
quantisation interval is 1:2  = 1:65,536. This voltage ratio is equivalent to a power ratio of
96·3 dB, so we can expect the dynamic range of the CD system to be of this order. The input to a
CD digital recording system is normally dithered in order to suppress quantisation distortion. From
the sampling theorem we can expect that the chosen sampling rate will allow frequencies up to
44.1/2 = 22·05 kHz to be recorded and replayed.

16

If we could be certain that the input signal would never contain any components at frequencies
above 22·05 kHz we could simply amplify the initial stereo signals to an appropriate level and
present them to a pair of analog to digital convertors (ADCs) to obtain the required stream of
digital samples. Unfortunately human speech and music does occasionally contain components at
nominally inaudible frequencies well above 20 kHz. If these are allowed to reach the ADCs they
will produce a particularly severe form of anharmonic signal distortion called Aliasing. This
problem can be understood by considering the situation illustrated in figure 9.2.

Figure 9·2 Demonstration that the same set of sampled values
can be produced by different input signals of distinct frequencies.

Sampling
Interval
0·2 Sec.

Sampled points

1 Hz

4 Hz

For the sake of example, the illustration shows the results of sampling an input 4 Hz sinewave
every 0·2 seconds (i.e. the sampling rate is 5 Hz). Looking at the figure we can see that an input 1
Hz sinewave could have produced exactly the same sample values as the 4 Hz wave.  When the
samples are presented to a Digital to Analog Convertor (DAC) for reconversion back into an
analog waveform the result will be an output which looks identical to what we would get if the
original input had been at 1 Hz. The 4 Hz input is said to be an alias of a 1 Hz input since it
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produces exactly the same output.

This aliasing effect gives us a serious problem if the input signal is allowed to contain frequency
components at both 1 Hz and 4 Hz. The problem arises because we have not obeyed the sampling
theorem. In order to pass 1 Hz � 4 Hz the input signal bandwidth must be at least  Hz.
To satisfy the sampling theorem we would therefore have to take at least 6 samples per second �
i.e. use a sampling rate of 6 Hz. The 5 Hz rate being used simply isn't enough to provide all the
information needed to recognise whether the input was at 1 Hz or 4 Hz. Unless we take steps to
avoid it, aliasing can, therefore, produce significant signal Distortions causing the output to be very
different from the input.

4 − 1 = 3

In fact the situation is even worse than the above implies. This is because the same set of samples
could have been produced by an input signal at 6 Hz, or 9 Hz, or 11 Hz, or� When using a
sampling rate, , a frequency component at any frequency,,f r

f ′ =
nf r

2
± f ... (9.1)

where n is any integer will produce a set of sampled values which are indistinguishable from those
which would be produced by the signal frequency, f. 

A CD player uses a sampling rate of 44.1 kHz, not 5 Hz, so it isn't likely to have trouble telling the
difference between 1 Hz and 5 Hz! However, it will have problems if it is presented with input
signal frequencies equal to or above 22·05 kHz. In order to avoid this possible source of signal
distortion it is vital to use a pair of low-pass filters and stop frequencies  kHz from
reaching the ADCs used to encode the CD audio signals.

≥ 22·05

9.2 The CD encoding process

For the CD system we can define, m = 16, to be the number of bits per sample and,  = 44,100, to
be the number of samples per second taken of each of the two stereo signals. The required
information transmission rate, I, is therefore

f r

I = 2f r m = 1,411,200  bits/sec ... (9.2)

where the 2 is required because we wish to send stereo information. We therefore require a
channel whose capacity, C, is at least 1·4112 Mbits/s. To send this information as a serial binary
data stream we need a channel bandwidth, . To minimise the effects of noise without
losing any signal we should employ another low-pass filter to restrict the bandwidth entering the
receiver (the CD's decoder circuits) to 

B ≥ I / 2

B =
I

2
= 705·6  kHz ... (9.3)

(A bigger bandwidth passes more noise. A smaller one cuts off some signal.)

We can now apply Shannon's equation to say that, for a channel noise level of kT per unit of
bandwidth, the signal power, S, needed for information to be successfully communicated will be
such that

B Log2 {1 +
S

kT B } ≥ I ... (9.4)

Combining 9.3 and 9.4 we can say that the required signal power will be

S ≥ 3kT B ... (9.5)

Note that S increases with B. This is because the noise power entering the receiver increases with
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the bandwidth. 

Consider now what would happen if we tried to employ the same channel to transmit just one of
the pair of stereo signals in analog form. For the sake of comparison we can assume that the
maximum signal power available for analog transmission is the same as the amount, 3kTB, which
would be just enough for the digital system to work. The receiver filter could be altered to restrict
the received signal bandwidth to a value, W = 22·05 kHz. This would then produce a signal to
noise ratio of

( S

N )
ana l o g

=
3kT B

kT W
... (9.6)

i.e.

( S

N )
ana l o g

=
3B

W
... (9.7)

Given B = 705.6 kHz and W = 22.05 kHz, the analog system will provide a maximum S/N ratio (i.e.
a dynamic range) of 3B/W = 96 (19.8dB). The CD system employs 16-bit samples and can provide
a dynamic range of about 95dB � i.e. 75dB better! This comparison shows that an analog signal
can get through a smaller channel bandwidth, but it is much more susceptible to noise than a
digital signal.

On the basis of the figures given above we can expect that a CD lasting 60 minutes will have to
store 1·4112 × 60 × 60 = 5,080 Mbits. In fact, CDs employ a powerful error detection and
correction system � i.e. the codes used include some redundancy. Although the amount of
information on a 60 minute CD remains around 5 Gbits, the number of recorded bits is much
greater. This means that the rate at which data bits are read from the disc (and the receiver's
channel bandwidth, B) must be somewhat higher than we've assumed.

The encoding scheme employed for CD is quite complex. Fortunately we only need to consider its
main elements to appreciate how the basic concepts of information theory have been applied.
The explanation given here is based upon information provided by Philips (who developed the
CD system along with Sony) in a special issue of the Philips Technical Review (Vol. 40(6) 1982). 

Figure 9.3 represents the CD encoding/recording system. The input data is initially sampled in
the form of a stream of 16-bit digital words. These words are collected into Frames of 6 consecutive
left/right pairs of digital samples. One frame therefore contains 192 audio bits which are then
treated as a set of 24, 8-bit, Audio Symbols.
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Compact Disc data encoding system.Figure 9.3

These audio symbols are rearranged and some extra parity symbols are generated using an
encoding scheme called a Cross Interleaved Reed-Solomon Code or CIRC. For our purposes it is
sufficient to recognise that CIRC is a type of block code which generates a specific pattern of
parity bits. CIRC also Interleaves or �rearranges� the sequence of the data bits. The interleaving
process is designed to minimise the effects of momentary data losses. Some extra Control and Data
bits are also added at this stage. These contain extra information � for example track numbers
and running time � which are of use to the CD player. The result of the CIRC encoding stage is
to convert each frame from 24 audio symbols into 33 data symbols (each 8-bit, as before, giving a
new total of 264 data bits). The parity bits provide some of the required ability to detect and
correct random errors. 

In practice, much of the data loss when replaying a CD occurs in brief Bursts  when the player
encounters a hole, or a piece of dirt, or when vibration causes the laser to momentarily miss
tracking the data. This causes a series of successive data bits to be lost, sometimes lasting for a
number of symbols. Interleaving or shuffling the symbols before recording (and de-interleaving
them on replay) helps prevent successive audio symbols from being lost. It also �spreads out� the
data and parity bits to reduce the chance that both a given symbol and its associated parity bits
will be lost. This interleaving process covers up to 28 frames and as a result, information from any
pair of adjacent audio samples will usually be spaced some considerable distance apart on the
actual CD. The usefulness of this interleaving process can be understood by considering the
analogy of a piece of paper upon which a message has been typed. In the process of being passed
to the person who wants to read it, the paper is attacked by a dog which tears it and eats a piece.
As a result, when the message is read about 5% of the text is missing � perhaps because the last
few lines have been torn off. It is likely that any information which was contained by the missing
lines is lost (inside the dog!). 

If the letters of the text had been typed onto the paper in a �scrambled� order it would be possible
to re-arrange the received text back into a message where occasional words would have a missing
letter. (Of course, in order to do this the scrambling process must not be a random one as the
person receiving the message has to know how to unscramble the text correctly.) The result
would probably be a readable message despite the loss of letters from some words. This is because
of the natural redundancy of the English language which lets us make sense of text even when
there are mistakes. The CIRC encoding process works in a similar way. Parity bits are used to add
some redundancy, and the message is interleaved (scrambled) so that any brief breaks in the data
stream should only cause single-bit losses is some samples. These can then usually be corrected
because of the redundancy.
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Following CIRC encoding each of the 8-bit data symbols is translated into a 14-bit Channel Symbol
and an extra three Merging Bits are tacked onto the end of these 14. For obvious reasons Philips
refer to this process as Eight to Fourteen Modulation (EFM). At the end of the frame of channel
symbols another 27 Synchronisation Bits are added to make a total of 588 channel bits per frame.
The sync bits are a unique pattern which the CD player uses to locate the beginning of each data
frame. The bits are then recorded as a sequence of Pits cut into the disc. Those parts of the disc
surface where no pit has been formed are referred to as the Land. The recording is not made on
the simple basis that �1�=�pit� and �0�=�land� (or vice versa). Instead a �1� represents the transition
or edge between pit and land. A �0� means �continue as before� and �1� means �change from pit to
land, or land to pit�.

The specific choice of which 14-bit channel symbol should represent each 8-bit data symbol has
been made so as to try and satisfy a number of requirements. Firstly, a set of 14-bit codes has been
selected whose patterns provide the largest possible Minimum Hamming Distance between adjacent
codes. This helps the CD player recognise and correct occasional random bit-errors in the
recovered data stream. There are 2  = 16,384 possible choices of 14-bit channel symbols of which
only 2  = 256 are required. We can therefore surround each legal pattern with 64 illegal ones.

14

8

Starting with an m-bit symbol, there are m ways of changing one bit to produce a new symbol. Any
one of these new symbols could also be altered in m  different ways by a second bit-change.
However, this doesn't mean that we can produce different symbols by changing two bits since
the second change will sometimes simply undo the first. Consider a typical initial 8-bit digital
symbol, . For this example, m  equals eight, so there are eight ways a one-bit change can
produce a new symbol; , , , etc. (Here, the �~� above a character
indicates that particular bit has been changed.) Symbols with two changes will be ,

, ,� , ,� etc. If we count up the numbers of symbols,
, which differ from the one we started with by q bits, we find that

m 2

a b c d e f g h
a~b c d e f g h  a b

~
c d e f g h a b c~d e f g h

a~b
~

c d e f g h
a~b c~d e f g h a~b c d

~
e f g h a b

~
c~d e f g h a b

~
c d

~
e f g h

C {m , q }

C {m , q } =
m !

(m − q )! q !
... (9.8)

As a result, if we allow up to Q bits of a symbol to change we can produce

N {m , Q } = ∑
Q

q = 1

m !

(m − q )! q !
... (9.9)

new symbols which differ from the starting symbol by no more than Q bits. Now
and , hence, given that we can typically surround each legal 14-bit symbol with 64
illegal ones, we can expect to be able to use EFM to correct any single-bit errors and most double-
bit ones.

N {14,1} = 14
N {14,2} = 105

The second factor which influenced the choice of 14-bit symbols was the decision to limit the
maximum and minimum number of �0�s which can appear between successive �1�s of the
recorded bit stream. This sets a maximum and minimum distance between successive pit�land
edges on the disc. (Remember that a �1� is recorded as a pit�land edge.) The codes chosen for CD
recording ensure that there are always at least two �0�s, and not more than ten, in between
successive �1�s. However, one symbol which finishes with a �1� may still need to be followed with
another which begins with a �1�. The pair of symbols would then �clash�, violating the requirement
for more than two zeros between any pair of �1�s. This problem is overcome by the inclusion of
three extra merging bits in between successive symbols. Now we can simply place three zeros in
between symbols whenever we need to avoid a clash.
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The symbols and merging bit patterns are also chosen to ensure that, on average, the encoded
disc appears to the player as consisting of 50% land and 50% pit. This helps the servo control
system in the CD player to correctly focus the laser spot it uses to read the recorded data.

Finally, the symbols and merging bits are chosen so as to produce a strong component in the
recorded signal spectrum at a predetermined frequency. This provides a clock reference signal for
the CD player. The player can compare a filtered version of the recovered signal with a crystal
oscillator and use this to adjust the disc rotation velocity.

The encoding process converts an initial 192 bit frame into a recorded frame of 588 bits. The
number of channel bits recorded on a 60 minute CD is, therefore, around 15·5 Gbits and the
channel bit rate will be 4·32 Mb/s. This means that the actual channel bandwidth required must
be over 2·16 MHz, not 0·7 MHz.

The ability of the CD system to withstand errors and disc or replay imperfections may be
summarized in terms of four standard measures.

i) Maximum Completely Correctable Burst Length. (MCL)

= 4,000 data bits (2·5 mm of track length on disc.) This means that gaps or holes up to
2·5 mm across in an otherwise perfect disc should not lead to any loss of audio information. This
indicates the power of the combination of the parity bits plus eight-to-fourteen modulation to
correct the loss of a large number of successive channel bits. 

ii) Maximum Interpolatable Burst Length.  (MIL)

= 12,000 data bits (7·7 mm track length.) Once the MCL has been exceeded some data
will become lost. The interleaving process is, however, designed to ensure that no two adjacent
audio sample values will be lost until over 12,000 successive channel bits have become unreadable.
The player can �interpolate� the lost data samples.

The values for MCL and MIL quoted above assume that there are no other imperfections or
random errors �near� (i.e. within 28 frames) the error burst. A high random Bit Error Rate (BER)
will degrade the above values. The effects of a given random bit error rate can be indicated by

Sample Interpolation Rate. 

1 per 10 hours at a BER = 0·0001

1000 per minute at a BER = 0·001

This represents how often random bit errors conspire to overcome the error protection and make
a sample value unrecoverable. When this happens the CD player can respond by interpolating the
lost value from the adjacent samples. The rapid change in the interpolation rate with BER
indicates a general property of digitised data communication. Given a reasonable degree of
redundancy, a low level of random errors has almost no effect upon data reception. However,
above some particular �threshold� level the information loss rises dramatically with bit error rate. 

Undetected Error Rate.

Less than 1 per 750 hours at a BER = 0·001

�Negligible� at a BER = 0·0001

This represents the frequency of undetected sample errors, i.e. the random noise produces a legal
symbol and the required, equivalent, parity, which is not identical to that recorded. When this
happens the CD player can't know that the recovered value is, in fact, wrong and an audible
�click� may result.
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Summary

You should now know about the problem of Aliasing and how it can be prevented by using a filter
before a signal is sampled. It should also be clear that � given enough bandwidth � a digital
system can obtain a higher dynamic range than analog from a noisy channel. It should also be
clear that the combination of a block-parity code (e.g. CIRC) and data Interleaving provides good
protection against data loss due to random noise and burst errors due to missing channel data
(soup on the CD!). You should also now know how the pattern of pits on a CD is calculated from
the input signals.

Questions

1) Give an outline explanation of how a CD system encodes musical information into digital form
and records it on a disc. Include an explanation of how the CD system protects information
against random errors.

2) The CD system uses 16 bit samples and a Sampling Rate of 44,100 samples/second. What
Dynamic Range and Bandwidth should this provide? How many bits of audio information will a 1
hour CD contain? [96·3 dB. 5·08 GBits.]

3) Explain what is meant by the term Aliasing and say what we must do to prevent it happening.
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Chapter 10

The CD player as a measurement system

The CD player has to recover information from a spiral track of small pits which have been
formed at a nominal Information Layer inside a compact disc. Unlike the old-fashioned vinyl (or
shellac!) analog recordings, the CD does not have a �continuous' groove and the optical sensor
should never touch the disc. Hence the CD player must locate the required information without
any mechanical guidance about where the data is to be found. Figure 10.1 illustrates the form of a
typical CD surface and the optical beam used to read data from the disc.

0  0  1  0  0  0  0  1  0  0  1  0  0  0  0  0  1  0  0  0  0

Disc rotationpits
Laser
Spot

Spiral
pitch

Channel bit stream

Replay of CD pit−land pattern.Figure 10.1

Information is recorded on the surface of a CD in the form of a spiral track of pits, and is read
using a laser whose wavelength is around 0·7 µm. The spiral pitch (distance between adjacent
turns) is 1·6 µm and the disc is rotated so that the position illuminated by the laser spot moves at
a constant linear velocity of 1·25 m/s. 

Analog disc recordings were normally made at a constant angular velocity. This means that they
can be replayed by rotating them at a steady rate. CDs use a constant linear recording velocity in
order to maximise the amount of information which can be squeezed onto a given disc diameter.
This means that the angular rate of rotation required to play a CD varies as the disc is played.
Unlike most analog discs, CDs are recorded �from the middle, outwards�. The optical sensor used
to recover data starts near the middle of the CD with the CD being rotated relatively quickly. As
the music plays the sensor moves outwards and the rotational rate is reduced. 

CDs can be manufactured in various ways. Many of the first discs were made using photochemical
techniques. A light sensitive chemical was coated onto the surface of a disc of plastic. The
required pit�land pattern was then �photographed� onto the disc. The details of this pattern were
then etched using appropriate chemicals. More recently, faster, cheaper methods have been
developed. For example, many modern discs are produced by Injection Moulding � forcing plastic
into a metal mould, one wall of which holds a �negative� version of the required pattern of pits
and land. The patterned plastic surface is coated with a thin layer of metal (usually aluminium,
but some expensive CDs use gold instead) to make it highly reflective. This is then covered with a
protective top coating of transparent plastic.
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When using electromagnetic radiation to observe small-scale features, we wouldn't normally
expect to be able to measure anything whose size is significantly smaller than the chosen
wavelength. In the case of a CD the required bit recovery rate is 4·32 Mbits/s and the the disc
velocity is 1·25 m/s. This implies that each bit occupies a track length of just 0·29 µm � i.e. less
than half the laser's wavelength! A number of factors help CD players to recover information from
such a closely packed surface pattern.

• Firstly, the laser beam is tightly focused to produce a spot whose nominal diameter is typically
around 1 µm. This requires an optical system of very high quality.

• Secondly, the encoding system is designed to help the laser sense the surface features. Every
stretch of pit or land will be at least 3 bits long. This is a result of the coding requirements
that; i) there must always be at least 2 zeros between adjacent ones; ii) pit�land edges
represent encoded 1's. This means that pit�land edges will always be at least 0·87 µm apart �
i.e. the length of each pit or land feature will always be comparable with the laser wavelength.
This means it is possible to ensure that the laser spot will never illuminate more than a single
edge at a time.

• Thirdly, the optical system employs a highly coherent light source and the pits are made
approximately a quarter-wavelength deep. The readout beam axis is nominally aligned to be
perpendicular to the disc plane. When there are no pit�land edges in the spot, all of the
reflected beam will share the same phase. The phase of the reflected beam will, however,
change by 180 degrees when the spot moves from pit to land, or vice versa. 

When the optical spot traverses a pit�land edge the magnitude of the beam reflected back into
the sensor optics will momentarily dip almost to zero. The reason for this can be understood by
considering what happens if half the spot energy falls upon land, and half into a pit. The reflected
beam then consists of two portions, equal in magnitude but opposite in phase. As a consequence
the total energy coupled back into the sensor beam would be zero. Of course, the �missing�
energy does not just vanish, instead it is scattered in some other direction, away from the sensor
beam.

Laser

Sensor

Quarter-Wave
Plate

Information layer

Polarising
Prism

Objective Lens
& focus drive

Typical CD replay optical system.Figure 10.2

Although the details vary a great deal from one manufacturer to another, most players use
variations on the system illustrated in figure 10.2. In principle it would be better to employ some
form of Michelson Interferometer with a pair of detectors. This would enable the player to measure
the phase of the reflected signal as well as its amplitude and distinguish pits from land. This
would improve the S/N ratio achievable with a given laser power level. However � as will become
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clear later � the player's optical system is invariably much more complex than implied by figure
10.2. The extra complexity is to allow for the chosen focusing/tracking arrangements. The use of
a full interferometer system would require a further increase in player complexity. Fortunately,
poor signal to noise ratio need not be a problem with CD players as the manufacturer can
generally obtain solid state laser sources which provide ample power levels. Hence the use of a
full phase interferometer system isn't usually regarded as necessary. (Although doubtless some
manufacturer will eventually make it's inclusion a �selling point�!)

The system illustrated relies upon detecting the momentary dips in the observed reflected light
level which occur at the pit�land edges. Laser light is focused onto the disc information layer via a
polarisation prism and a quarter-wave plate. Since this isn't a book on optics we don't have to get
into an explanation of just how these items work. For our purposes it's enough to know that a
polarisation prism will transmit light with one plane polarisation and reflect light polarised at 90
degrees to the transmission plane. The quarter-wave plate alters the polarisation state of light
passing through it. As a result, the light reflected back from the disc is directed onto a sensor, not
returned to the laser.

In practice we may find that the reflected energy is not divided exactly 50:50 at the pit edges. The
pit depths may also not be exactly a quarter wavelength. This means that the magnitude of the
sensed reflection may not dip right down to zero. Despite this practical problem, the power of the
replay laser is normally so large that we can obtain a high enough S/N ratio to determine the
locations of pit�land edges with an uncertainty considerably smaller than a wavelength.

When the system is working correctly, the laser spot is focused on the information layer which sits
in the nominal information layer of the disc surface. (This layer can be defined to be mid-way
between the land and pit bottom planes.) Light reflected by the disc will return through the
system and be refocused at the required output plane, just in front of the signal detector (or
detectors). 

Any fluctuations in the distance from the objective lens to the information layer will have two
undesirable effects. The beam size at the information plane will become larger, and the output
focal spot will shift along the beam axis away from its required position. The CD player must,
therefore, be able to continuously adjust the objective lens position to maintain its position at the
correct distance from the disc. It must also ensure that the spot tracks the spiral pattern of pits.

Since there is no physical contact, the CD optical sensor system must itself provide signals which
can be used to continuously adjust its position relative to the disc with sub-micron accuracy �
even when playing a disc which is warped or rotating off centre by over a hundred times this
amount. It must also provide a measurement of tracking velocity with enough accuracy to enable
the player to vary the disc rotation rate and collect audio data with a channel bandwidth of over 2
MHz. The CD player must therefore contain a highly accurate and responsive position/velocity
measurement system.
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CD spot focus mechanisms.Figure 10.3
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CD player manufacturers have used a variety of techniques to control the optical recovery of
information and position the sensor correctly. For the sake of illustration we can examine four
techniques:

i) dual-prism focusing ii) knife-edge focusing

iii) three-spot tracking iv) dither tracking

Figure 10.3 shows the focusing methods we are considering. In each case the output light level is
detected by using more than one sensor. The systems are arranged so that any alteration in
objective-disc spacing alters the relative levels seen at the sensors. In the Knife-Edge system, an
opaque edge is placed near the output focal spot. This stops some of the light from reaching a
pair of sensors placed a little further along the beam.

When focused correctly, the output focal spot rests near to the knife-edge and the amounts of
light reaching each sensor of the pair of output sensors,  and , are reduced by similar
amounts. Any change in the objective-disc spacing will shift the output focal plane along the
beam, producing an imbalance in the amounts of light blockage experienced by each sensor.

S 1 S 2

The output voltages produced by the pair of sensors can be monitored by the CD player. The sum
of their voltages,  , can be used to provide audio information. Any difference,  , in
their voltages can be used to indicate a focusing error. The sign of this difference voltage
indicates the direction of the error. When this difference output is zero the system is ideally
focused

S 1 + S 2 S 1 − S 2

The Dual-Prism system employs a pair of prisms placed in front of three light sensors. The prisms
slightly alter the convergence of the beam, changing the relative levels falling upon three output
sensors. The size of the effect of the prisms depends upon the position of the focal plane of the
incident beam relative to the prism. As with the knife-edge system, we can use the sum of all the
sensor voltages,  , to obtain audio information. The difference,  ,
between the central sensor and the surrounding ones can be used to indicate any focusing error.
As with the knife-edge system a zero difference output indicates when the system is ideally
focused. When this happens we can expect about half the light power to be falling on the central
detector, , and the other half on the outer pair. This means that about a quarter of the total

C + S 1 + S 2 C − (S 1 + S 2)

C
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falls on each of  and . A focus error in one direction will cause  to rise and  to fall.
An error in the other direction has the opposite effect. Hence, as with the knife-edge system, the
sign of the difference output indicates the direction of the error.

S 1 S 2 C S 1 + S 2

However the focusing information is gathered it provides the player with a focus control signal
whose magnitude and sign depend upon the amount (and direction) by which the objective-disc
spacing differs from the required value. This signal is then amplified and used to drive a motor
which changes the objective lens position so as to reduce the error. The overall system acts as a
form of Servo Control Loop to maintain the required focus. 

Figure 10.4 shows the Three�Spot method for obtaining tracking measurements. In this system the
laser beam is diffracted so as to produce three spots focused on the information layer of the disc.
The power reflected at each spot is directed onto a separate light sensor. The spots are arranged
to lie in a line at a slight angle to the nominal direction of the information spiral. As a result,
when the centre spot is correctly aligned the front and back spots only partly illuminate the spiral.

Center Spot “on track”

Center Spot “off track”

Three−spot spiral tracking system.Figure 10.4

The CD player monitors the relative levels of light modulation recovered by all three of the spot
sensors. When the system is tracking ideally, the centre spot will give a relatively large modulation
output. When the spots are slightly off-track the output from either the front or back spot will
increase and that from the centre one will fall. The difference in levels between the front and
back spot sensors can therefore be used to obtain a measure of any tracking error. As with
focusing, any difference signal can be amplified and used to adjust the position of the objective
lens so as to maintain good tracking.

A disadvantage of this system is that only about one third of the available laser power will be used
to obtain the required audio information. In principle, the player could recover audio
information from all three spot sensors. A problem with attempting this is that the spots are
looking at different places along the spiral track, and hence at any moment they are recovering
different portions of the recorded data. The spots could, if we wished, be placed �side by side� to
overcome this problem, but they would then be physically overlapping and � as a result � the
sensors would be more likely to see light coming from the �wrong� spots. 

The Dither Tracking technique makes a single spot do the work of three by forcing the spot to hunt
back and forth across the spiral track. This can be achieved by vibrating the objective lens from
side to side a very small amount, or by reflecting the laser-sensor beam off a mirror surface whose
angle is vibrated. Typical systems employ a sinusoidal modulation with a frequency of a few
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hundred Hertz. The magnitude of the oscillation is very small and should only move the spot at
the disc information layer by a fraction of a micron.

Track direction

Dither
Modulation

Spot

Output signal

On track

Left of track

Right of track

Using spot 'dither' to obtain tracking information.Figure 10.5

The effect of this deliberate modulation is shown in figure 10.5. The output signal mainly consists
of a complex signal with frequency components in the MHz range. When the system is tracking
correctly, the dither produces a slight amplitude modulation of this signal at twice the dither
frequency. Any tracking error will change the shape of this modulation, producing a shape which
contains a component at the dither frequency.

In an earlier chapter we saw that the digital signal recorded on the CD requires a channel
frequency range up to at least 2·15 MHz to cope with the required bit-rate. One of the conditions
used to select the coding system was that there should never be more than ten �0�s between any
successive pair of �1�s in the data stream. This means that the frequency spectrum of the digital
signal won't contain any significant frequency components below about 2·15/10 MHz ≈ 200 kHz.
The digital audio data is therefore confined to a frequency band from about 200 kHz to 2 MHz.
Since the dither frequency (and twice this frequency) is well below the digital audio frequency
range the CD player has no problem separating the dither tracking output from the digital audio
information. The player can then compare the magnitudes of the amplitude variations at the
dither and 2 × dither frequency, find the phase of these signals relative to the dither modulation
it is applying, and use the result as a measure of any tracking error.

The dither technique is, in principle, a very efficient one. Only one spot and sensor are required,
and the magnitude and frequency of dither can, if we wish, be continuously altered to suit the
difficulty of the task (i.e. less dither on �good� discs and players). Perhaps the main drawback of
this method is that its name makes it easily confused with the (quite different!) dither �noise�
signal used to suppress quantisation distortion. Various other methods have been devised by
manufacturers to recover tracking information. However, as with the choice of focusing
technique, what finally matters is the quality of the actual CD player design and manufacture.
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Summary

You should now understand how the pattern on the surface of a CD is formed. You should also
know how a CD player is able to �track� and recover the spiral of pits in the CDs information layer.
In particular, it should be clear how the player can focus and align its laser/sensor system and
adjust the rotation rate to recover the required stream of channel bits.
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Chapter 11

Oversampling, noise shaping, and digital filtering

11.1 The CD player as a digital signal processing system

The stream of bits recovered from the disc is processed through a series of stages which reverse
the encoding process which occurred when the signals were recorded. Minor errors can be
completely corrected using the eight-to-fourteen redundancy and parity checking built into the
system. Major errors may result in the unavoidable loss of information, but most CD players then
use a pre-programmed algorithm to �fill in� or interpolate occasional lost samples. The details of
this algorithm for masking information loss will differ from one player to another. The recovered
stream of digital values can then be passed to two digital to analog convertors (DACs) for
conversion into an output pair of analog audio signals.

In principle, we could simply use the CD player to recover 44,100 pairs of digital samples per
second and employ a pair of 16-bit DACs to obtain analog signals. Whilst this approach would
have the advantage of simplicity it may produce an output which exhibits the �staircase�
distortions mentioned earlier. 

Provided the input signal was dithered before sampling, any staircase distortions can � in theory
� be removed by passing the output from the digital to analog convertors through low-pass filters
which reject frequencies above half the sampling frequency. This is because, in an ideal system, all
the unwanted frequencies produced by the staircase effect will be above 22·05 kHz. Some of the
earliest CD players did employ this approach, but it soon proved unsatisfactory for a variety of
reasons and has largely been superseded by better methods. Generally speaking, simply using
analog filters to �clean up� the output waveforms works poorly for two reasons:

Firstly, the CD player (or the information on the disc!) may be imperfect. For example, any
production problems in manufacturing the digital to analog convertors will alter the form of the
staircase distortion and may produce unwanted components inside the analog signal's frequency
range.

Secondly, in order to realise the full potential of the CD encoding system we would require low-
pass filters which perform amazingly well. Ideally, they should pass any signal frequencies up to
almost 22·05 kHz without altering them in any way, but must reject any distortion components
above 22·05 kHz by at least 95 dB to prevent them from degrading the potential dynamic range.
Analog filters capable of simultaneously meeting both these requirements can be made. However,
they are difficult to produce as they must contain a large number of very accurately toleranced
components. This makes them large and expensive. It is also inevitable that the values of some
components will tend to change with age, temperature, or humidity. This would mean a very
expensive CD player whose performance might deteriorate audibly with use.

To avoid these problems, almost all modern CD players process the digital data in some way
before presenting it to the convertors. The main objects of this processing are:

• To perform a computation equivalent to low-pass filtering. This is intended to  reduce the
severity of the staircase distortions, easing the demands imposed upon any analog filters
placed after the convertors.
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• To help prevent any imperfections in the digital circuits, especially the digital to analog
convertors, from producing other signal distortions.

The details of this digital processing vary considerably from one type of player to another. (And,
of course, every manufacturer claims to use the �best� method for their newest models!)
Fortunately, all of these processes are aimed at achieving the same end result so we need only
consider one example. Here we will look at the original system employed by Philips in their �first
generation� CD players using the SAA7030 and TDA1540 integrated circuits. The following
explanation has been simplified to some extent, to make it easier to follow, but contains the
essential features of the process.

This system employed a combination of two techniques, Oversampling, and Noise Shaping to achieve
the desired results. Oversampling means that a set of sampled values is used to calculate the
values we �would have obtained� at intermediate moments if the original input had actually been
sampled more frequently. Provided the sample values we start with satisfy the sampling theorem
these extra values don't contain any new information. This is because there is only one possible
waveshape which can fit the sampled values read from the CD. The first Philips CD players
employed  oversampling, converting an input data stream of 44,100 samples/second (per
channel) into 176,400 samples/second. We can regard staircase distortion as being an unwanted
high-frequency variation which has been added onto the signal we wish to communicate via CD.
By ×4 oversampling we produce the effect shown in figure 11.1. 

×4

Effect of × 4 oversampling.Figure 11.1

5.5 kHz sinewave, sampled 44,100 times/sec.

Four times oversampling the reconstructed waveform.

Input sinewave

Output from DAC

Sampled values

'Oversamples'
calculated by
CD player

For the sake of the illustration we can consider an input signal in the form of a 5·5 kHz sinewave
which is sampled by the CD recording process at 44,100 samples/second. The simplest way to
convert these sampled values back into an analog waveform would be to use a digital to analog
convertor (DAC) which produces an output level appropriate for each sample and then �holds�
this level until it is time to output the next sampled level. This kind of output is called Sample and
Hold and produces the kind of staircase distortion shown.

The sampling theorem says that, provided a series of samples form a complete record of the
original information, we can use the measured sample values to calculate the actual signal level at
any moment in between the sampled instants. These calculated values can then be given to the
DAC in between the �genuine� samples to produce the improvement showed in the lower
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waveform of figure 11.1. It is important to realise that these calculated samples are not �guesses�,
but really do represent the signal level which would have been observed if the input waveform
had been measured at these moments. If the CD recording process had actually recorded these
extra values on the disc the player would not be provided with any extra information since the
original set already contain a complete record of the waveform information. Hence the term
�oversamples�, which indicates that these extra values � calculated or measured � don't actually
contain any fresh information.

× × × ×

+

+

16-bit input
sample
stream

44.1 kHz clock

carry
hold

2 bits 14 bits

14-bit DAC
Low-Pass

filter

176.4 kHz clock

Analog 
Output

Weighting
Coefficients
(12-bit)

Transverse
Digital
Filter

Schematic diagram of Philips SAA7030 + TDA1540.Figure 11.2

S {n + 1}S {n + 22}S {n + 23}S {n + 24}

The use of × 4 oversampled digital values reduces the staircase effect in two ways. The basic
frequency of the unwanted staircase distortion is increased by a factor of 4, and its amplitude is
reduced by a factor of 4. As a consequence it becomes much easier to produce analog filters
which, placed after the DACs, will suppress this distortion without significantly affecting the
wanted signal. Figure 11.2 shows a schematic diagram of (one stereo channel of) the initial
Philips processing system. This used two integrated circuits (ICs), the SAA7030 and TDA1540.
The 16-bit samples read from the disc are clocked through a serial Shift Register which, in this case,
can hold 24 successive sample values. The rate at which the system processes the data samples is
determined by two Clock Frequencies, 44·1 kHz and 176·4 kHz, which are supplied to the ICs. These
two clock signals are Phase Locked so that every fourth cycle of the 176·4 kHz starts at the
beginning of each 44·1 kHz cycle. In figure 11.2,  represents the �newest� sample value
and  represents the �oldest�. (It's assumed that n samples have already passed through
the system and have been discarded.)

S {n + 24}
S {n + 1}

The 44·1 kHz clock signal is also used to control the rate at which digital samples are recovered
from the CD, hence samples should be presented to the input end of the shift register at the same
rate they are read from the disc. At the beginning of each 44·1 kHz clock cycle all the sample
values stored in the register locations are shifted along one place. A new sample is entered into
the first register location and the �oldest� sample value is thrown away from the last register
location. The registers are linked to an array of multiplier circuits. Each of these has a set of four
coefficient values connected to it. These coefficient values are usually built into the processing IC
when it is manufactured, although some modern CD systems allow the coefficients to be modified
by replacing or reprogramming a ROM (memory) chip.

The 176·4 kHz clock controls the data processing carried out by the circuit. Each Processing Cycle
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takes one 44·1 kHz clock period � i.e. four 176·4 kHz clock periods. To see how the system
operates we can examine what happens during each of the four 176·4 kHz clock periods of a
processing cycle.

At the start of the first period all the samples are shifted along and a fresh sample value is entered
at the �newest� end of the line of registers. This event triggers the start of the processing cycle.
Immediately after the sampled values have been updated they are all multiplied by the first set of
coefficients and the results are added together to produce an output value which is sent forward
to the digital/analog convertor system.

During the second 176·4 kHz clock period the register values are multiplied by the second set of
coefficients, and the results added, to produce a new output value for the convertor.  The third
set of coefficients are used during the third 176·4 kHz clock period, and the last set during the
fourth and final period of the processing cycle. As a result, each processing cycle produces four
distinct output values which are sent to the convertor. These have all been obtained from the
same 24 input samples, but used four distinct sets of coefficient values. During the next
processing cycle the input data is shifted along, a new sample is injected, and the process is
repeated to produce four more output values.

In Chapter 7 we saw how it is possible to recover the signal value at instants in between samples.
Here the action of the IC may be seen as carrying out a similar task. We could therefore use a set
of coefficients which correspond to the values of the sinc function indicated by the expressions in
Chapter 7. This  would serve to �smooth out� some of the output signal distortion effects. In
practice, however, it can be an advantage to slightly alter the coefficient values  to obtain a flatter
frequency response, lower distortion, or whatever we require. 

The circuit which carries out this process (an SAA7030 in this case) is called a Transverse Digital
Filter (TDF). By choosing an appropriate set of  coefficients we can carry out a series
of computations which mimics the effect of a �96'th order� analog filter. The frequency response
of this filter depends upon the values chosen for the coefficients. In theory we could build an
analog filter, using capacitors, inductors, etc, to achieve the same end. This is because, in
principle, identical results can be achieved by either analog or digital processing of the
information. In reality, of course, the analog equivalent would prove far more difficult to make,
and its properties would be relatively unstable. There are, therefore, good practical reasons for
carrying out this filtering process in the digital domain.

4 × 24 = 96

One interesting consequence of using a set of samples to compute output values is that the results
have more bits per value than the input samples! The SAA7030 stores its internal coefficients as
12-bit numbers and the output values obtained from the TDF therefore emerge as 16 + 12 = 28-bit
numbers. Note that these additional bits don't contain any �new� information. They are a
consequence of the way information is �redistributed� by the TDF process. In effect, each bit of
real data influences more than one bit of the oversampled results. The oversampled bits aren't all
�independent� of one another.

In an ideal world we might choose to employ a pair of 28-bit DACs after the filter. Alas, at the time
the first CD players were launched Philips were doubtful that they could mass produce even 16-bit
convertors of the required precision at a commercial price! They could, however, make good 14-
bit convertors able to run at a clock speed of 176·4 kHz. They therefore decided to use 14-bit
DACs in the first generation of CD players. At first glance it seems that the use of a 14-bit
convertor will unavoidably cause some audio information to be lost. Fortunately, it is possible to
process the data before conversion in a way which can prevent any information loss by using a
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noise shaping technique. As with oversampling this process may be carried out in various ways. The
original Philips design employed a method which we can understand by looking at figure 11.2.

The 28-bit output values from the TDF are passed through an adder into another register. The
most significant 14-bits are then sent on to the DAC. The unused, least significant, bits are treated
as a �remainder' which is held for one 176·4 kHz clock period and then returned to the adder to
be combined with the next value. This process is repeated with each successive value. This has the
effect of �carrying forward� any error between the converted and presented values. To see how
this works we can forget, for a while, the potential ability of the TDF to generate 28-bit numbers
and consider what would happen if we just present a series of 16-bit values to the noise shaping
system. For simplicity, imagine that four successive values are the same and let F represent the
most significant 13 bits of their value. (We'll also assume that we start with a carry of zero from the
last cycle.) The �carry forward� process continued over four clock cycles then looks like:

16-bit input +Carry 14-bits to DAC Remainder

     00

     F001 F001 F0 01

     F001 F010 F0 10

     F001 F011 F0 11

F001 F100 F1 00

Note that if we add together the four successive 14-bit output values sent to the DAC we obtain
F001 once again. A low-pass filter placed after the digital to analog convertor will have the effect
of suppressing any short-term fluctuations in the output level. If this filter attenuates frequencies
above half the basic sampling rate (i.e. 1/8th the oversampled rate) it will tend to produce an
output which is much the same as if we had averaged the four values, producing an output
equivalent to that which would have been produced by a 16-bit convertor.

It is perhaps unfortunate that this process has come to be called noise shaping as the name
implies that the process is somehow �random�. In reality the process operates by attempting to
average away the Truncation effects produced by the finite number of bits per digital value. It does
this by storing  any truncation errors and using them to adjust later output to produce a more
accurate overall output.

For the sake of the above explanation we ignored the fact that, using 12-bit coefficients, the TDF
is capable of providing 28-bit output values. Some manufacturers of CD players have taken
advantage of this by employing DACs which convert 18, 20, or even more bits per sample in an
attempt to produce more �accurate� analog output signals. It is important to realise that, although
this process can provide a �smoother� output waveform it doesn't magically produce any extra
information which wasn't in the original set of 16-bit samples. In principle, an �ideal� 16-bit DAC
and analog filter would produce the same results as any other �ideal� noise shaped and
oversampled system. Any differences stem from how well the system is designed and built, not
from any inherent theoretical differences.

Summary

You should now know what is meant by the terms Oversampling and Noise Shaping. That these are
digital signal processing techniques which can be used to perform functions similar to filtering an
analog signal. You should also now understand how a Transverse Digital Filter works. It should also
be clear that � in theory � the same results can be achieved using systems which produce
anything from one to umpteen bits per value presented to the output DACs provided  that the
digital process is performed correctly.
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Chapter 12

Analog or digital?

12.1 Is the world �analog�?

In general, we can imagine representing information in terms of some form of analog or digital
signal. The digital data stored on a CD will normally have been produced using analog to digital
convertors which are fed with amplified signals from microphones. The original microphone
signals are obviously �analog� � or are they?�

Modern physics is largely based upon the concept that the world behaves according to the rules of
Quantum Mechanics. One of the axioms of this is that all forms of energy behave as if quantised.
This gives us the well-known (although not well understood!) �wave�particle duality�. Statistically,
the behaviour of physical processes can be described in terms of things like waves and continuous
functions. Yet, when we examine any process in enough detail we can expect to see behaviour
which it is more convenient to describe in terms of distinct particles or �packets� of energy, mass,
etc.

When the Compact Disc system was originally launched some people criticised it on the grounds
that, �Sound signals are inherently analog, i.e. sound is a smoothly varying (continuous) pattern
of pressure changes. Converting sound information into digital form �chops it up�, ruining it
forever.� This view is based on the idea that � by its very nature � sound is inherently a wave
phenomenon. These waves satisfy a set of Wave Equations. Hence we should always be able to
represent a given soundfield by a suitable algebraic function whose value varies smoothly from
place to place and from moment to moment. Since the voltage/current patterns emerging from
our microphones vary in proportion to the sound pressure variations falling upon them it seems
fairly natural to think of the sound waves themselves as having all the properties we associate with
�analog� signals, i.e. the sound itself is essentially an analog signal, carrying information from the
sound sources to the microphones. But how can sound be �analog� if the theories of quantum
mechanics are correct?

The purpose of this chapter is to show that the real world isn't actually either �analog� or �digital�.
Analog and digital signals are no more than mathematical representations of reality, useful when
we want to process information. In fact we could say the same thing about the �waves� and
�particles� we use so much in physics. Although it's easy to forget the fact, both waves and particles
are mental models or �pictures� we use to help us grasp how the real world behaves. Although
useful as concepts, they don't necessarily �really exist�. To illustrate this point, imagine a situation
where we are given a working electronic circuit board without being told anything about it and
asked, �Is this an analog or a digital circuit?� How could we tell? Of course, we could probably
decide by looking to see if the circuit contained any integrated circuits, reading their type
numbers, and looking them up in a book! (We can also guess that if the circuit doesn't contain
any integrated circuits, it's probably not digital�) However for our purposes, this would be
cheating. The real question is, �Can we tell just by looking at the kinds of electronic signals being
passed around between components on the board?�

If we connect an oscilloscope we can watch how some of the voltage or current levels in the circuit
vary with time. In most cases, the shapes of the waveforms we'd see on the oscilloscope would
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quickly show whether the signal was digital or analog.

Digital signals will often show �square� shapes. The signal voltages tend to spend most of the time
near one or the other of two particular levels, switching between them relatively quickly. Analog
signals sometimes show no obvious patterns, although in some cases they show a simple
recognisable shape like a sinewave.  As a result we can sometimes form an opinion about the type
of signal by seeing if we can recognise the waveforms. But is there a more �scientific� � i.e.
objective � way of deciding? Is their an algorithm or recipe which would always be able to tell us
what form a signal is taking?

At first it might seem as if this problem is an easy one. When we look at them on an oscilloscope,
digital signals can look nice and square, analog ones tend to look like bunches of sinewaves or
noise. Unfortunately, when an information channel is being used to its limits the situation can be
less clear. When a digital signal is transmitted at very high bit-rates, the rising and falling edges of
each level change tend to become rounded by the finite channel bandwidth. As a result, the
actual transmitted voltage fluctuations may not display an obviously digital pattern. 

In a similar way, some analog waveforms may show fairly square patterns. For example, the output
from a heavy rock band, compressed by studio equipment, can have a �clipped� look similar to a
stream of, slightly rounded, digital bits. Also, if an analog channel is being used efficiently every
possible waveform shape will appear sometimes. As a result, the waveform will sometimes look just
like a digital one.

We can't know with absolute certainty, just by examining a real signal pattern for a while, whether
it carries information in either digital or analog form � although we can be fairly confident in
many cases. We use voltage patterns (or currents, etc) to carry information in various ways, but
the terms �digital� or �analog� really refer to the way we process information, not some inherent
property of the voltage/current itself.

For most purposes this lack of absolute knowledge doesn't matter. But it serves to make the point
that digital and analog signals are idealisations. Any real signal will have both analog and digital
characteristics.

12.2 The �digital� defects of the long-playing record

In the previous section we considered the signals used to communicate information. But what
about the physical processes and sensors we use to create or collect information? In general we
tend to assume that a measurement system operates in an analog manner. An input is sensed by
some form of detector and produces a voltage or current whose magnitude varies in proportion
with the stimulus. This voltage or current is then taken as an analog of the input we wish to
measure.

Despite this assumption we can expect that any physical process must, at some level, be affected by
the quantum mechanical behaviour of the real world. In order to see how this influences a real
measurement we can consider the example of a Long Playing (LP) record. This sound recording
system makes a useful contrast to the Compact Disc which we have already examined. It is also
considered by some Hi-Fi audio enthusiasts  opposed to digital audio as a paragon of �analog
virtues�.
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Information is stored on an LP in the form of a modulated spiral groove pressed into its surface.
The measurement sensor consists of a stylus which is placed in the groove whilst the LP is rotated
at a constant angular velocity. An output signal is produced which is proportional to the
instantaneous radial velocity of the stylus The signal is recorded in the shape of the groove
surfaces, or �walls�. The stylus is connected to some form of electrical generator (usually a coil in
the vicinity of a magnet) which produces an output voltage proportional to the transverse velocity
of the stylus. In general, sensors which convert one form of energy into another are called
Transducers. In this case some of the rotational energy of the LP is converted into electronic
energy. The combination of stylus and generator is usually referred to as a �cartridge�. (It can also
be called a �pick-up�, but this term is confusing as it's sometimes used for the arm which supports
the cartridge above the LP record.)

Stylus

Groove

Rotation

Long Playing Record

Conventional view of LP groove and stylus.Figure 12.1

x {t }

For the sake of simplicity we can assume that the LP is Monophonic and that the nominal centre
line of an unmodulated groove would cause the stylus to move inwards at a constant rate, . We
can represent the recorded signal as illustrated in figure 12.1 by an offset distance, , between
the actual position of the stylus at time, t, and the position it would have if there were no
modulation. The radial velocity of the stylus, , of the stylus at any instant will be

d r
d t

x {t }

v {t }

v {t } =
d x {t }

d t
+

d r

d t
... (12.1)

In practice the steady spiral velocity, , simply causes the pick-up arm to move slowly inwards so
we can say that the output voltage generated by the stylus movements will be

d r
d t

v {t } = kv {t } = k
d x {t }

d t
... (12.2)

where k is the appropriate conversion coefficient (the cartridge's Sensitivity or responsivity) of the
cartridge. For a real LP system, k is typically in the range 0·1 � 1 mV/cm/s. Ideally, we would like
to obtain an output signal, , which is a faithful reproduction of the required sound pressure
variations. In any real system, however, some problems must be taken into account. For example,
various processes will restrict the dynamic range of the system. Mechanical problems will place
limits on the maximum possible size of the displacement, , and the maximum achievable

acceleration, . The noise level will also prevent us from observing changes in displacement

smaller than a given size.

v {t }

x {t }
d 2x{t }

d t 2

The record industry adopted a standard level of 5 cm/s (peak velocity for a 1 kHz sinewave), as
the nominal 0 dB Reference Level. A reasonably good cartridge would have been able to Track
(maintain its stylus in the groove) modulation levels around 20 dB greater than this reference
level. For a sinewave of frequency, f, amplitude, A, the offset displacement will have the form
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x {t } = A Sin {2πf t } ... (12.3)

hence the velocity will be

v {t } = 2πf A Cos {2πf t } ... (12.4)

and the acceleration

a {t } = − (2πf )2 A Sin {2πf t } ... (12.5)

A 1 kHz sine wave recorded at a +20 dB level will have a displacement of peak value,

µm, and a peak acceleration,  km/s/s. (i.e. a peak acceleration  around 320 times
bigger than that due to the Earth's gravity!)

x pe a k ≈ 80

a pe a k ≈ 3

   

No matter how well they have been made, every cartridge will �mistrack� groove modulations
above a given magnitude. This is usually because the accelerations and displacements become too
large and the stylus either loses contact with the groove walls or gouges into them, damaging the
record! In other cases the stylus may remain in contact, but the cartridge's electrical output
saturates. Whatever the exact cause, above a given level the cartridge (sensor) output ceases to be
a faithful representation of the groove modulation. These electro-mechanical problems will limit
both the maximum signal level and the maximum rate of change of the signal level we can obtain
using a given cartridge.

The smallest signal levels we can sense using the cartridge will be partly set by electronic noise
produced in its generator resistance and in the amplifier used to boost its output. There is also a
mechanical limit on the smallest signal level which will be clearly measurable.

A 0 dB 1 kHz sinewave corresponds to a peak offset, , of just 8 µm. An LP record is made
from a solid assembly of real atoms and molecules. In practice, LPs are made of an amorphous
polymer, PolyVinyl Chloride (PVC), to which various other materials have been added. The precise
properties of this material are quite complex and were the subject of quite a lot of research and
development by the music industry (tobacco-ash, insects, etc, have also been found in LP
material!). To avoid the complexity of the details of PVC's properties we can imagine an LP made
of crystalline carbon (diamond!). It must be admitted that manufacturing such an LP would be
rather difficult!

x pe a k

The walls of the groove of such an LP would be made from layers of carbon atoms. Each carbon
atom has an effective diameter of around half a nanometre so the thickness of each layer will be
approximately 0·5 nm. The position of the stylus is determined by resting on top of the
uppermost layers of atoms. Hence we can see that the stylus position will be roughly quantised by
the finite thickness of the atomic layers. When playing a sinewave whose peak size is 8 µm the
movement of the stylus would take place in 1 nm steps. Instead of smoothly varying, the stylus
offset would therefore always adopt one of the set of available levels, , where m is an
integer and  is the thickness of the atomic layers. The effect is to divide the ±8 µm swing of a
0 dB 1 kHz sinewave into 32,000 steps � just as if the signal had passed through an ADC!

x {t } = m .∆x
∆x

If we assume that the largest possible recorded signal level is +20 dB (i.e. µm) and
accept that the signal is quantised in 0·5 nm steps then the diamond LP has a dynamic range, D,
of

x pe a k = 80

D = 20. Log10 {2x pe a k

∆x } ≈ 110 dB ... (12.6)

This compares very well with the Compact Disc system which employs 16-bit digital samples and
hence has a dynamic range of about 96 dB. Alas, the performance of a real LP and stylus may be
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very different from the imaginary example!  The actual dynamic range of a real LP is normally
much less than 100 dB! 

PVC is a Polymer. This means its molecules have been grown by joining together lots of smaller
molecules. The results of this polymerization process will depend upon the details of the process.
The average molecular weights of the polymer chains which are formed can range from a few tens
of hydrogen atom masses to hundreds of thousands. As a result, the PVC molecules are much
larger than carbon atoms. This has the effect of producing a material which is �lumpy� with a
typical quantisation size far bigger than a carbon atom. As a result, the value for  we should
have used for the above expressions is hundreds of times larger than 0.5 nm, producing a much
smaller dynamic range.

∆x

The purpose of the above example was to help us recognise that, since LPs are made from a
collection of real molecules, the signals they hold must be quantised. Fortunately for the LP this
usually isn't obvious. The underlying signal quantisation is usually masked by various effects.

Although the PVC molecules are much larger than carbon atoms they aren't arranged into a
regular crystalline pattern. PVC is usually formed as a sort of Glass. Molecules nearby one another
tend to be approximately aligned, but the alignments tend to alter slowly and randomly from one
place to another in the solid. The material is a bit like a frozen liquid, or a liquid with a very high
viscosity. The result is as if we had started to built a crystal, but kept changing our mind about
where to put the layers of molecules. In any small region the groove wall may be quantised, but
the details of the quantisation vary from place to place along the groove. For a recorded signal
this produces an effect similar to dithering a signal before digital sampling. The randomised
quantisation becomes indistinguishable from random noise. This dithering effect is enhanced by
random thermal movements of the molecules. When playing an LP the effects of this molecular
quantisation therefore appear as noise, not obvious quan-tisation distortions. 

Another factor working in the LP's favour is that the stylus does not just touch the groove wall at a
single point. Instead it presses against a finite Contact Area. This means that the force which
positions the stylus is produced by a number of atoms in the groove surface. The contact area of a
good stylus is typically the order of 10 µm square. Hence the stylus rests upon hundreds or
thousands of PVC molecules at any time. The pressure of the stylus will tend to squeeze the
groove surface. This makes it deform elastically until the total force exerted by all the displaced
molecules is enough to support the stylus. Adding or removing a few PVC molecules in the
contact area would shift the stylus by an amount which is much less than the size of a single
molecule. The finite contact area of the stylus means that it essentially making a measurement
which is averaged over many molecules. A larger contact area would permit the stylus to resolve
smaller changes in the groove wall by averaging over more atoms. This averaging process, along
with the physical dithering mentioned earlier, can let the stylus recover signal levels equivalent to
changes in the groove wall which are smaller than an individual molecule.

A time-varying output signal is obtained by drawing the stylus along the groove. Hence the
frequency of a recorded signal variation is inversely proportional to its length along the groove.
Since the stylus cannot be expected to respond to surface details which are much smaller than the
width of its contact area, it follows that any improvement in resolution obtained by increasing the
contact area may be purchased at the cost of a reduction in the available signal bandwidth.
Alternately, we could choose a smaller stylus and sacrifice resolution for a wider bandwidth. The
recorded signal is essentially both quantised and sampled by the atomic structure of the LP
material, although in a way which varies from place to place on the disc.
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High performance LP systems usually employ an Elliptical stylus (or some other near-equivalent).
These styli are manufactured to have a specially shaped contact area which is shortened along the
direction of travel and elongated perpendicular to it. The modified shape helps the stylus trace
out higher frequencies (shorter groove wavelengths) without reducing the contact area. This
improves the noise/bandwidth/distortion performance, but it can't entirely overcome the
problems mentioned above. The stylus must have a non-zero contact area, hence the physical
problems we've considered always apply.

It would be possible to go on considering various other factors which alter the detailed
performance of Long Playing records. For example, any serious comparison of �LP versus CD�
would have to take into account the relatively high levels of signal distortion which commercial
cartridges produce when recovering signals louder than the 0 dB level. Typically, signals of +
10 dB or above are accompanied by harmonic distortion levels of 10% or more � not a very high
fidelity performance! Even at the 0 dB level, most cartridges produce 1% or more harmonic
distortion. The frequency response of signals recorded on LP are also modified � the high
frequency level boosted and the low frequency level reduced � to obtain better S/N and
distortion performance. This means that an LP replay system must include a De-Emphasis network
to Correct the recovered signal�s frequency response. Here, however, we are only interested in
considering those physical factors which make the LP less than an ideally �analog� way to
communicate information. These extra factors affect the performance of an LP but they don't
change the basic nature of the system.

The above analysis is a simplified one. It leaves out many features of a practical LP system. Despite
that, it does serve to show that even a system which appears essentially �analog� will still have
underlying properties similar to a digital information processing system. In fact a similar situation
arises with all analog signals in the real world since every physical process will be found to behave
in a  quantised manner when examined in sufficient detail. Despite this we do not usually observe
any structured quantisation or sampling effects because they tend to be masked by a relatively
high level of thermal noise and the averaging or smoothing effects of processes like the stylus's
finite contact area. In effect, the real world beat us to the idea of using noise dithering to make
quantisation effects invisible.

An argument similar to the one used to analyse the LP can be applied to sound waves themselves.
The air consists of an enormous number of molecules whose sizes/shapes/energies/etc are
quantised. The physical interactions between these molecules � i.e. they way in which they
exchange energy and momentum with one another � follow the rules of quantum mechanics.
Hence if we analyse sound waves in enough detail we should discover quantised behaviour once
again. Just as with the LP groove, however, these effects are on such a small scale that we don't
normally notice them. Usually we can describe sound in terms of the averaged statistical
properties (pressures, mean velocities and displacements) of relatively large numbers of
molecules without noticing this fact. This allows us to use the classical physics which describes
sound in terms of continuous algebraic functions which satisfy a set of wave equations. Despite
this, the individual molecules know nothing about our equations. The overall �analog-like�
properties of soundwaves arise because of the dithering/averaging effects of the countless
individual quantised molecule�molecule interactions.
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Summary

You should now understand that the terms �analog� and �digital� are based on idealisations. Real
systems and signals will show a mixture of analog (smooth continuous) and digital (quantised)
properties. Although it's often convenient to assume a signal/system is one thing or the other,
this mixed behaviour is an unavoidable consequence of the way the world works.

Questions

1)  A monophonic long-playing (LP) test record is being replayed using a cartridge (i.e. a
transducer) whose Sensitivity  mV/cm/s. The recording is of a continuous 1 kHz sinewave
tone whose level is +26 dB (referenced to a peak velocity of 5 cm/s). What is the rms value of the
output signal voltage generated by the cartridge?

k = 0·2

[14·1 mV rms.]

2) The test LP mentioned above is made of a material whose molecules average 10 nm in
diameter. The +26 dB tone represents the highest signal level the transducer can produce without
�mistracking�. Assume that the LP material is crystalline and work out the system's Dynamic Range
in dBs. How many bits-per-sample would be required for a digital system of the same bandwidth to
provide the same dynamic range? Explain briefly why a non-crystalline material is a better choice
for making LPs. [Dynamic range = 90 dB. 15 bits per sample.]
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Chapter 13

Sensors and amplifiers

13.1  Basic properties of sensors

Sensors take a variety of forms, and perform a vast range of functions. When a scientist or
engineer thinks of a sensor they usually imagine some device like a microphone, designed to
respond to variations in air pressure and produce a corresponding electrical signal. In fact, many
other types of sensor exist. For example, I am typing this text into a computer using an array of
�keys�. These are a set of pressure or movement sensors which respond to my touch with signals
which trigger a computer into action. The keys respond to the pattern of my typing by producing
a sequence of electronic signals which the computer can recognise. The information is converted
from one form � finger movements � into another � electronic pulses.

Every sensor is a type of transducer, turning energy from one form into another. The microphone
is a good example; it converts some of the input acoustical power falling upon it into electrical
power. In principle, we can measure anything for which we can devise a suitable sensor. In this
chapter we will concentrate on sensors whose output is in the form of an electrical signal which
can be detected and boosted using an amplifier. However, similar results would be discovered if
we examined sensors whose output took some other form such as water pressure variations in a
pipe or changes in the light level passing along an optical fibre. 

The basic properties of a sensor and amplifier are illustrated in figure 13.1. This shows an
electronic sensor coupled to the input of an amplifier. Note that, so far as the amplifier is
concerned, the sensor is a signal �source� irrespective of where the signal may initially come from.
The amplifier doesn't know anything about people singing into microphones or fingers bashing
keyboards. It simply responds to a voltage/current presented to its input terminals.

The input to the sensor stimulates it into presenting a varying signal voltage, , to the amplifier.
The amplifier has an input resistance, . (Both the source/sensor and the amplifier also have
some capacitance, but for now we'll ignore that.) The signal power level entering the amplifier's
input will therefore be

V s

Rin

Pin =
V 2

s

Rin
... (13.1)

Amplifier

Signal Source.

Source − amplifier combination.Figure 13.1

V ′s Rs V s

C s C i n Ri n
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Now must be finite and limited by whatever physical process is driving the sensor. Yet
equation 13.1 seems to imply that we could always get a higher power level from the source by
changing to an amplifier with a lower Input Resistance, . This apparent contradiction can be
resolved by accepting that the voltage, , seen coming from the source must, itself, depend upon
the choice of . The way in which this occurs should be clear from figure 13.1. The sensor itself
must have a non-zero Source Resistance, , which its output passes through. As a result the signal
voltage at the amplifier's input will be

Pin

Rin

V s

Rin

Rs

V s =
V ′sRin

(Rs + Rin) ... (13.2)

where  is the �internal� voltage or Electromotive Force (emf ) the sensor creates from the input
which is driving it. The value of  only depends on the input the sensor/transducer is
responding to. It is unchanged by the choice of the amplifier, but the voltage seen by the
amplifier depends upon the source and amplifier resistances so the power entering the amplifier
will be

V ′s
V ′s

Pin =
V ′2s Rin

(Rs + Rin)2
... (13.3)

In order to maximise the signal power entering the amplifier we should arrange that . A
lower input resistance would load the source too much, causing  to fall. A higher input
resistance would reduce the current set up by the signal voltage. In effect, making the source and
amplifier resistance values the same means we can get the biggest possible voltage�current
product at the amplifier's input. Since power = voltage × current this ensures the highest possible
input power for a given signal emf, . This result is a general one which arises because the
amount of power generated by a source can never be infinite. All signal sources will have a non-
zero source resistance (or Output Resistance). In a similar way we can expect all real amplifiers and
signal sources to exhibit a non-zero capacitance. This is called the Source Capacitance for a source/
sensor and the Input Capacitance for an amplifier.

Rin = Rs

V s

V ′s

From figure 13.1 we can see that these two capacitances,  and  , are in parallel. For the
voltage seen at the amplifier's input to be able to change we have to alter the amounts of charge
stored in these capacitances. The current required to do this must come through  and .
From the point of view of the capacitors these offer two parallel routes for charge to move from
one end of the capacitors to the other � i.e. they appear in parallel. This combination of
capacitance and resistance means that the voltage  , seen by the amplifier cannot respond
instantly to a swift change in the source voltage, . Changes in  are �smoothed out� with a time
constant, , where  and  are the parallel combinations of the input and amplifier
values.

C s C in

Rs Rin

V s

V s ′ V s

τ = RC R C

In some cases these resistances and capacitances are actual components put in the system. In
other cases they are a result of some other physical mechanisms. In each case their effects can be
modelled using the kind of circuit shown in figure 13.1. Irrespective of whether they're deliberate
additions or �stray� effects, these capacitances and resistances are always non-zero. Hence it is
impossible to change a measured signal level infinitely quickly. This is another way of stating the
basic principle of information processing that no signal can have an infinite bandwidth (i.e. reach
infinite frequencies). If it did, it would be able to convey an infinite amount of information in a
limited time. Alas, in the real world this is impossible.

13.2 Amplifier noise

When designing or choosing a measurement system we need to be able to compare the
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performances of various amplifiers to select the ones most appropriate for the job in hand.
Various criteria affect the choice, ranging from price to gain. When making accurate
measurements it is usually preferable to choose amplifiers which generate the lowest noise level. 

Source
Gate

Drain

Channel

PN Junction Field Effect Transistor (J-FET).Figure 13.2

View from above

Metal 

P-Type Silicon which electrons can't enter.

Electric Field

A wide range of devices have been used to amplify signals. Although their details differ we can
expect that they will operate at a temperature above absolute zero and, as a result, must produce
some thermal noise. Similarly, for their input and output signals to have non-zero powers, they
must pass some current, hence producing some shot noise. It seems to be one of the basic laws of
Nature (Murphy's Law?) that all gain devices, from MOSFETs to valves, generate Excess noise �
i.e. they all produce more noise than we would predict from adding together the thermal noise
and shot noise. For the sake of example we can consider the behaviour of a Field Effect Transistor
(FET) amplifier of the sort illustrated in Figure 13.2. The device shown is a simple N-channel
junction FET. This is made by forming a channel of N-type semiconductor in a substrate of P-type
semiconductor. The channel�substrate boundary forms a PN junction which behaves like a normal
diode. As a result, provided we avoid forward biassing the gate�channel boundary:

• Almost no current flows between gate and channel

• The charge in the gate (and substrate) repels the free electrons in the channel and prevents
them from coming too close to the walls of the channel. This produces Depletion Zones near the
walls whose size depends upon the applied gate potential.

When we apply a voltage between the Source and Drain contacts, electrons flow through that part
of the channel which has not been depleted. We can think of the channel as a slab of resistive
material of length, L, and cross sectional area, A. For a material of resistivity, ρ, such a slab would
have an end-to-end resistance, . Varying the gate voltage alters the depletion zones
and hence changes the effective cross sectional area, A, of the channel. As a consequence, when
we vary the gate potential the effective resistance between source and drain changes. The FET
therefore acts as a source�drain resistor whose value depends upon the gate potential. This
description of the operation of an FET is too simple to explain all the detailed behaviour of a real
device but it's OK for many purposes. In practice the drain-source voltage is usually sufficiently
large that the potential difference between the drain and gate is much greater than that between
source and gate. As a result the depletion region inside the channel is much smaller at the source
end than at the drain � i.e. the cross-sectional area of the effective channel is quite thin at one
end.

R = ρL / A
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From the simple description given above we would expect the channel current to increase in
proportion with the applied drain�source voltage. However there is a tendency for any increase in
drain voltage to enlarge the depleted region near the drain. This reduces the channel area,
limiting any current increase. As a result we find that, for reasonably large drain�source voltages,
the FET behaves more like a device which passes a drain�source current controlled by the gate
potential. Because of this the gain of an FET is usually given in terms of a Transconductance. This
can be defined as the change in drain�source current divided by the change in gate potential
which causes it.

The gate-channel is normally reverse biassed, so almost no gate current is required to maintain a
given gate potential. As a consequence the input resistance of an FET is very high, typically 10 MΩ
or more. However, to alter the gate potential we must vary the charge density within the gate. This
means that we have to move some charge into or out of the gate. As a consequence the gate�
channel junction has a small capacitance. For a typical FET the gate�channel capacitance is a few
tens of pF or more.

Noise is generated within the FET by various physical processes. For example:

i) Shot noise fluctuations in the current flowing through the channel

ii) Thermal noise in the channel resistance

iii) Thermal motions of the gate charge carriers, producing random fluctuations in the size
and shape of the depletion region � and hence in the channel resistance.

All of these effects (and others which have been ignored) will vary according to the bias voltages
and currents, details of the semiconductor doping, device geometry, and temperature. Instead of
risking becoming bogged down in a detailed analysis of these effects (which may be futile as some
of the underlying processes are poorly understood!) we can model the behaviour of the FET (or
any other gain device) in terms of a fictitious pair of Noise Generators. This approach is very useful
when we are mainly concerned with comparing one amplifier with another and don't want to
bother with the details of where the noise is actually coming from.

Figure 13.3a represents a simple amplifier using an FET. The noise produced by the real FET and
the other components which make up the amplifier are assumed to come from a mythical Noise
Voltage Generator, e , and Noise Current Generator, i , connected to the amplifier's signal input.
Figure 13.3b represents the way in which this idea can be generalised to apply to any amplifier,
irrespective of its design. The noise performance of any amplifier can now be described by the
appropriate values of e  and i . These are normally specified as an rms voltage and current spectral

density � the units of  usually being nV/ , and i  pA/ . Figure 13.4 illustrates the typical

manner in which they vary with fluctuation frequency.

n n
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13.3a  FET Amplifier
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A noise producing process which has not been mentioned in previous chapters is Generation-
Recombination Noise (GR-noise). A large number of electrons do not normally take part in



Information and Measurement - 90 - Free PDF version (larger page)

conduction as they do not have enough energy to escape their orbit around a particular atom.
Every now and then, however, one of these Bound electrons may interact with a passing electron
or a lattice vibration (i.e. a phonon) and gain enough energy to escape. This process can be
regarded as �lifting� an electron up into the conduction band and leaving behind it a �hole� in a
lower band. 

Sometimes the newly freed electron does not move away swiftly enough to avoid dropping back
into the hole. But if it manages to get away we find that a pair of extra charge carriers have joined
those able to provide current flow through the material. Eventually, an electron will pass close
enough to the hole to fall into it and the total number of available charge carriers will return to
its original value. This process means that the current flowing through the channel as a result of
an applied voltage will tend to fluctuate. (Note that this process is different from shot noise.)

There is a difference in potential between the channel and the gate/substrate. Any new electron�
hole pairs generated near the channel walls will tend to be pulled apart. For an N-channel FET
the field will sweep the �new� electron into the channel and pull the hole back into the substrate.
As a consequence, the random creation of carrier pairs in the region near the gate�channel
junction produces a small, randomly varying, current flowing across the boundary. This in turn
causes random variations in the size and shape of the depletion region which produces an extra
noise current in the channel. 

en i n

nV/ Hz pA / Hz

noise

white noise
GR noise

frequency frequency

Typical shapes of noise power density

spectra of noise generators.

Figure 13.4

1/ f

From figure 13.4 it can be seen that, at high frequencies, the noise power spectral density tends to
increase with frequency. This is due to GR-noise produced by quantum mechanical effects.
Although energy must be conserved overall, quantum mechanics permits the energy of a system
to fluctuate by an amount  provided the fluctuation only lasts a time  (h being
Planck's constant). In a semiconductor whose energy gap is  this means that electron�hole
pairs may be created without the required specific energy input, , provided they vanish again in
a time . As a result, when we consider periods of time which are less than this time
the density of carriers in the material appears to fluctuate randomly. 

∆E ∆t ≈ h / ∆E
∆E

∆E
∆t ≈ h / ∆E

These short-lived random variations in the number of free charges mean that the current which
flows in response to an electric field also varies. If we consider shorter periods we are allowed to
consider larger energy fluctuations and an increasing number of electrons, tied more strongly to
their atoms, can briefly join in this process. Hence this effect produces a noise level which
increases with frequency (i.e. with decreasing fluctuation period). This effect does not create
noise power out of nothing. The initial ∆E is a sort of �loan� which must be repaid since, if we
want to observe a change in the current, we must apply an electric field to drag the electron�hole
pair apart. This field hence does some work in producing the extra current. 

All gain devices exhibit some amounts of voltage noise, e , and current noise, i . The precisen n
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levels they produce � and their frequency spectrum � depends upon the type of device, how it is
made and operated. When comparing bipolar transistors with FETs we generally find that bipolar
devices have higher current noise levels and FETs have higher voltage noise. 

13.3 Specifying amplifier noise

In practice we are often not told how e  and i  vary with frequency for a particular amplifier.
Instead we are presented with a single value which indicates the overall amount of noise the
amplifier produces. This value may be specified in various ways. The most common measures are
the Noise Resistance, R , the Noise Temperature, T , the Noise Factor, F, and the Noise Figure, M. Whilst
any one of these values can be useful for encapsulating the behaviour of an amplifier it should be
clear that a single number cannot contain all the information offered by a detailed knowledge of
the e  and i  spectra. They should therefore be used with care.

n n

n n

n n

Figure 13.5 illustrates a system which amplifies the signal voltage, v , generated by a source whose
output resistance is R . The amplifier is assumed to have a voltage gain, A , input impedance,

, and produces a noise level equivalent to a combination of a noise voltage generator, e , and
noise current generator, i , located as shown at the amplifier's input. A signal source at a
temperature, T, will itself produce thermal noise equivalent to a voltage generator whose rms
magnitude is

s

S V

R in n

n

e s = 4kT BRs ... (13.4)

placed in series with the source.

R in

Voltage Gain
A v

V

Amplifier

Rs

Signal source

vs

es
in

en

Source-amplifier coupling.Figure 13.5

E n

For the sake of simplicity we can assume a unit bandwidth (B = 1 Hz) and that the source does not
produce any other form of noise. This means that the source is as �noise-free� as we can expect in
practice. Taking into account all of the noise generators shown in figure 13.5, the total rms noise
voltage, E , which is output by the amplifier will be such that0

E2
0 = |AV |2 .
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... (13.5)

and the source signal, v , will produce a voltages

V 0 =
AV Rinv s

Rs + Rin
... (13.6)

at the amplifier's output. We can now define the system gain, H, (as distinct from the amplifier
gain, A ) asV

H ≡
V 0

v s
=

AV Rin

Rs + Rin
... (13.7)

Note that this value takes into account both the amplifier's voltage gain and the voltage
attenuation produced by  and  acting as a potential divider (attenuator) arrangement.
Hence this gain will always be smaller than .

Rs Rin

Av
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We can now regard the total noise at the output of the system as being due to a single voltage
generator, e , which replaces . From the above definition of the system gain we can expect thatt e s

e t =
E0

H
... (13.8)

which, combining the above expressions, leads to the result

e 2
t = e 2

s + e 2
n + i 2

nR 2
s ... (13.9)

The noise in the system has now been gathered into a single number, , whose value indicates
the total noise present in the system. From this we can define each of the noise measures
mentioned earlier.

e t

The Noise Factor, F, is defined as

F  ≡  (total noise power) / (source resistance noise power)

i.e.

F =
e 2

t

e 2
s

=
e 2

s + e 2
n + i 2

nR 2
s

e 2
s

... (13.10)

The Noise Figure, M is defined to be the noise figure quoted in decibels

M ≡ 10. Log {F } ... (13.11)

For a perfectly noise-free amplifier e  and i  would both be zero. Such an amplifier would have a
noise factor of unity and a noise figure of 0 dB.

n n

The Noise Resistance, , can be defined by equating the amplifier's contribution to the total noise
to a thermal noise level

Rn

4kT Rn ≡ e 2
n + i 2

nR 2
s ... (13.12)

where T is taken as the physical temperature of the amplifier (normally assumed to be around 300
K).

Because of the possibility of confusing the amplifier's noise resistance with its input resistance it is
prudent to avoid the use of noise resistance values. 

The Noise Temperature, T , defined byn

4kT nRs ≡ e 2
n + i 2

n R 2
s ... (13.13)

is a more acceptable alternative since it avoids this confusion. Note, however, that this
temperature value is not the physical temperature of the amplifier!

When comparing amplifiers and gain devices listed in manufacturer's catalogues we're frequently
only given one of the above measures as an indication of the noise level. When examining these
figures it is important to compare like with like. All of the above measures explicitly depend upon
the chosen source resistance, R . Furthermore, the frequency dependence of  and i  will vary
from one gain device to another. As a result two values of a noise measure are not directly
comparable if they are given for different frequencies.

s e n n

To measure the voltage and current noise levels of a particular amplifier we can observe the
effects of short-circuiting and open-circuiting the amplifier input terminals (i.e. setting R  to zero
and to infinity). When R  = 0 the current noise present cannot produce any observable voltage.
The output noise from an amplifier whose input is shorted is therefore due only to its input
voltage noise generator, . 

s

s

e n
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When we open-circuit the amplifier input we produce an effective source resistance of R  = ∞. The
noise current generator now produces an rms voltage  across the amplifier's input resistance.
The noise fluctuations this produces are uncorrelated with those produced by the noise voltage
generator. Hence they combine to produce a total rms noise voltage at the amplifiers input of

 when the amplifier input is open-circuit. By measuring the amplifier's output noise

level in both situations we can therefore determine values for both  and .

s

i nRin

e 2
n + i 2

nR 2
in

e n i n

Summary

You should now know that all signal sources must have a non-zero Source (or Output) Resistance
and a non-zero Source Capacitance. That all the noise mechanisms in a system can be simplified
into a an equivalent pair of mythical Noise Generators at the input to the system. A �new� noise
mechanism, Generation-Recombination has been introduced and it's power spectral density has been
seen to increase with fluctuation frequency.

You should also now know that the total system noise can be simplified into a single generator
value and the result may be specified in terms of various figures � Noise Temperature, Resistance,
Figure, or Factor. It should also be clear that a single figure of this kind can only be used to
compare one amplifier to another when the source resistances are the same. You should also now
know that the current and voltage noise levels of an amplifier can be measured by recording the
output noise level when the amplifier's input is open- and short-circuited.

Questions

1) Explain why we can transfer the maximum possible signal power from source to  load  when
the source and load resistances have the same value.

2) An amplifier has an input resistance of  kΩ, and its noise behaviour can be defined in
terms of voltage generator and current generator Noise Spectral Densities of  V/

and  A/  respectively. A sensor whose source resistance is 22 kΩ is connected to the

amplifier's input. The sensor is at 300 K and only generates thermal noise. What is the value of
the system's Noise Factor. What is the value of the system's Noise Temperature? [F = 2·39.  = 419
°K.]

Rin = 50
e n = 5×10−9 Hz

i n = 10−12 Hz

T n

3) Explain how you can measure the values of an amplifier's effective noise voltage and current
generators.
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Chapter 14

Power coupling and optimum S/N

14.1 Optimising signal to noise ratio

Sometimes we can alter the physical details of a signal source or use a transformer to change the
source's apparent resistance whilst maintaining the available signal power. In earlier chapters we
found that the amount of noise and signal power we see coming from a system depends upon the
source resistance. This raises the question � is there a value for the source resistance which
produces an optimum (i.e. maximum) signal to noise ratio? If so, what is this value? 

Source−Amplifier coupling and power transformation.Figure 14.1

Voltage Gain

AmplifierSignal source Transformer

Voltage Gain

AmplifierTransformed source

Rs

e s

v s

βe s

βv s

e n

e nβ2Rs

i n

i n

Rin

Rin

Av

Av

1:β

Figure 14.1 illustrates the use of an idealised transformer which has a turns ratio of 1:β. This steps
up/down the output signal and noise voltages produced by the source to  and βe , respectively.
The transformer cannot output any more power than it receives. For an ideal (loss�free)
transformer the input and output powers will be the same. As the output voltage is a factor β
times that generated by the source it follows that the output current must be 1/β times that
flowing through the source. Consequently, the combination of the source and transformer
appears to any following circuit to have an effective source resistance of . 

βv s s

R ′s = β2Rs

Using the same argument as in the previous chapter we can say that the total noise level for the
system is equivalent to an rms voltage, e , such thatt

e 2
t = (βe s)

2 + e 2
n + (i nβ

2
Rs)

2
... (14.1)

A signal voltage, , generated by the source will produce a signal/noise ratiov s

=
(βv s)2

e 2
t

... (14.2)S/N

Clearly, this depends upon the choice of β. Whenever possible it would be preferable to select the
value of β which maximises S/N. This is equivalent to the value which minimises . The
optimum choice of β can therefore be found from

e 2
t / (βv s)2

d

dβ




e 2
t

(βv s)2





= 0 ... (14.3)
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i.e.

2βi 2
nR 2

S

v 2
s

−
2e 2

n

β3v 2
s

= 0 ... (14.4)

which is satisfied when

β
2 =

e n

i nRs
... (14.5)

Since the transformed source resistance, , presented to the amplifier is β R  it follows that the
optimum value for this resistance will be

Rs′ 2
s

Rs′ =
e n

i n
... (14.6)

For the above argument it was assumed that the source resistance presented to the amplifier
could be altered using a transformer. In some other situations we can modify the signal source or
replace it with another and alter the source resistance without altering the available signal power.
Irrespective of how this is done the above result tells us that � for an amplifier whose noise is
represented by a voltage generator, , and current generator, i  � the maximum possible
signal/noise ratio will be obtained when the source resistance equals .

e n n

e n / i n

In the last chapter we saw that the optimum signal power transfer will occur when we choose a
source resistance which equals the amplifier's input resistance. In general,  does not equal
the input resistance of the amplifier. As a result, the source resistance which provides the best
signal power transfer usually isn't usually the value which gives the best possible S/N ratio.

e n / i n

Books on electronics tend to recommend that, whenever possible, we arrange that the source's
output resistance and the amplifier's input resistance should be matched � i.e. have the same
value. (The same approach is recommended when the signal is carried using a transmission line.)
This gives the most efficient transfer of signal power, but may result in a S/N ratio below the
highest possible value. As a result there is often a conflict and we have to choose either a source
resistance which provides the highest possible signal/noise ratio or a source resistance which
maximises the signal power transferred. 

In practice we are often presented with a source whose properties are fixed, but we can select
which amplifier to use from an available range. Each amplifier has a particular input resistance,

, and a noise level equivalent to specific e  and i  values. Because of the conflict between
optimum signal transfer and signal/noise ratio there won't usually be a �perfect� choice of
amplifier � unless we're lucky enough to find one where . Instead, we must
usually make a choice based upon an assessment of the relative importance of these factors for
the job in hand.

Rin n n

Rs = Rin = e n / i n

14.2 Behaviour of cascaded amplifiers and transmission lines

Figure 14.2 illustrates the use of a pair of amplifiers to increase the signal from a source. Each
amplifier has an input resistance, , and an output resistance, .Z I Z O
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Cascaded amplifiers and connection.Figure 14.2

The signal power input into the first amplifier will be

PI =
V 2

S Z 2
I

(RS + Z I )2
... (14.7)

For a given signal voltage this power will be maximised if . As a result we should usually
try to equate (match) these impedances whenever it is convenient to do so. A similar result arises
when we connect amplifiers together. Each amplifier views the preceding one as a source having a
particular resistance. Whenever possible we should arrange that the input impedance of an
amplifier should equal the output impedance of the preceding one. This ensures that signal
power is not wasted.

RS = Z I

In the arrangement shown in figure 14.2 the amplifiers are connected by a length of transmission
line of Characteristic Impedance, Z . Co-axial cables, pairs of wires, microwave waveguides, light
fibres, etc, are all examples of transmission lines. Each can be used to carry signals over long
distances. To understand the concept of characteristic impedance, imagine a signal source
transmitting a signal into an infinitely long transmission line. To transmit power along a line it
has to send both a non-zero voltage (or electric field) and a non-zero current (or magnetic field)
out along the line. This power then moves away from the source, along the infinitely long cable,
never to return.

C

The amount of current the source has to put into the cable to �drive� a given voltage will depend
upon the type of transmission line. However, so far as the source is concerned, the power
transmitted into the cable is �lost� just as if the cable were a resistor. The value of the resistor
which would require the same voltage/current ratio is said to be the characteristic impedance of
the line. If we end a finite length of line with a load whose resistance equals the line's
characteristic impedance the current/voltage ratio of the signal perfectly matches that required
by the load. Hence all the signal power flows into the load.

In figure 14.2 the load at the output end of the line is the input impedance, , of the second
amplifier. By arranging that  we ensure that all the signal power passing along the line
is coupled into the second amplifier (this assumes, of course, that the transmission line doesn't
lose any of the power on the way!). So far as the first amplifier is concerned, it then sees an output
load resistance, , since none of the power it transmits comes back to it. As a result, to
efficiently transmit signal power along the transmission line we should try to arrange that

. 

Z I N

Z I N = Z C

Z C

Z I N = Z C = Z O U T

We'll assume the impedances throughout the system have been matched � although from the
previous section it should be noted that this may not give the highest possible signal/noise ratio.
The first amplifier has, when matched, a noise factor, F , and a power gain, G . The second has,
when matched, a noise factor, F , and power gain, G . 

1 1

2 2

Thermal noise in the source will produce a noise power spectral density at the input of the first
amplifier of
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N 1 =
e 2

s

4RS
= kT ... (14.8)

From the definition of noise factor, it follows that this amplifier supplies the following one with a
noise power spectral density of

N 01 = F1G 1kT ... (14.9)

If we were to connect the second amplifier's input directly to a matched source resistance instead
of linking it to the output from the first amplifier it would supply an output noise power per
Hertz bandwidth

N 02 = F2G 2kT ... (14.10)

Since the source resistance would itself be generating a noise power spectral density, kT, an
amount G kT of what we see coming out of the amplifier would originate in the source, not the
amplifier. The noise power per hertz bandwidth which is generated inside the second amplifier is
therefore .

2

F2G 2kT − G 2kT

The total output noise power spectral density for the arrangement in figure 14.2 will therefore be

N T = G 2 (F1G 1kT ) + G 2 (F2 − 1) kT ... (14.11)

We can consider the combination of amplifiers as a single �multi-stage� amplifier whose power
gain is G G . This combination can then be defined to have an overall noise factor, F , such that1 2 T

N T = FT G 1G 2kT ... (14.12)

Amplifiers connected in this way are said to be Cascaded or chained together. Combining the
above expressions we find that the noise factor of the two cascaded amplifiers will be

FT = F1 +
F2 − 1

G 1

... (14.13)

When using an initial amplifier whose gain, , is moderately high this result implies that �
unless  is very large compared with  �  the cascaded pair has a noise factor, .
Consider, as an example, a case where , and . Using expression 14.13
we can calculate that the cascaded amplifiers will have an overall noise factor of , i.e.
even though the second amplifier is relatively noisy the overall system's noise factor is almost
entirely due to the first amplifier.

G 1

F2 F1 FT ≈ F1

F1 = 1⋅5,  F2 = 2 G 1 = 100
FT = 1⋅501

This result arises because the signal level presented to the second amplifier is much larger than
that presented to the first. Hence the second amplifier would have to generate a considerable
amount of noise to significantly degrade the overall signal/noise ratio. For this reason we usually
only need to ensure that the first amplifier in a chain has a low noise factor. However, it should be
noted that this may not be true if the transmission line which connects the two amplifiers is
imperfect.

Any real transmission line will lose some of the signal power it is given to convey. For example, a
co-axial cable will dissipate some power due to the resistance of its metal conductors. The
transmission line will change (attenuate) the signal power by a factor, α, i.e. an output power, P,
supplied by the first amplifier will provide a power, αP (where ), to the second. α ≤ 1

In many cases α will be close to unity. Under these circumstances the combination of the first
amplifier and transmission line have an overall power gain, , and we need only worry about
the first noise factor, . However, if the transmission line is long enough and α is low enough for

 to become comparable with (or less than!) unity, we find that the signal power reaching the

αG 1

F1

αG 1
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second amplifier is not significantly larger than that reaching the first. Under these circumstances
the noise factors of both amplifiers become important. 

The above argument for two cascaded amplifiers can be extended to situations where three or
more are chained together. For example, for three amplifiers in a chain the overall noise factor
(neglecting transmission line losses) would be

FT = F1 +
F2 − 1

G 1

+
F3 − 1

G 1G 2

... (14.14)

Summary

You should now know how the S/N ratio we can obtain from a signal source depends upon the
choice of source resistance. It should also be clear that � in general � the best possible S/N
ratio requires a different source/amplifier resistance than the Matched values which maximise the
power transfer. You should now know how the noise performance of a Cascade of amplifiers and
connections depends upon their gain and noise performance. In most practical cases it is sensible
to use a �low noise preamp� to boost a signal being fed to later amps whose noise performance is
less important.

Questions

1) A source of resistance, , is connected to an amplifier whose input resistance is  via a
transformer which has a Turns Ratio of 1:β. The amplifier's noise is specified in terms of a pair of
noise voltage and current generators, . Derive an expression for the value of β which
provides the highest possible signal-to-noise ratio.

Rs Rin

e n  and  i n

2) An amplifier has an  kΩ,  V/ ,  A/ . It is connected to

a 10 kΩ source via a transformer. What transformer's turns ratio value would provide the highest
signal to noise ratio? What would ratio would provide the greatest signal power transfer? [Best S/
N from 1:2. Best signal power 1:3·16.]

Rin = 100 e n = 4×10−9 Hz i n = 10−13 Hz

3) The amplifier described in question 2) has a voltage gain, . It is connected to the
source via a transformer which provides the optimum signal to noise ratio. Assuming that the
source noise is purely thermal and its temperature is 300 K, what is the value of the noise power
spectral density (in microvolts per root Hertz) at the amplifier's output? (Hint, look at section
13.3 again.) [18 µV/  ]

Av = 1000

Hz

4) A signal is amplified by a cascade of two amplifiers. The impedances throughout the system are
Matched. The first amplifier has a power gain of  and a noise factor, . The second
has a power gain  and a noise factor . What is the value of the cascade's total
noise factor? [1·25]

G 1 = 10 F1 = 1·1
G 2 = 1000 F2 = 2·5
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Chapter 15

Signal averaging

15.1 Measuring signals in the presence of noise

When measuring a small but steady signal in the presence of random noise we can often improve
the accuracy of the result by making a number of measurements and taking their average. This
approach has the great advantage that it is easy to do � given enough time � but it cannot
overcome all of the practical problems which arise when making real measurements. In
particular, there are two sorts of problem which simple averaging copes with rather poorly: 1/f-
noise, and the presence of Background effects.

When considering the merits of various signal processing systems we're primarily interested in
comparing the signal/noise ratios they can offer. It's this ratio which largely determines how
precise a measurement can be. A low signal level can always be enlarged if we can afford a suitable
amplifier. However, this won't lead to a more accurate result if the measurement was already
noise limited because we'll boost the noise level along with the signal.

Note that the following arguments assume the power gain, G, of an amplifier (or filter) is simply
equal to  where A is the voltage gain. This is only really true when the amplifier's input
resistance is equal to the output load resistance it drives. Similarly, it is assumed that the power, P,
at any point is simply equal to , where V is the rms signal voltage. This is only correct for a load
resistance of unity (one Ohm). These assumptions make some of the mathematical expressions a
bit simpler and don't change any of the conclusions. In practice, when working out the properties
of a real system these factors have to be taken into account.

|A|2

|V |2

15.2 Problems of simple averaging

To illustrate these problems, consider the system shown in figure 15.1. A source, S, produces a
response from a detector which is then amplified, and passed through an analog Integrator to a
voltmeter. The integrator is made using an operational amplifier, resistor, and capacitor.

A normal operational amplifier has two signal input terminals, generally called the Inverting and
Non-Inverting inputs (shown by the ��� and �+� signs on the diagram). The output voltage the op-
amp produces is proportional to the difference between these two input levels. This arrangement
allows the op-amp to be used as the heart of a Feedback arrangement. The voltage gain of a typical
op-amp is very large (usually over 100,000) so a reasonable output voltage only arises when the
voltages at the inverting  and non-inverting (+) inputs are almost identical. For example, if the
output voltage is 1 V and the gain is 100,000 then the two inputs will only differ by 10 µV.

(�)
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Analog integrator used to collect detected signal level.Figure 15.1

In the circuit shown in figure 15.1 the non-inverting (+) input is connected directly to 0 Volts.
The inverting input (�) is connected via a capacitor to the amplifier's output. The simplest
possible state of this arrangement is when both input voltages, and the output voltage, are all at 0
V. We can therefore imagine the system starting off in this state.

When we apply an input voltage, , to the resistor a current, , will begin to flow
through it as the other end of the resistor is initially at 0 V. This current starts flowing into the
amplifier, stimulating a change in its output voltage. Because the signal is being presented to the
inverting input the output voltage this produces will have the opposite sign to the input.

V in I = V in / R

Any change in the output voltage will have to alter the amount of charge in the capacitor, C � i.e.
a current will be drawn through the capacitor. As a result we find that most of the current flowing
through the resistor passes on through the capacitor as the output voltage changes. Since the op-
amp's gain is very large only a relatively tiny amount of the input current needs to actually enter
the op-amp to generate the output voltage this process requires.

The small current, i, flowing into the op-amp's input will be the difference between the input and
capacitor currents

i =
V in

R
+ C

d V O

d t
... (15.1)

As the amplifier gain is large we can expect that  so we can reasonably assume that it is
virtually zero and re-arrange 15.1 as

i ≪ V in
R

d V O

d t
=

−V I N

RC
... (15.2)

Having begin with an output voltage, , at a time, , we can therefore say that the
output voltage at some later time, , will be

V O = 0 t = 0
t = T

V O {T } = ∫
T

0

−V I N

τ
 d t ... (15.3)

where τ ≡ RC  has the units of time and is called the Time Constant of the integrator. In effect, the
system behaves as if all of the input current, I, is collected into the capacitor and the arrangement
functions as an integrator, the output voltage being proportional to the time-integral of the input.

In practice the capacitor can be initially shorted by closing the switch connected across it. This
sets the output voltage to zero. When a measurement commences the switch is opened and
integration begins. For a steady input signal voltage, v, the output voltage after a time, T, will
simply be proportional to vT. Hence the integrator performs the useful function of �adding up�
the signal voltage, v, over a period of time. As a result we need not actually take a series of voltage
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readings and calculate their average. Instead we can use an integrator, read  after a time, T,
and define the average input signal voltage, , during this period to be

V O

〈v 〉

〈v 〉 =
−V Oτ

T
... (15.4)

Any real integrator will be built using an op-amp powered from voltage rails which supply some
specific fixed voltages. As a result, we cannot allow the circuit to go on integrating a signal voltage
for an indefinite time as, eventually,  will reach the rail voltage and integration must then stop.
To overcome this problem we may repeatedly read the output voltage, , after a moderate time
interval, t, and reset the integrator output to zero by briefly closing the shorting switch before
allowing another integration over another period, t. The resulting set of readings for  can then
be added together to obtain the voltage which would have been reached if the circuit had been
able to integrate successfully over the whole period. Many practical systems combine the use of an
analog integrator with this method of repeated reading and resetting.

V O

V O

V O

The effect of noise on an integrated result can be understood in terms of the integrator's effective
Power Gain at any frequency, f . At any frequency the noise can be represented by a �typical� input
of the form

V N = AC Cos {2πf t } + AS Sin {2πf t } ... (15.5)

For real noise the values of  and  will vary randomly from moment to moment. This is
because the phase of the signal is unpredictable. Their values at any instant are therefore
independent, i.e. we can't predict one from knowing the other. However, on average, we can
expect their magnitudes to be the same. We can therefore say that the time averaged power of
this �noise like� input will be

AC AS

Pin =
〈AC 〉2

2
+

〈AS 〉2

2
= A2 ... (15.6)

where expression 15.6 essentially defines A to be the mean amplitude of each individual
component. The factors of 1/2 appear because we are averaging sin2 quantities over a number of
cycles.

Since the actual amplitudes of the sine and cosine components of the noise are statistically
independent we can expect their contributions to the noise level at the integrator's output to also
be independent. Their combined effect at the output will therefore equal the sum of the powers
they individually produce. Integrating the effects of the two contributions over a period, T, we
obtain two voltages. These must then be squared separately and then added to obtain the total
output noise level

Pout =



1

τ ∫
 T

0

A Cos {2πf t }  d t




2

+



1

τ ∫
 T

0

A Sin {2πf t }  d t




2

=
A2 Sin2 {πf T }

(πf τ)2
... (15.7)

We may define the integrator's power gain to be the ratio,  .  Comparing
expressions 15.6 and 15.7 we can therefore say that

G ≡ Pout / Pin

G {f } =
Sin2 {πf T }

(πf τ)2
... (15.8)

Having discovered the integrator's power gain we can now say that the total output power
produced, after integration, by an input white noise power density, S, will be
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N = ∫
 ∞

0

S G {f }  d f = ∫
 ∞

0

S Sin2 {πf T }
(πf τ)2

=
S T

2τ2
... (15.9)

The output signal power produced by integrating a steady input level, v, over a period, T, will be

Ps = V 2
O =

v 2T 2

τ2
... (15.10)

Combining this with the result for noise we can therefore say that, when accompanied by an input
�white� noise power spectral density, S, we obtain a final signal to noise ratio of

Ps

N
=

2v 2T

S
... (15.11)

This result is a very important one. It tells us that the signal to noise ratio of a measurement
obtained using an integration method can increase linearly with the integration time, T. In
practice this means we can often expect to improve the accuracy of a measurement by integrating
for longer. The integration process is mathematically equivalent to making a series of
measurements and adding them together. We can therefore generalise this result. If we make p
measurement, each integrated over a period, t, and add them we obtain a result whose signal to
noise ratio will be

Ps

N
=

2v 2pt

S
... (15.12)

What matters here is the Total Measurement Time, , not the choice of each individual period, t.
Note also that the choice of the integrator's time constant value, τ, does not affect the signal to
noise ratio. In a real measurement situation we should simply choose a τ value which provides a
convenient output level after each sample integration period, t. Provided that we avoid voltages
which are too large or too small to measure reliably with the voltmeters, etc, we're using the value
of τ has no effect on the signal to noise ratio � and hence the accuracy � of the final result.

pt

In practice we're often interested in obtaining a value proportional to the signal voltage (or
current) level instead of the power. The integrated output signal voltage increases linearly with pt.
However it is the output noise power which increases linearly with time � i.e. the typical output
noise voltage increases as . Hence the accuracy of a measured voltage will increase in

proportion with the square root of the measurement time.

pt

White noise plus a small d.c. level

Integrated version of the above

Integrated signal
plus noise

Integrated signal
without noise

Integrating a steady signal with some superimposed noise.Figure 15.2

Figure 15.2 illustrates the effect of integrating an input which consists of a combination of a
steady �d.c.� level plus some white noise. In this case the magnitude of the input d.c. voltage is a
quarter of the rms noise voltage. It can be seen that the integrated result allows the steady level to
�grow� linearly with time whilst the effects of noise only change relatively slowly. 
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The analog integrator is a convenient way to obtain a result averaged over a period of time. In
principle we could use a simpler method. For example, we could regularly note down the reading
on a voltmeter, then add up all the readings. The result would be a �piecemeal� value for the level
summed or integrated over the period of the readings. Provided that the readings were taken
often enough to form a complete record we'd get the same information as if we'd used an analog
integrator. No matter what method we use for �adding up� measurements over the time period
the result would be the same. When measuring a signal in the presence of white noise we get a
final S/N power ratio which improves linearly with the measurement time (i.e. the signal/noise
voltage ratio increases with the square root of the time taken for the measurement).

Although we won't attempt to prove it here, a similar result arises when we look for other signal
patterns in the presence of white noise. From an information theory viewpoint a steady (d.c.)
level is just one example of a specific signal pattern. Any other pattern can be searched for in the
presence of noise. Although we would have to process the signal+noise patterns differently we will
discover the same basic result. When the noise is white the final accuracy of a measurement
improves with time just as the above example.

The above conclusion applies for a white noise spectrum. A different result arises when 1/f noise
is present. Consider, for  example, a case similar to the above but where the noise has a NPSD

S {f } =
e

f
... (15.13)

The effective noise power observed at the output of the integrator will be

N = ∫
 ∞

0

S {f } G {f } d f = ∫
 ∞

0
( e

f ) Sin2 {πf T }
(πf τ)2

 d f ... (15.14)

To see what this integral implies it simplifies things to make a change of variable to . We
can then write that

z ≡ πf T

N =
e T 2

τ2 ∫
 ∞

0

Sin2 {z}
z3

 d z =
e T 2

τ2
 ×  I ... (15.15)

where I represents the integral in z. Taking the same signal as before the integrated measurement
therefore has an effective signal/noise ratio of

PS

N
= ( v 2

e I ) ... (15.16)

Note that the integration time does not appear in this expression. This  means that we cannot
obtain a more accurate result in the presence of 1/f noise simply by integrating over a longer

period. Worse still, the value of the integral, I,  turns out to be infinite!

The integral �blows up� in this way because we have assumed that the noise power spectral density
→ ∞ as f → 0. In reality we wouldn't notice the noise components at frequencies  as
fluctuations. They would look like a fairly steady level during the particular observation time we've
used and become indistinguishable from the signal. This simply confirms that we can't get rid of
the effects of 1/f noise by integrating or adding together lots of measurements.

f ≪ 1 / 2T

In practice the noise present in a measurement system will have both white and 1/f components.
The total noise spectrum can then be represented as a NPSD, , equal toS t

S t = S  +  
e

f
... (15.17)

Provided the total measurement time, , we won't observe any significant effect from the 1/fpt ≪ S
e
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 noise as the measurement would be dominated by the white noise. Under these circumstances we
can expect to obtain an improvement in measurement accuracy by increasing pt. However, once

, the effect of the 1/f noise becomes significant and any further increase in pt will produce
little or no improvement of the measurement accuracy.
pt ≥ S

e

A similar analysis can be carried out for other forms of signal filter and signal summing or
integration systems. Although the details will depend upon the choice of system the consequence
is much the same. There is a practical limitation � set by the existence of 1/f noise � to the
improvement in measurement accuracy we can obtain simply by averaging or summing over ever
longer periods of time. In order to obtain any further increase in accuracy we must, instead,
devise some measurement technique which avoids the effect of 1/f  noise.

Another serious problem which can arise when making simple, direct measurements is due to the
presence of any unwanted background signals. Consider as an example the case illustrated in figure
15.1 where we are using a sensor to detect the output from a faint source of light. If we place the
source and detector in an ordinary room we find that some of the light striking the detector does
not come from the source we wish to measure. Instead it comes from the room lights, or in
through the windows of the room. Hence the output we observe from the detector is partly
produced by an unwanted �background�.

One way to deal with this problem is to try and reduce the background level, ideally to nothing.
We can, for example, switch off the room lights and place opaque covers over the windows to
produce a dark room. Although this means we tend to fall over the furniture it will reduce the
unwanted background level. Unfortunately, some background light will remain. This is because
the room will be at a temperature above absolute zero. To avoid freezing its inhabitants the room
temperature will probably be somewhere around 280 K to 300 K. Hence all of the surfaces in the
room will emit some thermal radiation. Unless we totally enclose the detector in a box cooled to
absolute zero there will always be some background radiation falling upon it. (And, of course, if
we totally enclose it in a box, we can't get the signal onto it!)

Since all sensors and detectors respond to energy or power in one form or another a similar result
occurs in every measurement system. We may therefore expect that there will be always be an
unwanted background level falling upon any detector. In many cases we can reduce this
background until it's low enough to be ignored, however it is impossible to really reduce it to
zero. 

As an alternative to trying to get rid of the background we can set out to measure it in the absence
of the actual signal and then subtract its effect from the final measurement of interest. This
approach, called Background Subtraction, is widely used to deal with the problems of measuring
very small quantities in the presence of an unwanted background. 

Summary

You should now know how an Integrator works, and how it can be used to improve the S/N ratio of
a measurement of a steady signal in the presence of noise. It should be clear that � when the
random noise is �white� � the S/N ratio we can obtain is proportional to the total time devoted to
the measurement. That the precise choice of the Time Constant of an analog integrator doesn't
normally affect the final result. Remember that, since the S/N power ratio improves in
proportion with the time, the accuracy of a voltage measurement increases with the square root of
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the measurement time. You should also now realise that integration doesn't always provide an
improvement in the measurement's S/N. In particular, integration does not help us overcome the
effects of 1/f noise. 

Questions

1) Draw a diagram of an Analog Integrator and explain how it works. Define the integrator's Time
Constant in terms of the component values.

2) An analog integrator is constructed using an op-amp, a 100 kΩ resistor, and a 10 µF capacitor.
What is the value of the integrator's time constant? What is the value of the integrator's Power Gain
at 5·25 Hz when used for a 10 second integration? [ 1 second.  = 0·003676 or  dB.]G −24·4

3) The integrator described in question 2 is used to determine a steady d.c. level. The input noise
spectrum is white and has a NPSD of 10 nV/ . What input d.c. level would be detectable with a

1:1 signal/noise ratio by averaging together 20 measurements, each lasting 5 seconds?
(Remember that the expressions in this chapter were simplified by assuming that the effective
impedances everywhere all equalled 1 Ohm.) [0·7 nV.]

Hz
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Chapter 16

Phase sensitive detection

The Phase Sensitive Detection (PSD) technique is widely used to deal with the problems caused by 1/
f noise and unwanted background levels. Figure 16.1 represents a typical PSD system, designed to
provide a measurement of the signal level produced by a faint light source, . The technique
works by arranging for the signal level to be �switched on and off� in a controlled way. This helps
the measurement system distinguish the (now varying) signal from any steady background level.

S 1

Rotating chopper ‘wheel’

S1

S2

b

Mirror

Detector

a.c. amp. Bandpass
filter

Av

Ap

Ap

+

−

R

C

V Vin

Vout

Vp

Phase reference

Phase sensitive detection system.Figure 16.1

Sometimes we can manage to switch a signal source on and off directly by, for example,
controlling its power supply. More generally, however, this is not possible. In some cases the
source will behave poorly (or fail!) if we keep turning it on and off. Sometimes the source we are
interested is a natural one (e.g. a star) which we find rather difficult to control! Therefore most
PSD systems employ some form of signal Modulator or Switch which periodically stops the signal
from reaching the detector. When making an optical measurement this modulator can take the
form of a Beam Chopper which alternately blocks and unblocks the light path between source and
detector. Figure 16.1 illustrates one common type of modulator called a Chopper Wheel. This is a
disc which has a series of Blades cut around its periphery. (Sometimes a series of holes are cut
around the edge of the wheel to produce a similar effect.) The wheel is placed so that its edge
covers the beam and is rotated during the measurement. As the chopper wheel turns, its blades
pass between source and detector, alternately blocking and clearing the signal path. If we use a
symmetric wheel with n blades, rotating x times per second the source signal reaching the
detector will be appear as a fluctuating level, varying periodically with a Chopping Frequency,

. f = nx

The chopper acts as a form of Frequency Conversion system. A light power level which was steady or
slowly varying, now produces a chopped signal at some higher frequency. The signal power has
been converted from one frequency (about d.c. or 0 Hz) to another, f. For the sake of example we
can imagine rotating a 16-bladed chopper 20 times a second to produce a chopping frequency of
16 × 20 = 320 Hz. This can be amplified using an a.c. amp and passed through a filter arranged to
reject signal fluctuations at frequencies below, say, 200 Hz. 
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Any 1/f noise produced in the detector and amplifiers will usually be at frequencies around
100 Hz or less. The filter will stop this low frequency noise from passing through the system. Note
we are talking about the frequencies of fluctuations of the signal not the optical frequency of the
light itself. The signal we're talking about here corresponds to the voltage/current levels
produced by the light power falling upon the detector. To avoid confusion it is customary to refer
to the fluctuation frequency produced by modulation as the Modulation or Chopping frequency.
We could now determine the brightness of the light by measuring the size of the signal
fluctuations at the chopping frequency emerging from the filter. In this way we can use the PSD
system to make a measurement largely unaffected by the 1/f noise. 

Some further advantages can be obtained by recognising that a periodic alternation has a specific
phase as well as a frequency. The PSD technique makes use of this fact to obtain some further
improvements over simple direct measurements. The best way to understand the  behaviour of
the PSD system is to begin by considering what the detector observes when the chopper is
blocking the signal path.  It's important to realise that the �source blocked� level is rarely zero. In
the simplest optical systems the chopper is painted black or is made of a material which absorbs
light. As a result, when a chopper blade blocks the detector's view it sees thermal radiation
emitted by the chopper surface. The amount of radiation produced will depend upon the
material and its temperature. 

Figure 16.1 illustrates the use of a reflecting chopper made of a shiny material. When its blades
block the signal beam the detector will see light reflected by the surface of the chopper. In the
system shown another mirror is used to direct light from a second source, , onto the detector
via reflection from the chopper surface. The system is arranged so that both sources are seen
against the common background level, b.

S 2

V

Signals in correctly phased PSD system.Figure 16.2
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If we define , , and b to be the power levels produced by the two sources and the background,
a detector whose responsivity is α V/W will produce an output voltage

S 1 S 2

V 1 = α (S 1 + b ) ... (16.1)

when the signal path to  is clear, and a voltageS 1

V 2 = α (S 2 + b ) ... (16.2)

when one of the reflecting blades fills the detector's field of view. The magnitude of the
alternating signal, V, output by the detector will therefore be
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V = α (S 1 − S 2) ... (16.3)

These voltages, and the others in the PSD, are illustrated in figure 16.2.

Provided that the background level remains the same no matter which source the detector sees,
the magnitude of the alternating voltage, V, is unaffected by the background. The system hence
suppresses the effects of any common background level as well as producing an alternating signal.
In principle we need not actually employ a second source. If it is omitted  the
magnitude of the output voltage will simply be . As will become clear later, however, it
can often be a good idea to employ a second source.

( S 2 = 0 )
V = αS 1

In practice the background levels against which the two sources are seen may not be identical.
Even when the process producing the background is physically the same in both cases, its level
may change with time, making it different during the times when  and  are being observed.
Hence we cannot expect to completely suppress any effects due to the background. We can,
however, usually arrange to dramatically reduce the influence of background power upon the
measurement � provided the system is carefully designed and operated.

S 1 S 2

In figure 16.1 the output signal from the detector is passed through an a.c. amplifier whose
voltage gain is  and a bandpass filter which only passes a range of frequencies around the
modulation frequency, f. The filtered signal, , then passes through an arrangement whose
voltage gain can be switched to be either +  or . The setting of the switch which selects the
sign of this gain is controlled by a reference signal, taken from the chopper, which indicates
whether the detector can see  or  at any moment. Ideally, the system will be set up so that the
signal modulation and the reference signal are in phase. This means that the gain will be switched
to  while the detector can see  and to  while it can see  and the output switch operates
as the chopper blades move in/out of the detector's field of view. 

Av

V in

Ap −Ap

S 1 S 2

+Ap S 1 −Ap S 2

Provided the chopper's teeth and gaps cover an area much larger than the detector's field of view
we can assume that the modulated output from the detector will be a square-wave of frequency, f,
and peak-to-peak amplitude, V. Now a square-wave of frequency, f, and peak-to-peak amplitude,

, can be regarded as being the sum of a series of sinewaves of the formV pt p

V = (2V pt p

π ) . (Sin {2πf t } +
1

3
Sin {2π (3f ) t } +

1

5
Sin {2π (5f ) t } ...)

... (16.4)

Hence, if we assume that the filter passes signals at a frequency, f, without loss but totally rejects
signals at frequencies of 3f and above, the signal, , which emerges from the filter will just beV in

V in = (2αAv

π ) (S 1 − S 2) Sin {2πf t } ... (16.5)

The reference signal will also vary periodically at the modulation frequency, f. Since both this
reference signal and the modulation of the input are produced by the movement of the same
device � the chopper � these two signals will have a fixed phase relationship, i.e. the signal and
reference are coherently related or phase locked to one another. In the example illustrated in figure
16.2 we have assumed that the signal and reference are in phase. In this situation the effect of the
switched-gain section is just as if the input were full-wave rectified and amplified by , to produce
an output

Ap

V p {t } = |(2αAvAp

π ) (S 1 − S 2) Sin {2πf t }| ... (16.6)

In the illustrated system this voltage is passed through an RC time constant. Provided  this

time constant circuit will smooth out the half-cycle fluctuations in  to produce an output

RC ≫ 1
f

V p
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voltage, , which will settle at a mean voltageV out

V out =
1

T ∫
T

0

V p {t }  d t ... (16.7)

where . (This integral gives the right value because each cycle of  is the same as all the

others. As a result, the average voltage over many cycles is identical with the average voltage over
just one cycle.) Putting 16.6 into 16.7 we get the result

T = 1
f V p

V out = ( 2

π)
2

(S 1 − S 2)αAvAp ... (16.8)

 represents the mean (i.e. time-averaged) voltage level of the output produced by the PSD.
The time constant performs the task of allowing this mean level through to the output meter
whilst rejecting any voltage fluctuations at frequencies around the modulation frequency, f, or
above. When viewed overall, the PSD system converts a steady (or slowly varying) input to an
alternating signal at a modulation frequency, f. It then amplifies and filters the signal before
reconverting it back into a steady voltage for measurement. The manner in which this is done
allows us to largely suppress unwanted background effects and avoid 1/f noise generated in the
detector and amplifiers.

V out

Provided we know α, , , and , we can determine the light power level, , by measuring
with a d.c. voltmeter. However, any errors in these quantities will produce a corresponding error
in our measurement of . For this reason a better approach is use what is known as a Nulling
measurement technique. To do this we need to choose a controllable source for . The PSD system
illustrated in figure 16.1 compares the light power levels  and  and provides an output signal
voltage which varies in proportion with the difference between the two levels. Given a comparison
source, , whose output may be varied in a well defined manner we can adjust its output until

. From expression 16.8 this can only arise when , no matter what the values
of α, , and  (assuming, of course, none of them are zero!). Hence, if  and we know

, we can simply say that  without needing to know any of the amplifier gains or the
detector responsivity. 

Av Ap S 2 S 1 V out

S 1

S 2

S 1 S 2

S 2

V out = 0 S 1 − S 2 = 0
Av Ap V out = 0

S 2 S 1 = S 2

Nulling techniques are very useful when we need to make accurate measurements. They permit us
to avoid many of the systematic errors which arise when the behaviour of the amplifiers and
sensors are not well known. The technique does of course require us to have a well defined,
controllable, reference against which to measure. However in principle all measurements are
comparisons � direct or indirect. The nulling measurement simply brings as much as possible of
the chain of comparisons within a single system.

Thus far we have assumed that the chopped signal and the reference output share the same
phase. This may not always be the case. Consider the situation when, for some reason, the signal
and reference waveforms differ in phase by an amount φ. If we define the time, t, such that
corresponds to a moment when the chopper moves out of the detector's field of view then we can
show that the output from the switched gain circuit, , will be

t = 0

V p

V p {t } = (2αAvAp

π ) (S 1 − S 2) Sin {Θ − φ}   Sin {Θ} > 0when

 =  − (2αAvAp

π ) (S 1 − S 2) Sin {Θ − φ}    Sin {Θ} ≤ 0or when

... (16.9)

where .Θ = 2πf t
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Effect of various phase errors on PSD signals.Figure 16.3
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Using expression 16.7 we can therefore expect that the smoothed voltage, , this presents to
the voltmeter will be

V out

V out = ( 2

π)
2

αAvAp (S 1 − S 2) Cos {φ} ... (16.10)

i.e. we find that the magnitude of the smoothed output voltage will vary in proportion with the
cosine of the phase error, φ. The effects of various phase error values are illustrated in figure 16.3.
This result has two implications. Firstly, it is clearly important to ensure that the PSD is �phased
up� correctly � i.e. we should adjust the system to ensure that the wanted signal and the
reference share the same phase � otherwise the magnitude of the signal output will be reduced
by . The second implication concerns the system's ability to reject noise or any other
signals at frequencies which differ from f. 

Cos {φ}

The noise produced in the detector, amplifiers, etc, can be regarded as a spectrum of
components at various frequencies. If we were to observe the noise voltage generated during
some specific period of time it could then (from the sampling theorem arguments) be described
as a spectrum of the general form

V n = ∑
N

i = 1

 ∆V i Cos {2πf i t + Φi} ... (16.11)

where the  and  values vary unpredictably from one noise observation period to another.
From the statistical properties of noise we can expect the average value of  to depend upon
the mean noise power level. The phases can take any values. Since there is a bandpass filter in the
system we need only worry about noise components at frequencies similar to the signal chopping
frequency, f. We can therefore consider two situations. Firstly, consider the noise component at
the chopping frequency. The above description of the observed noise can be re-written as

∆V i Φi

∆V 2

V n = ∑
N

i = 1

Ai Cos {2πf i t } + B i Sin {2πf i t } ... (16.12)

where

Ai = ∆V i Cos {Φi}      ;      B i = ∆V i Sin {Φi} ... (16.13)

i.e

V 2
n = A2

i + B2
i ... (16.14)

when considering noise at the signal frequency . From the behaviour of phase sensitivef = f i
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detection only the in-phase portion of the noise, , will have any effect upon the
output. The quadrature portion, , will produce no output. Since the noise phase
varies at random we find that, on average, .  This means that, on average, ;
i.e. only half the input noise power has an effect upon the output. As a result, the PSD has the
effect of rejecting that half of the input noise at the signal frequency which is In Quadrature with
the signal. This means that the system gives a better signal/noise ratio than we would've obtained
if we'd simply measured the size of the chopped a.c. signal with an a.c. voltmeter.

Ai Cos {2πf i t }
B i Sin {2πf i t }

A2
i ≈ B2

i A2
i = ∆V 2

i / 2

Consider now a noise component whose frequency, , differs from the chopping frequency by an
amount,  � i.e. the noise component can be written as

f i

δf

∆V i Cos {2π (f + δf ) t + Φi} ... (16.15)

Looking up trig identities in a suitable maths book we can find this is equivalent to

∆V i [Cos {2πf t } Cos {2πδf t + Φi} + Sin {2πf t } Sin {2πδf t + Φi}]
... (16.16)

Because of the action of the PSD only the Cos part of this has an influence upon the output. In
effect, it is equivalent to an input

∆V i ′ Cos {2πf t } ... (16.17)

where

∆V i ′ = ∆V i Cos {2πδf t + Φi} ... (16.18)

i.e. the noise component produces an output which varies sinusoidally at the Beat Frequency or
Difference Frequency, . This effect is illustrated in figure 16.4. Here the signal/
reference and the noise component �beat in and out of phase� with each other and produce a
smoothed output level which varies roughly sinusoidally. For example, if we are using a chopping
frequency of f = 1000 Hz, noise at  1001 Hz will cause the output to vary sinusoidally at 1 Hz.
Note that noise at 999 Hz will also produce output at 1 Hz when the chopping frequency is 1000
Hz.

δf = |f i − f |

f i =

Effect of signal and reference frequencies not being the same.Figure 16.4
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Now the output resistor-capacitor time constant acts as a low-pass filter. It will only pass signal or
noise fluctuations in the frequency range from d.c. (0 Hz) up to  Hz, where  is the
time constant value of the filter. For example, a 1 second time constant (perhaps made with a
10,000 Ω resistor and a 100 µF capacitor) will only pass unattenuated frequencies below 0.159 Hz.
This means that the output level will only be affected by signal noise in the frequency range 0.159
Hz either side of the chosen chopping frequency. In effect, the output time constant acts just like

1
2πτ τ = RC
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a very narrow bandpass filter to block noise at frequencies which differ from the signal we're
interested in. In theory the same result could be obtained using a very narrow-band filter. In
practice using the output time constant has two advantages. Firstly, it is possible to build time
constants (or integrators which produce a similar result) with time constants of many seconds. To
achieve the same results when using a 1 kHz chopping frequency we would have to build a
bandpass filter with a bandwidth of much less than 1 Hz at 1 kHz. Although not impossible, this
would be much harder to make. 

Secondly, the output time constant does not mind if the chopping frequency should alter slightly
for any reason. The speed of the chopper might slowly drift as its motor warms up. If we used a
narrow bandpass filter we'd have to ensure that the chopping frequency doesn't drift so far as to
shift the signal frequency outside the filter's passband. Otherwise the signal will be lost! Since the
PSD switch is controlled by the chopper, any change in chopping frequency will be cause the
switching action to alter so as to take the change into account. For these reasons, plus the PSD's
ability to reject quadrature noise, the majority of the noise filtering action of a PSD is performed
by the output time constant or integrator. 

This being the case it's sensible to wonder why we should bother to include a bandpass filter at all.
There are two reasons for including it. Firstly, sometimes the total input broadband noise power
may be much larger than the signal power. Unless we filter away some of this noise it will limit the
amount of amplifier gain we can use because, otherwise, it will saturate or clip the amplifiers.
Secondly, if we go through the same analysis as above but with a frequency which is an odd
harmonic (3f, 5f, etc) of the chopping frequency, we find that the switching action causes these to
produce output at frequencies low enough to pass through the output time constant. Hence noise
at these frequencies won't be blocked by the output filter. The bandpass filter stops detector and
amplifier noise at these frequencies from reaching the output.

PSDs are used in many forms for measurement and information processing tasks. They are an
example of a Heterodyne system. Similar techniques are used in radios, TVs, and radars.
Radioastronomers use a technique called Dicke Switching and optical astronomers use Sky Chopping
or Telescope Nodding to achieve the same results. The method is useful whenever we wish to alter
the signal frequency to avoid noise, make the information more easily handleable, or suppress
background effects. The special technique of Nulling is also one of the most reliable ways to make
very accurate measurements.

Summary

You should now know how Phase Sensitive Detection (PSD) systems work. That they can be used to
avoid 1/f noise in detectors and amplifiers and can be used to subtract the effects of a steady
background level. You should also now understand that the PSD is an example of a Heterodyne
technique which uses Frequency Conversion. You should also know that a Nulling measurement
technique is useful because it means we don't have to know exactly the sensitivity or gain of our
detectors and amplifiers when making accurate measurements.



Information and Measurement - 113 - Free PDF version (larger page)

Chapter 17

Synchronous integration

 17.1 �Boxcar� detection systems

Phase sensitive detection systems are ideally suited to dealing with signals which have a steady, or
relatively slowly varying, level. In many situations, however, we need to measure the details of a
signal which varies quite swiftly in a complex manner. The signal may also not last very long. In
order to measure brief, rapidly changing signals a different approach is required. Synchronous
Integration is a technique which allows measurements to be made on complex signal patterns
which have powers well below the general detector or amplifier noise level. The technique can be
employed in various ways provided two basic requirements are obeyed. Firstly, the signal must be
repeatable so we can produce a series of nominally identical pulses or Signal Cycles. Secondly, we
must obtain an extra Trigger signal � similar to the phase reference signal required for a PSD �
which can be used to tell the measurement system when each signal cycle begins. Although it's
usually convenient to arrange for signal cycles to occur with a steady repetition rate, this isn't
absolutely necessary provided we know when each cycle starts.

Light
Source

Clock

Delay Set Pulse
Width

Detector Amplifier
Switch

Integrator

R

C

Analog synchronous integration (boxcar) system.Figure 17.1

These requirements are often satisfied by using some form of clock which regularly initiates the
signal and provides the trigger information. Alternatively, the signal generating process may, in
itself, provide some information telling us when each signal cycle begins. For the sake of
illustration we can concentrate upon a situation where we wish to measure how the output light
intensity of a pulsed laser varies with time during each output signal pulse. The techniques
described in this chapter can, however, be applied to measure the shape of any repetitive signal
pattern.

Some electrical gas discharge lasers can be arranged to produce a series of light pulses when
connected, via a suitable circuit, to a steady power supply. Each burst of light output is
accompanied by an abrupt drop in the voltage across the gas tube. Under these circumstances we
could use the sudden fall in voltage to trigger the measurement process. More generally, however,
we will have to provide some kind of clock signal to initiate light output. Figure 17.1 illustrates a
typical system designed to measure how the output intensity of a pulsed laser varies with time. In
this case we have arranged for the system to be controlled by a clock which both �fires� the laser
and triggers the measurements.
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Control and data waveforms in ‘boxcar’ integrator.Figure 17.2
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For the sake of simplicity we can assume that the clock which starts each cycle of  light output has
a period, T. This means that the resulting signal cycles will occur at the rate, 1/T. Each clock
pulse immediately starts a signal cycle. The clock also controls the operation of a switch which can
connect the amplified signal to an analog integrator. The switch is only closed for a brief Sampling
Interval, δt, which begins after a time delay, ∆, following the appearance of each clock pulse.

Synchronous integration works on the basis that all the signal cycles are similar to one another.
We can then define the shape of each individual pulse in terms of the same function, , where
t represents the time from the beginning of each signal cycle. Figure 17.2 illustrates a typical set of
pulse and signal patterns we might see in a working system of this kind. The output voltage from
the detector is amplified to produce a signal voltage, , which is presented to the switch.
Since the switch is only connected for a brief period, δt, after a delay, ∆, following the start of each
clock pulse, the signal presented to the integrator looks like the waveform, , shown in
figure 17.2. This can be defined as

v {t }

V {t }

V g {t }

V g {t } ≡ V {t }     ∆ ≤ t ≤ ∆ + δtwhen

  V g {t } ≡ 0 ... (17.1)otherwise

We can now start with the integrator (capacitor) voltage set to zero and allow the system to
operate for n signal cycles. In the absence of any noise this will produce an output voltage

V o {∆, δt } = nK ∫
 T

0

V g {t }  d t = nK ∫
  ∆ + δt

∆
V {t }  d t ... (17.2)

where

K =
−1

RC
... (17.3)

and R and C are the values of the resistor and capacitor used in the analog integrator. The minus
sign is present because an analog integrator normally reverses the sign of the signal (see Chapter
15). Provided δt is sufficiently small, the signal level will not change a great deal between the
times, ∆ and ∆+δt, and we can approximate the above integral to  say that

V o {∆} = nK V {t } δt ... (17.4)

i.e., , is proportional to the signal voltage, , which arises at a time, , following
the start of each pulse. The output is also proportional to , hence we may increase the
magnitude of  by operating the system for more clock cycles, increasing the value of n. In

V o {∆} V {t } t = ∆
nK δt

V o {t }
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effect the system adds up the contributions from a series of pulses to magnify the output signal
level.

In practice, the required signal will always be accompanied by some unwanted noise voltage, ,
which � being random � will differ from one pulse to another. This will contribute an
unpredictable amount 

e {t }

Eo = K ∑
n

i = 1
∫

  ∆ + δt

∆
e {iT + t }  d t ... (17.5)

to the integrated output voltage, where  represents the noise voltage during the i th
pulse at a time, t, from its start.

e {iT + t }

Unlike the signal, these noise voltages which occur during each cycle are not all identical. As the
noise is random in nature we can't say what value this error voltage will have when we make a
particular measurement. As with all random quantities we can only predict the average, typical, or
likely properties of the noise. Taking the simplest example of a �white� noise input spectrum
whose noise power spectral density is S . We can use the arguments presented in section 15.2 to
say that the mean noise power added to a single integration will be . (This result
comes from considering expression 15.9 and recognising that, in this case, the integration

constant .) This means that the voltage produced by each individual sample
integration will typically differ from the next by a rms amount 

N i = K 2S δt / 2

K
2 ≡ 1 / τ2

εn = N i = K
S δt

2
... (17.6)

The noise power spectrum of a real white noise source can never extend over an infinite
frequency range. (If it did, its total power would be infinite!) For a practical noise source we can
therefore say that the input total noise power will be , where  represents the Noise
Equivalent Bandwidth of the input noise spectrum. Here we can assume that this means that the
noise covers the frequency range from around d.c. (0 Hz) up to a maximum frequency equal to

. The input will therefore exhibit an input noise voltage level equivalent to an rms voltage of
.

N in = S Bn Bn

Bn

e n = S Bn

Combining these expressions we can therefore say that the input and output rms noise voltage
levels will be such that

εn = K e n
δt

2Bn
... (17.7)

This expression links the rms noise level, , at the integrator's output to the input level, . We
can now use this expression to determine the  accuracy of a measurement using the synchronous
integrator, although it is worth remembering that, in general, the precise relationship between

 depends upon the details of the input noise spectrum. A more detailed analysis would
show that expression 17.7 is only strictly true for a noise spectrum which has a uniform noise
power spectral density over a frequency range,  to  where  and . 

εn e n

εn  and  e n

f min f ma x f min ≪ 1
2δt f ma x ≫ 1

2δt

As the actual noise level varies randomly from one measurement to another we can say that typical
measured levels after n signal cycles will be

V o ′ {∆} = nK V {∆} δt ± εn n ... (17.8)

The unpredictability of the noise means we can't predict a precise value for V. Instead, expression
17.8 indicates the most probably result, plus or minus the probable range of uncertainty. Here
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the prime indicates a typical measured value which may not exactly equal the result we might
predict using expression 17.4. Combining expressions 17.4, 17.7 and 17.8 we can obtain

V o ′ {∆} − V o {∆} = ± K e n
nδt

2Bn
... (17.9)

In effect this shows the probable difference between the values we would measure with and
without random noise. 

From expression 17.4 we could expect � in the absence of any random noise � to find the input
signal voltage level,  at a time  from the expressionV {t } t = ∆

V {t } =
V o {∆}
nK δt

... (17.10)

unfortunately, the inevitable presence of some noise means that a typical measurement leads to
the actual result

V ′ {t } =
V o ′ {∆}
nK δt

... (17.11)

Combining expressions 17.9�17.11 we can say that our measurement of the input voltage at any
time will be

V ′ {t } = V {t } ±  e n
1

2nBn  δt
... (17.12)

From 17.12 we see that the accuracy of  measurements of the input signal level will tend to
improve as we increase the number of signal cycles we integrate over. Two points about this result
are worth noting. Firstly, both the total input noise level and the frequency range it covers affect
the accuracy of the measurement. This can be understood by imagining a situation where a given
fixed total input noise power is �stretched out� to cover a wider frequency range. The effect of
such a change would be to move some of the noise power up to higher frequencies which find it
more difficult to pass through an integrator. Hence the fraction of the noise which influences the
output will fall if  is increased while  is kept constant. Secondly, the above result indicates the
relative sizes of the measured signal and noise voltages. When considering the performance of a
signal processing system in terms of S/N ratios we normally consider a power ratio. Since the
voltage accuracy obtained above varies as  we can expect the output S/N (power) ratio
provided by a synchronous integration system to improve with  � i.e. in proportion with the
number of signal cycles integrated.

Bn e n

δt n
δt n

In order to measure the overall shape of the signal waveform � and hence the way the laser
intensity varies with time � we can now proceed as follows:

Firstly, set ∆ to a particular value, zero the integrator voltage, and perform an integration over n
clock cycles. Note the integrator output level, increment ∆ by an amount, δt, and rezero the
integrator. Integrate again for n cycles, and note the new output level. Repeat this process until a
series of  values have been gathered which cover the whole of the signal cycle. Then use
expression 17.11 for a set of times, , to determine the shape of the input signal with an
accuracy which can be estimated using expression 17.12.

V o ′ {∆}
t = ∆

This form of measurement system is called a synchronous integrator because we perform
integrations on samples which are synchronised with the signal cycles. Many of the earliest system
employed an output time-constant instead of an integrator. The time delay, ∆, was then slowly
swept continuously over the range 0 to T and the smoothed output displayed on an oscilloscope
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or drawn on a plotter. These systems came to be called �boxcar� integrators because the switch
control pulse looked on an oscilloscope like an American railroad waggon running along a track.

Synchronous integration systems are very effective at recovering information about weak pulses
when the noise level is quite high. As usual, however, there is a price to be paid for this
improvement in the measured S/N ratio. The total measurement for any particular delay, ∆, takes
a time nT since we have to add up the effects of n clock cycles. Hence when we improve the S/N
ratio by increasing n, the measurement takes longer. A drawback of the method considered so far
is that most of the time the output integrator is disconnected from the input! Only that fraction,
δt/T, of the pulses which occur while the switch is closed contributes to the measurement result.
As a consequence, to measure all the details of the pulse shape we have to repeat the
measurement process up to T/δt times for each ∆ value. Hence the time required to measure the
whole signal shape will be . If n is large and δt small, this can turn out to be quite a long
while!

nT 2 /δt

To improve the S/N ratio without increasing the total measurement time we could chose to
increase, δt, the duration of each sample. Unfortunately we can't expect to observe any signal
fluctuations which take place in a time-scale less than δt because they will be smoothed away by
the integrator. When using a synchronous integrator we can only clearly observe details of the
pulse shape which persist for a time . We can therefore reduce the total measurement time
by increasing δt, but this may mean that we can no longer see all of the fine details of the signal.
Any real signal will only contain frequency components up to some finite maximum frequency,

. From the arguments outlined in chapter 2 (section 4) we can expect that we will only be
able to see all the details of the signal when 

≥ δt

f ma x

δt ≤
1

2f ma x

... (17.13)

In practice, therefore,  usually represents the optimum choice for δt. A smaller value

increases the required measurement time, a larger value prevents us from observing all the details
of the signal.

1
2f ma x

17.2 Multiplexed and digital systems

The system we have considered so far isn't a very efficient one since, in general, most of the signal
power was ignored because it arrived when the switch was open. This problem can be dealt with
by employing a Multiplexed arrangement. 

Input

Multiplexed array of synchronous integrators.Figure 17.3

S1 S2 S3 S4S0
V {t }

V o {0} V o {δt } V o {2δt } V o {3δt } V o {4δt } V o {T − δt }

Figure 17.3 illustrates a multiplexed analog synchronous integration system. This works in a
similar way to the one we have already considered, but it contains a �bank� of similar switches and
integrators. In this system the first switch, S0, is closed during the periods when , S10 < t ≤ δt
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when , S2 when , etc. By using an array of M such switches and
integrators, where , we can arrange that at any time during each pulse one or another
of the switches will be closed and the signal is being integrated somewhere. At a time, t, during
each pulse the j th switch will be closed, where j can be defined as the integer value (i.e. the
�switch number�) such that . Each switch/integrator provides a separate
sampling and integration channel. 

δt < t ≤ 2δt 2δt < t ≤ 3δt
M = T /δt

jδt ≤ t < (j + 1)δt

The simple system we considered earlier had just one channel and could only look at a small part
of the signal pulse at a time. The fully multiplexed version has  channels and covers the
whole signal cycle. The system essentially produces a series of integrated output voltages, ,

, etc, and gathers information about all the pulse features  �in parallel�. The advantage of
this arrangement is that all of the information from each signal cycle is recorded by the bank of
integrators. No signal information is wasted. As a result, the multiplexed system is much more
efficient at collecting information than the single-channel version. Using this arrangement we
don't have to keep repeating the integration process as ∆ is varied. 

T /δt
V o {0}

V o {δt }

Although multiplexing means that measurements can be made more quickly and efficiently,
wholly analog systems of this type are now rarely used. This is partly because it can be difficult
(and expensive) to arrange for a large number of nominally identical switches and analog
integrators, but it is also because digital information processing techniques have advanced rapidly
over the last few decades. Modern synchronous integration systems often use digital techniques to
obtain, relatively cheaply, a level of usefulness it would be difficult to match using analog
methods. As usual in information processing we can build various types of digital and analog
systems to perform a given function. The system shown in figure 17.4 makes use of a circuit
known as a voltage to frequency convertor (VFC) to implement a digital synchronous integration
system. This is a device which produces an output square wave (or stream of pulses) whose
frequency or �pulse rate� is proportional to the input voltage. At any time, t, we can therefore
expect the VFC to be producing pulses at a rate

f {t } = k f V {t } ... (17.14)

Signal
Source

Voltage to
Frequency
Convertor

Counter

Computer

Memory

Data &
Control
Bus

Example of a digital system for performing multiplexedFigure 17.4
synchronous integration of a repetitive waveform.

V {t }

f {t }
r

R0

R1

R2

R3

where  is a coefficient whose value depends upon the details of the VFC circuit being used. The
operation of this system depends upon how we have programmed the computer. At the start of a
measurement the computer should �clear� (i.e. set to zero) the numbers stored in the parts of its
memory which it will use for data collection. The computer then waits until it receives a trigger

k f
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from the clock which is initiating the pulses to be measured (this can, if we wish, be the
computer's own internal clock). The computer then proceeds as follows:

Firstly, the counter reading is zeroed. It is then allowed to count pulses coming from the VFC for
a time, , and the resulting number, , is added into a memory location at some address, . The
counter is then re-zeroed, allowed to count for another period, , and the new result, , added
into a memory location, . This process is repeated over and over again until the whole signal
cycle time, T, has elapsed. After one signal cycle the system will have stored a set of binary
numbers, , , etc, in its memory. Each number will be approximately equal to

δt r 0 A0

δt r 1

A1

r 0 r 1

r j = k f ∫
 (j + 1)δt

jδt

V {t }  d t ... (17.15)

i.e. each number is proportional to the input voltage integrated over a short period of time. We
can now repeat this process n  times to obtain a stored set of numbers,  , which, in the
absence of any noise, will approximate to

R0 ,  R1 ,  �

R j = N r j = nk f ∫
 (j + 1)δt

jδt

V {t }  d t ... (17.16)

In effect, these stored numbers are proportional to the integrated signal voltages at various times
from the start of each signal cycle. They contain the same information about the signal pattern as
we could have collected with an analog synchronous integration system. As with the analog
system, if we arrange for  to be small enough we can approximate the above integral toδt

R j = nk f δt V {t j} ... (17.17)

where . We can therefore use the collected  values to determine the signal voltage at
various times during each signal cycle.

t j = j δt R j

The counted values are a digital equivalent of the voltages collected at the output of a bank of
analog integrators. Equation 17.17 is the �digital equivalent� of expression 17.4 for an analog
system. Each count is proportional to the input at the appropriate moment, . V {t j}

This digital approach has a number of advantages over the analog technique. One particular
advantage of the digital approach is that it is relatively easy to buy and use a large amount of
computer memory. For example, we can imagine buying and using a single digital memory chip
capable of holding 128 kilobytes of information. If we allocate 16 bits (i.e. two 8-bit bytes) to hold
each  we can store a set of values which represent integrated level measurements of the input
signal shape at 64 × 1024 = 65,536 moments during each pulse. As a result, one cheap digital
memory chip can replace over 65 thousand separate analog integrators!

R j

Summary

You should now understand how Synchronous Integration allows us to recover the details of a weak,
transient phenomenon by adding together the information from a synchronised sequence of
similar transient events. That a Multiplexed system allows us to avoid the signal information losses
we get with a �single integrator� system which tends to ignore most of the signal most of the time.
That we can build either analog or digital systems to perform synchronous integration. You
should now also see that the combination of a Voltage to Frequency Convertor and a Counter act as a
form of integrator.
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Chapter 18

Data compression

Up until now we've considered systems which always try to preserve all the information content of
a message. For example, the CD digital system attempts to digitally encode information in a way
which accurately represents all the nuances of any input audio waveforms that fits within a 20 kHz
passband and a 95 dB dynamic range. To do this for two channels (stereo) we record and replay 2
× 16 × 44,100 = 1,411,200 bits per second. However, as we discovered in an earlier chapter, some
messages aren't very surprising (or interesting) and therefore don't contain much �real�
information. This raises two questions:

i) Can we re-code a signal into a form which can be sent or stored 

using fewer bits or bytes without losing any real information?

ii) Do we have to carry all the details of a signal � or can we

discard details which are trivial, or �uninformative�? 

The answers to these questions are important because, if we can reduce the amount of  bits
required, we can send or store useful messages with equipment which has a lower capacity (i.e.
cheaper!). The term Data Compression has come into use to indicate techniques which attempt to
�Stuff a quart into a pint pot�. Unfortunately, this term is used for a variety of methods which
actually divide into two distinct classes. Genuine data compression methods attempt to cut down
the amount of bits required without losing any actual information. Other techniques, which I'll
call Data Reduction or Data Thinning, seek out and discard information which they judge
�unimportant�. Data thinning does throw away some real information, but if it works well the lost
information isn't missed! In this chapter we'll look at Lossless data compression. We'll consider
data thinning in the next chapter.

18.1 Run-length encoding

If you use a computer very often you'll eventually encounter the problem of running out of
�space� on the discs you're using to store files of information. Given the cash, this can be solved by
buying another box of floppies or getting a larger hard disc. A popular alternative is to use some
kind of �file compression� technique. These often let you squeeze about twice as much onto a disc
before it fills up. Various techniques are used for this and some work better than others. Here
we'll look at a simple example based on the way computers often store pictures and use it to see
the features all true data compression techniques share.  

Broadly speaking, computers can store information about images (pictures) either as a set of
Objects or as a Pixel Map. Although object-based techniques tend to give better results we'll look at
pixel methods since they provide a clearer example of how data compression can work. Pixel
mapping divides the image up into an array of rectangular or square �picture elements�. The
colour of each pixel is stored as a number in the computer's memory. The amount of information
(details, range of colours) the picture can contain is then determined by the number of pixels in
the image and the range of numbers we can store to indicate the colour of each pixel. 
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32 × 32 pixel
16 colour
image. ‘Zoomed in’ view

of the top-left corner.

‘Bit-map’ of the top part of the
zoomed in section of the image.
(15 = black; 7=grey; 0 = white.)

Example of a ‘bit-mapped’ image.Figure 18.1
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Figure 18.1 shows an example of a bit-mapped image. For the sake of simplicity, we've limited the
range of possible colours to just 16 and chosen an image which is only 32 × 32 pixels in size. (Note
that, for computers, �colours� include black, white, and shades of grey.) In fact, modern
computers can usually cope with �24-bit� pixel maps. These represent the colour of each pixel as 3
× 8-bit numbers � one 8-bit byte each for the red, blue, and green levels. However, here we're
just using four bits per pixel and only using the values to indicate the �greyscale level� (i.e. how
dark the pixel is). This makes the explanation easier, but the following arguments also apply to
full-colour pixel-map systems.

In the image shown, the darkness of each black/grey/white pixel is stored as a number in the
range 0 � 15  or %0000 to %1111 in binary. 0 means white, 15 black, and 7 a middling grey. (Note
we're using a leading �%� to indicate a binary number.) We only need half an 8-bit byte to store
the information about each pixel. Since there are 32 × 32 pixels, each requiring 4 bits, we need a
total of 32 × 32 × 4 = 4096 bits or 512 bytes to specify all the details of the image as a bit-map.
There are various ways we could record this information on a floppy disc or transmit is over a
digital signal link. For example, we can start in the top-left corner and group the pixel values
together in pairs to get a string of 8-bit bytes. 

The first pair (furthest top-left) of pixel colour numbers are 7 and 7 (%0111 and %0111).
Grouping these bits together we get %01110111 = 119. Moving to the left, the next pair of colour
numbers are 0 and 0 (%0000 and %0000) which group to produce 0. The next left pair are 0 and
15 (%0000 and %1111) which group to %00001111 = 15. The next pair are 15 and 15 (%1111
and %1111) which group to %11111111 = 255. And so on... having finished the top line we can
repeat the left-to-right grouping process line by line down the image. We can therefore store,
record or transmit information about the picture's pattern as the series of bytes; 119, 0, 15, 255,
etc� The number of bits or bytes required is determined by the �size� of the picture. To
represent any 32 × 32 pixel, 16 colour pattern we use 512 × 8-bit bytes. This sort of coding is called
Fixed Length because the number of bits/bytes required is fixed by the number of pixels and
doesn't depend upon the actual picture pattern. A blank (boring) screen � all �0�s or all �15�s �
requires as many bytes as a pretty (interesting) picture.

So, can we store or send all the picture information using fewer bits/bytes? The answer is, yes,
sometimes we can by using a different way to code or represent the information. The technique
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we'll use here is called Run-Length Encoding. This is based upon only storing information about
where in the picture the colour (darkess/brighness in this case) level changes. To illustrate this
process let's assume that the small array of numbers in figure 18.1 is the whole image we want to
store or communicate. As shown, this pattern is just 16 pixels wide and 3 pixels high. So we would
require 16 × 3 × 4 = 192 bits (24 bytes) to store or send it using the fixed length method described
above.

Looking at the example in 18.1 the 16 × 3 bit-map corresponds to the series of byte values: (first
line)119, 0, 15, 255, 255, 255, 255, 255; (second line) 119, 0, 15, 0, 0, 0, 0, 0; (third line) 0, 0, 15,
0, 0, 0, 0, 0. To run-length encode this information we proceed as follows: Begin with the �first�
value (the top-left byte). We note its value � 119 � and then note how many successive bytes
have this same value � in this case just 1. We then note the next byte value � 0 � and note how
many times it appears in succession � again 1 in this case. We keep repeating this process and
generate the values: 119, 1 time; followed 0, 1 time; 255, 5 times; 119, 1 time; 0, 1 time; 15, 1 time;
0, 7 times; 15, 1 time; and 0, 5 times. (Note that we ignored the locations of the line ends/starts
and just treated the numbers as one long sequence of bytes.)

This process has produced the series of byte values: 119, 1, 0, 1, 255, 5, 119, 1, 0, 1, 15, 1, 0, 7, 15,
1, 0, 5. Note that this list is only 18 bytes long, yet � provided we know the details of the run-
length encoding process � we can use it to reconstruct all of the original 24 bytes of picture
information. We have managed to squeeze 24 bytes of information into just 18. At first sight this
process seems suspiciously like magic. But it works! We often find that this type of encoding can
reduce the number of bits or bytes required to store all the details of a picture. Similar (but more
complex) methods can be used to reduce the number of bytes needed to store various sets of
information.

The reason this magic trick is possible can be understood by considering two �extreme� examples
of pictures. First consider an image which just consisted of a single black pixel in the middle of a
32 × 32 16-colour bit-map. Recorded as a series of pixel-pair bytes this would be something like: 0,
0, 0, � (about 255 times), 15, then 0, 0, 0, (about 255 times), i.e. 512 bytes consisting of a string
of zeros with just one 15 somewhere in the middle. Run-length encoded the same picture
information would be something like: 0, 254 times; 15, 1 time; 0, 255 times � just six bytes!

Now consider a picture where every pixel is a different colour to its neighbours. As a plain fixed
length series this might be 512 bytes with a pattern something like; 127, 203, 96, 229, etc� Run-
length encoded it becomes; 127, 1 time; 203, 1 time; 96, 1 time; 229, 1 time; etc. The run-length
sequence now contains 1024 bytes � twice as many as the plain set of values! This is because we
had to dutifully include an extra byte after every pixel value to confirm that the value only
appears once before a different one occurs. We can make two general points from these
examples:

• The encoding �doesn't always work� � i.e. it sometimes produces an output series of values which is longer
than the fixed length original.

• The degree of compression (or unwanted extension!) depends upon the details of the picture.

Before run-length encoding any 32 × 32 pixel × 16 colour image would be 512 bytes long. After
encoding, some images are shorter, some are longer. We've turned a fixed length input string  of
symbols or bytes to a variable length output string. In fact, if we were to repeat the encoding
process for every possible, randomly chosen, picture pattern we would discover that on average
the compression technique produces an output which is about the same length as the fixed
length input. For a randomly chosen message the process shuffles the values but leaves us with the
same number of bits to store or communicate. However, most real picture patterns aren't
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random! Provided we only use the run-length method for pictures which contain  many regions
where the colour is the same from pixel to pixel the result will be a reduction in the number of
bytes. The image shown in 18.1 has a number of large areas of white, so it compresses reasonably
well using the run-length method.

18.2 Huffman coding

Although I won't attempt  to prove it here, data compression methods all exhibit the feature that
they successfully compress some types of patterns but expand others. On average, they don't
(unless they're badly designed!) make randomly chosen �typical� patterns either smaller or bigger.
However, most pictures, text files, etc, aren't really �random�. There are patterns which aren't of
any value. For example, the text character sequence, �qgsdxf ftfngt zdplsdesd xotr� isn't very likely
to occur in written English. An information storage system which devotes as much storage space
to it as to, �Old Fettercairn tastes great�, is being wasteful. Similarly, some characters or symbols
occur more often than others or convey less information.

The usefulness of compression techniques comes from matching the technique to the types of
pattern you actually want to compress. It essentially removes the redundancy required to encode
�daft� or uninformative patterns. (The daft patterns are then the ones that would come out longer
than the original when encoded.) For this reason a variety of compression techniques have been
developed, each having its own good points. Here we'll consider a system called Huffman Coding
after it's inventor. For the sake of illustration we'll use the ancient written language of �Yargish�.
Although it's now rarely used it was once popular amongst the Yargs � a tribe who lived in the
hills of Dundee and worked in the tablet mines. (OK, I'm making this up!) The language
consisted of just 8 characters � six letters, a �space�, and a punctuation mark. Here I'll represent
these characters as, , , � , � . By examining lots of Yargish books we find that the
relative frequencies or probabilities with which each of these characters occurred were, , , �

, � . From chapter 5 we can say that the average amount of information (in bits) in a typical
Yargish message N characters long will be

X 1 X 2 X i X 8

P1 P2

Pi P8

〈H 〉 = −N ∑
8

i = 1

Pi log2 {Pi} ... (18.1)

where the angle brackets  are used to indicate that we're talking about an average or typical
value. The actual amount of information in a specific message which contains  of the
character,  of the  character, etc, will be

〈〉
A1 X 1

A2 X 2

H = − ∑
8

i = 1

Ai log2 {Pi} ... (18.2)

An analysis of Yargish reveals that the relative probabilities of the character occurrences are:
, , , , , , , and . A

typical 16-character (i.e. N = 16) message would therefore contain 38·48 bits worth of
information. However, to be able to indicate 8 distinct symbols we would expect to have to
allocate 3 binary bits per symbol to give us the require range of possibilities (2 = 8). This means
that, using a simple fixed-length code like, , , , �

, we have to send 3 × 16 = 48 bits to communicate a 16-character/symbol message.
We've already encountered this basic problem. The fixed length coding scheme is inefficient. It
contains redundancy which could be used to help detect and correct errors, but slows down the
communication process. 

P1 = 0·125 P2 = 0·5 P3 = 0·05 P4 = 0·06 P5 = 0·055 P6 = 0·01 P7 = 0·17 P8 = 0·03

3

X 1 = %000 X 2 = %001 X 3 = %010
X 8 = %111

This arises because the symbols/characters used aren't all equally probable. From the above
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values we can say that the amount of information provided by each individual character's
appearance is typically:

  bits worth for each occurrence of an ,h 1 = − log2 {P1} = 3 X 1

 bit for each ,h 2 = − log2 {P2} = 1 X 2

and similarly, , , , , ,  and .h 3 = 4·32 h 4 = 4·06 h 5 = 4·18 h 6 = 6·64 h 7 = 2·26 h 8 = 5·05

From this result you can see that characters which appear more often only convey a relatively
small amount of actual information per occurrence. For example, 's which, typically, make up
half the symbols in a message only provide 1 bit's worth of information per appearance despite
using 3 bits to code. You can also see that rare symbols provide a relatively large amount of
information. 's typically only occur about once in a hundred symbols, but when they appear
they provide 6·64 bits worth of information. This result is interesting because it shows that the fact
that a symbol or character might be coded using three binary bits doesn't mean that it always
carries just three bits worth of actual information. (However, if all the symbols were equally
probable they would each have a P value of 0·125 and an h value of 3. Then the actual number of
bits used to represent each symbol would equal the amount of actual information per
appearance.)

X 2

X 6

It is this difference between the actual information content (in bits) and the number of bits
required for fixed-length representation � where every symbol is represented by the same
number of bits (3 in this example) � which allows us to compress data using the Huffman
method. Huffman coding represents each character or symbol by a string of bits whose length
varies from character to character. Highly probably characters (like ) are represented by short
strings. Rare characters (like ) are represented by long strings. 

X 2

X 6

The way Huffman codes are produced is shown in fig 18.2. First we list all the codes,  to ,
along with their relative probabilities. We identify the two symbols which have the lowest
probabilities and bring them together, adding their probabilities together. We then treat the
gathered pair as a fresh symbol and repeat this process over and over again. In this way we reduce
the number of �branches� by one as we move �down� from each level to the next. Eventually we
will have brought all the symbols or characters together and reached the base of the tree where
there's one combination with an accumulated probability of 1. (Assuming, of course, that we
haven't missed anything!) The resulting tree will then have as many levels as we have different
characters or symbols � 8 in this case.

X 1 X 8

In principle we may find that three or more candidates at a given level share the lowest
accumulated probability values. If this happens we just pick two of them at random and go on.
The branch pairs which link a pair of locations on one level with a single location on the one
below can be called Decision Pairs. We label the two branches of each decision pair with a �1� and a
�0�. 
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X 1 : 0·125
X 2 : 0·5

X 3 : 0·05

X 4 : 0·06
X 5 : 0·055

X 6 : 0·01

X 7 : 0·17
X 8 : 0·03

X 1 : 0·125

X 2 : 0·5

X 3 : 0·05
X 4 : 0·06

X 5 : 0·055

X 6X 8 : 0·04
X 7 : 0·17

X 1 : 0·125
X 2 : 0·5

X 4 : 0·06

X 5 : 0·055

X 3X 6X 8 : 0·09
X 7 : 0·17

X 1 : 0·125

X 2 : 0·5
X 4X 5 : 0·115

X 3X 6X 8 : 0·09

X 7 : 0·17

X 1 : 0·125
X 2 : 0·5

X 4X 5X 3X 6X 8 : 0·205

X 7 : 0·17

X 1X 7 : 0·295

X 2 : 0·5

X 4X 5X 3X 6X 8 : 0·205

X 1X 7X 4X 5X 3X 6X 8 : 0·5

X 2 : 0·5 X 1X 2X 3X 4X 5X 6X 7X 8 : 1

1

1

1

1

1

0

0

0

00

Huffman �Tree� for Yargish.

‘leaves’

‘base’

Termination Nodes. Direct connections

X 1 = 111 X 2 = 0 X 3 = 1001 X 4 = 1011

X 5 = 1010 X 6 = 10001 X 7 = 110 X 8 = 10000

Codes generated from the above tree.

Example of the use of a Huffman Tree.Figure 18.2

1

0

1

0

To work out the Huffman code of a given character or symbol we start at the base and follow the
branches back up the tree until we find the lowest level where the character appears by itself. The
points we arrive at in this way are the Terminal Locations (or Terminal Nodes) of the characters.
Note that there is just one terminal node for each character. The Huffman code can be created
by noting in turn the �1�/�0� values which label each of the deciding branches where we have to
choose which of two ways to proceed �up� the tree. The Huffman codes for Yargish are shown in
figure 18.2. You should be able to see how these codes are produced by working your way up the
tree for yourself and using the above recipe. As you can see, the Huffman code for the most
commonly occurring code ( ) is the shortest, having just one bit. The least common codes (

) are the longest at five bits each. The codes, , which occur with a
probability whose value almost equals the value we would get for equi-probable codes (1/8 =
0·125) have 3 bits each � i.e. the same number as we need for an equal-length coding system.
Consider a specific but fairly typical 16-character Yargish message;

X 2

X 6 and  X 8 X 1 and  X 7

X 4X 2X 2X 1X 2X 3X 5X 2X 2X 8X 2X 7X 2X 1X 2X 7

Using a plain fixed-length digital code, , , , etc, this produces
the result;

X 1 = %000 X 2 = %001 X 3 = %010

%011001001000001010100001001111001110001000001110

which is 16 × 3 = 48 bits long. Using the Huffman code we worked out in figure 18.2 the same
message becomes;

%1011001110100110100010000011001110110

which is only 37 bits long.

Using equation 18.2 we can work out the actual amount of information in this particular message.
There are 2 × 's, so ; 8 × 's, so ; similarly, ; ; ;

; and . Using these values and the probabilities given earlier we get a total
information content of  bits. We worked out earlier that a �typical� Yargish message 16
characters long would convey 38·48 bits worth of information, so this specific message is slightly
on the boring side of typical! Note that the actual number of bits required for Huffman coding is
quite close to the actual information content. The equal length coding version, 48 bits long, has
about 10 redundant bits in it.

X 1 A1 = 2 X 2 A2 = 8 A3 = 1;  A4 = 1 A5 = 1 A6 = 0
A7 = 2 A8 = 1

H = 36·74

Huffman coded messages are slightly more difficult to decode than conventional equal length
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systems. When we receive an equal length coded message we can immediately chop it up into
parcels of so many bits per symbol. Then we just look up each section in a code table. For
Huffman codes we have to proceed as follows.

Begin with the first bit by itself (�1� in the above example). Ask, �Is this one of our legal Huffman
codes?�. If it is, write down the appropriate character and throw the bit away. If not, take the next
bit and put it next to one we have. In the example we're using �1� isn't a legal code, so we join the
next message bit to it and get �10�. Is this a legal code? No, so take the next message bit and join it
on to get �101�. No, so take the next and get �1011�. This is a legal code, for , so we now know
that the first character of the message is . Having discovered a legal code we throw away the bits
we've accumulated and go on. The next message bit is a �0� � the legal code for . So we know
the next character is . Having discovered this, throw the accumulated bit away and find, etc, �
. We decode the message by taking the bits in order and accumulating them until we discover a
legal pattern. We then recognise that character, throw away the accumulated bits, and continue
along the message string until we've accumulated another recognisable legal pattern. In this
process we're essentially �working our way up the tree� until we reach a termination location and
we've identified the character sitting at the top of that branch. We then start at the base of the
tree and work our way up again.

X 4

X 4

X 2

X 2

Many modern data compression schemes are Adaptive. The above example worked out its
Huffman tree codes using the overall probabilities � i.e. using the frequency with which each
Yargish character occurs in the whole Yargish language. Given a long specific message we can
often do a bit better by using the numbers of times the characters appear in that message.
Consider the example of a message which consisted of 16 's. Using the above coding this would
become 

X 8

%10000100001000010000100001000010000100001000010000

100001000010000100001000010000

which is 16 × 5 = 80 bits long! In one sense this seems fair, such an unusual/surprising message is
likely to carry a lot of information. However, if we'd worked out our Huffman tree using just this
message for the probability values we would have said, �No 's, 's, � 's, and 16 out of 16
places are 's, so , and if we just consider this message and
ignore the rest of the Yargish language. On this basis we'd have coded  as %0, and all the other
characters with longer codes. The coded message would then have been 

X 1 X 2 X 7

X 8 P1 = P2 = � = P7 = 0 P8 = 1
X 8

%0000000000000000

i.e. only 16 bits long. By adapting the coding process according to the message's details we have
dramatically improved our ability to compress the number of bits. However, this process has a
snag � without the original message how does the receiver of the signal know that a �0� means an

?X 8

The advantage of basing the coding on the overall probabilities of various symbols means that all
message senders and receivers can agree in advance what coding they're going to use. The
adaptive system means each coding system is created specially for that particular message. For it to
be decoded we need to provide the receiver or decoder with a �key�. This is usually done by
providing a Header Table before the main part of the message. This lists the details of the coding
used for this specific message in a pre-agreed form (i.e. not encoded in the special-for-this-
message form). Since this part of the message can't be compressed in an adaptive way, and it must
give details of all the code patterns, it can be fairly long. As a result, for a short message like the
16�character one we're considering it can end up being longer than the �main message� itself!
Because of this, adaptive encoding is usually pointless for very short messages. Similarly, very long
messages tend to use symbols or characters about as frequently as we would expect from their
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general probability, so adaptive methods may sometimes be a waste of time with long messages. 

The main advantage of adaptive compression arises when we have to compress different types of
data which have different symbol probabilities. For example, when using a computer we might
want to compress both text (ASCII) files and pixel image files. Although both types of file store
information as strings of 8-bit bytes the frequencies with which different byte values occur are
different for English text and for pretty pictures. A coding scheme fixed to be ideal for text would
do a poor job with images, and vice versa. Adaptive encoding means we can use the same
computer program to compress/expand all types of files and generally get good results. 

Summary

You should now understand how we can use Data Compression to remove redundancy from
messages and store/transmit them using fewer bits. You should also understand how Run-Length
and Huffman codes are generated and used. You should also know that Adaptive coding is useful
when we want to compress various types of data, but that it may be better to use a non-adaptive
system for specific data types � e.g. text.

Questions

1) Explain the difference between true Data Compression and Data Reduction. 

2) Explain how Run�Length Encoding can be used to compress pixel data �picture� files. What
characteristic of pixel data makes this a suitable system for this type of information? When will
files encoded in this way come out longer than the initial picture files?

3) A code system consists of four symbols, A, B, C, and D. These typically occur in messages with
the relative probabilities, , , , . How many bits per symbol
would be needed to send messages using a Fixed Length code system? Use a �tree� diagram and
derive a Huffman Code for the symbol set.  Calculate how many bits a typical message, containing
512 symbols, would require if encoded in this way. A specific message contains 256 �A�s and 256
�D�s. How many bits are required to send this message in Huffman coded form? [2 bits/symbol.
Average of 880·64 bits for typical message. 1024 bits for the specific message.]

PA = 0·2 PB = 0·05 PC = 0·22 PD = 0·53
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Chapter 19

Data thinning

In the last chapter we saw how it's possible to compress data in order to save on data storage space
or send information more quickly and efficiently. True data compression reduces the number of
bits or symbols in a message without losing any information. Sometimes data compression still
leaves us with an amount of data which is inconveniently large. In such cases it may be necessary
to throw away some of the �less important� information in order to produce a message small
enough to communicate or store. Public relations and sales executives don't like to admit this
kind of thing, so systems which do this still tend to be called �data compression� in advertising
literature. However, they are more honestly called Data Thinning or Data Reduction systems. To see
how they work we will use two examples. The first is the JPEG format for photographic images, the
second is the ATRAC format used to compress audio data on MiniDiscs. Both of these
compression systems � and many others � make use of a specific type of transform called the
Discrete Cosine Transform. It is therefore a good idea to start by explaining what this is and how it
works.

19.1  The Discrete Cosine Transform

Fourier Transformation has already been described at the beginning of  Chapter 7. Data thinning
is based on an assessment which decides that some details of the data are nominally more or less
�important� than others. For audio or visual data this judgement will depend upon the details of
human perception. The rules for this are complex and do vary to some extent from one person to
another. However experiments have shown that one of the most effective ways to proceed is to
convert signals into some form of frequency spectrum and then discard those frequency
components that are �too small to be missed�.

The Discrete Cosine Transform (DCT) is a particular form of Fourier Transform that happens to be
convenient in situations where we wish to deal, quickly, with data that is in the form of a long
stream of integer values. To understand how it works, and why it is convenient in practice we can
begin by considering the example shown in figure 19.1. 

The lower part of figure 19 shows a digital stream of data of the kind we might expect to be
produced from digitising an audio signal. Using the arguments presented in Chapter 7 we could,
if we wished, take the entire data stream and Fourier Transform it to obtain a representation of
the same information as a series of numbers that indicate the frequency spectrum of the audio
pattern.
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Chunk 1 Chunk 2 Chunk 3 Chunk 4

Figure 19.1 Splitting a long set of samples into discrete ‘chunks’

An entire audio recording may contain many millions of sample values, and represent a sound
pattern lasting for an hour or more. Fourier Transforming an entire recording of this length
would take quite a long time even using a powerful computer. In addition, the transformation
process could normally not begin until all the data from the recording had been loaded into the
computer�s memory. This would also be likely to take a significant time.

Long delays of this kind might be annoying enough in a recording studio, but would be
completely unacceptable in a domestic audio player. It is unlikely that a device like a CD or
MiniDisc player would ever have become popular if a disc had to be pre-loaded a half an hour or
so before the music could be heard! However, breaking the data up into chunks gives us a double
advantage. Firstly, each chunk now contains a relatively small number of data points, and hence
can be transformed and processed relatively quickly. Secondly, each chunk can be processed
without having to wait until later samples have been read. As a result, the processing only
produces a short delay as the data is streamed through the processing systems. An additional
practical advantage is that the amount of temporary storage (memory) required to hold
intermediate values during the calculation will be reduced, thus reducing the complexity and cost
of the system. For these reasons it is therefore convenient in practice to break up the data stream
into brief, manageable chunks and process these one after another.

A conventional Fourier Transform will take a series of input values and compute two sets of
results. Depending on how we wish to represent the process these are either in the form of pairs
of amplitude values,  and , or magnitude and phase pairs. If we use the same approach as
described at the start of Chapter 7 we can say that the  values represent the Cosine
contributions to the signal pattern and the  values represent the Sine contributions. Cosine
waves are �even� or �symmetric� patterns � i.e. all Cosine waves have the property that

An Bn

An

Bn

Cos {x} = Cos {−x } ... (19.1)

whatever the value of . In a similar way, Sine waves are always �odd� or �antisymmetric� and are
such that

x

Sin {x} = − Sin {−x } ... (19.2)

The DCT transform differs from a conventional Fourier Transform in two ways. The first
difference is that the input and output values of a DCT are generally in the form of integers, nor
real or floating point values. The second is that the DCT only computes and uses the Cosine
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components.

The symmetric properties of Cosine waves means that the DCT can only record or represent the
symmetric part of an input pattern. Any antisymmetric patterns or components of the input will
be ignored since we have neglected the Sine components which are required to represent them.
However, if we look at the typical patterns of the chunks shown in figure 19.1 we can see that the
chunks aren�t all nicely symmetric shapes. To avoid any unwanted information loss we must
therefore do something to the data before performing the DCT in order to take this into account.

The simplest approach is illustrated in figure 19.2. We assume that the origin of the time axis for
each chunk is at the start of the chunk. A copy is taken of the chunk pattern (i.e. of the sample
values). The copy is then �reflected� in the time axis and joined to the start of the pattern. The
result is a new pattern which is symmetric about time zero for that chunk. Hence each of these
modified patterns now only requires a set of cosine components to describe its Fourier
Transform.

Chunk 1

Chunk 2

Chunk 3

etc...

Figure 19.2 Converting chunks into symmetric form

Origin

0 0

copy
Reflected

When we now take the DCTs of the modified chunks we find that haven�t lost any information by
ignoring the sine components of the transform. This is for two reasons. Firstly, the added
reflections mean that we have forced any sine components we tried to calculate to always be zero,
hence the values are known without having to work them out. Secondly, the new patterns have
more sample points than the initial chunks so we have to compute more cosine values to take
them all into account. The result is that the DCT generates just as many values as a conventional
Fourier Transform, but in a different form. We haven�t lost any data by using the DCT, just
produced it in a form that may be more convenient.

An alternative way to view the difference between the DCT and a basic Fourier Transform is in
terms of the normal assumption, explained in Chapter 7, that the signal pattern is �periodic�. For
the basic transform, this means we assume that the signal�s spectrum can be fully described in
terms of just the frequencies that will fit an integer number of cycles into the total length
(interval) of the set of samples. By adding the reflected copy we now have an extended set of
samples, twice as long as the original.

Making the same �periodic� assumption for this extended set means we now choose a set of
frequencies that fit an integer number of cycles into the longer interval covered by the extended
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set of samples.. This means the frequencies used to specify the spectrum now have an integer
number of half-cycles in the original signal interval � i.e. we get �twice as many frequencies� in the
required bandwidth. This doubling of the number of frequency components replaces the
�ignored� Sine components to make up the complete amount of data required to represent all the
details of the signal.

19.2  JPEG compression

The above explanation assumes a �linear� stream of data similar to that which we might obtain for
a musical signal. JPEG files store data about 2 dimensional still images, usually colour pictures.
The name �JPEG� is an acronym for �Joint Photographic Experts Group�. Strictly speaking, an actual
image file should be referred to as a �JFIF� (JPEG File Interchange Format), but it has become
conventional to name the files after the group of people who devised the system. It is also worth
noting that there is no single format for JPEG images. Instead the JPEG process is more like a
menu of options that may be selected and used as preferred. Here we will just outline a typical
JPEG thinning process.

Chapter 18 has already explained how an image can be represented in terms of a bitmap that
records a set of values that specify the brightness and colour of a pattern of pixels. A
monochrome (black and white) image only requires one number for each pixel since it only
records a brightness pattern. A colour picture has to record extra data to indicate the hue of each
pixel.

The simplest way to record the colour and brightness information would be to have three values,
R, G, and B, that indicate the levels of red, green, and blue for each pixel. This approach works
but turns out not to be very efficient for a number of reasons. For example, the human eye is
much more sensitive to changes in the intensity of green light than either red or blue. In addition
the eye has a lower resolution for colour changes than for changes in brightness.

To exploit these human characteristics, the JPEG (along with many other image processing or
communication systems) defines the brightness and colour of each pixel in terms of three specific
values. One is the luminance defined as

Y ≡ R + G + B ... (19.3)0·3 0·59 0·11

This is the equivalent of the �brightness� of each pixel. The levels of red (R ), green (G ), and blue
(B ) are weighted with differing factors. This is to make the resulting value more sensitive to
changes in the green level than to the other colours. Hence the luminance value takes the eye�s
behaviour into account and gives the optimum performance for a given range of data values.

The other two values are colour difference signals which we may define as

C B ≡ B − Y  ;  C R ≡ R − Y ... (19.4 & 5)

Since we still have three values ( ) we can expect to still be able to convey any trio of (
) values so no information is lost. In principle, all we have done is converted one set of

thee numbers per pixel into a different set that represents the same information. However, this
new set has some practical advantages which become apparent during the JPEG creation process.

Y , C B,  C R

R ,  G ,  B
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R11,  G 11,  B 11 R12,  G 12,  B12 R13,  G 13,  B13 R14,  G 14,  B14 ...

R21,  G 21,  B 21 R22,  G 22,  B22 R23,  G 23,  B23 R24,  G 24,  B24 ...

R31,  G 31,  B31 R32,  G 32,  B32 R33,  G 33,  B33 ...

R41,  G 41,  B 41 R42,  G 42,  B42 ...

...

Y 11,  C B11,  C R11 Y 12 Y 13,  C B13,  C R13 Y 14 ...

Y 21,  C B21,  C R21 Y 22 Y 23,  C B23,  C R23 Y 24 ...

Y 31,  C B31,  C R 31 Y 32 Y 33,  C B33,  C R 33 ...

Y 41,  C B41,  C R 41 Y 42, ...

...

Input set of colour pixel values

Generated luminance and colour difference signal values

Figure 19.3 Converting colour pixel values into 4:2:2 format

The JPEG format includes two requirements regarding the size and layout of an image. Firstly,
images cannot be be more than 65,536 pixels wide or high. Secondly, the colour difference values
must have half the horizontal resolution of the luminance.  We can use fig 19.3 to see what this
means.

The figure represents part of the colour pattern of an initial image in terms of an array of red,
green, and blue values. These are then converted into a generated set of luminance and colour
difference values. The luminances for each pixel are simply obtained using equation 19.3 and a
value is generated for each pixel. The colour difference values obtained using expressions 19.4
and 19.5 are averaged over pairs of input pixels that are horizontally adjacent to one another.
This means that some of the original image data is lost and the horizontal colour resolution is
reduced by a factor of two. 

Since the human eye tends to recognise shapes in terms of brightness changes this loss in colour
information usually has surprisingly little effect upon the appearance of the image. It does,
however, mean that we have already discarded 40% of the data without significantly degrading
the perceived image. This arrangement where we have halved the number of colour values in this
way is said to be in �4:2:2� format. This arrangement is required for the input to standard JPEG
compression.

The luminance and colour difference values are now divided into three separate sets, for
, and processed separately. Each set of values is DCT processed. Since the

process is similar for each of the three sets of values we can now just use the luminance set as an
example.

Y mn ,  C Bm n , C Rmn

Since we wish to perform a DCT we have to ensure that the pattern is symmetric. Unlike the audio
data considered earlier, the data is 2 dimensional, so we have to perform a 2 dimensional
transform and start with a pattern that is symmetric in 2 dimensions. This means we have to
�reflect� the data in both the horizontal and vertical directions. We also have to split the total
image into 2 dimensional chunks of 8 × 8 values. In practice, this means we have taken a 16 × 8
chunk of pixels from the original image and then will have two side-by-side 8 × 8 luminance
chunks and a pair of colour difference chunks to process.

For a given chunk we can represent the luminance data as a set of values, , where
. The DCT values can then be computed using the expression

Y mn

1 ≤ m ≤ 8,  1 ≤ n ≤ 8
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Z i j =
C iC j

4 ∑
8

m = 1

∑
8

n = 1

Y mn Cos {πim

8 } Cos {πjn

8 }
... (19.6)

The  values represent the �spatial frequencies� of variations in the level from pixel to pixel.
Here each of these integers can take values from zero to seven to cover all the expected data. As a
result we can obtain as many  values for our output 2 dimensional spectrum as there are data
points in the original image block. Hence we can expect to obtain a set of spectral values which
contain all the information. In practical terms, the  values indicate the number of half-cycles
of fluctuation in luminance across the block in the horizontal and vertical directions for each
component in the spectrum. So, for example,  represents the amount of uniform
brightness across the block � i.e. the �d.c.� level of the data.

i ,  j

Z i j

i ,  j

i = j = 0

The coef�cients, , are chosen so as to normalise the results correctly. This means that
 if  and  otherwise, and similarly for . It is worth noting that the actual

calculation specified by equation 19.6 does not actually need to use the �extra� values which the
reflection process creates. We already �know� these values and, by symmetry, they simply increase
the amplitudes of all the frequency components we are calculating by a factor of four. Hence we
don�t actually need to spend time including them in the computation!

C iC j

C j = 1 j = 0 C j = 1 / 2 C i

Having divided the image data into blocks and performed the DCT to convert the information
into spectral form the next step is to actually �thin out� the data. To see how this is done, consider
fig 19.4. This shows a typical array of  values which we wish to process.Z i j
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Spectrum Threshold Limited Zig-Zag

Figure 19.4 Thinning the image spectrum data.

Here we start with the spectrum component values which have been obtained from performing a
DCT on a block taken from an image. The values shown in the figure are chosen purely for the
sake of example. We next choose a Threshold level and set any values whose magnitude is less than
the threshold to zero. Provided that we choose a high enough threshold this will produce a result
where many, if not most, of the values are zero. We can then turn the 2-dimensional pattern into
a string by reading through the values along a Zig-Zag path. For the data given in the example,
this produces a set of 64 values

121, -81, 70, -65, -31, 58, 0, -59, 41, 39, 0, 0, 0, 0, 0, �… etc …

We can now compress this by using a method such as Run-Length Encoding. The result is a set of
values

1, 121, 1, -81, 1, 70, 1, -65, 1, -31, 1, 58, 1, 0, 1, -59, 1, 41, 1, 39, 7, 0, 1, 36, 1, -39, 45, 0.
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Note that this new set only requires 28 numbers to describe the contents of the entire 2-
dimensional pattern. By setting a suitable Threshold and taking a Zig-Zag path we have created a
set of data that typically contains large runs of identical values (i.e. zeros), hence we can compress
the data from 64 to 28 symbols (integer values in this case) by using Run-Length Encoding.

In most photographic images of natural scenes there is a tendency in most areas of the image for
the low frequency components to have significantly greater amplitudes than the higher
frequencies. The above process therefore tends to remove the high frequency details of the
image. However it only does this in blocks of the image where the high-frequency data is small
enough to fall below the chosen threshold. If a block contains large high-frequency components �
e.g. at the edge of some artificial object in the picture like a building � these will be above the
threshold and will be preserved in the compressed data. 

The Zig-Zag path means we tend to cluster together the low-frequency (top left of the spectral
pattern as shown) and high-frequency (towards the bottom or right as shown) to mean that we
can get the longest possible runs of zeros when we follow the path. 

The method therefore tends to adapt itself in a way that allows high-frequency (and hence small-
scale �sharp� details) to be preserved in parts of the image where there are important sharp
details, but remove them where the small details have low contrast. As a result the main features
of the image are preserved in detail whilst less obvious (to the human eye) details are discarded.
Although not explained in detail here, the JPEG process also includes an extra step. This weights
the spectral components and emphasises some frequencies before the threshold is applied. The
purpose of this is to take into account the tendency of the human eye to be more sensitive to
some frequencies than others. The effect is to optimise the appearance of the result when it is
reconstructed from the JPEG data for a given amount of data thinning.

We may now summarise the JPEG/JFIF creation process in terms of a series of steps

1 Arrange the initial image data into 2-dimensional blocks of integer values.

2 Convert the  values into  valuesR ,  G ,  B Y ,  C B,  C R

3 Perform a 2-dimensional DCT on each block of values

4 �Weight� the values and then apply a Threshold to set the lowest values in each block to zero

5 Convert the 2-dimensional pattern into a Run-Length Encoded series by following a Zig-Zag
path.

6 Save the resulting string of values as a JPEG/JFIF file.

The resulting set of data has been Thinned by applying the chosen Threshold level. The higher
the level, the more image data we will have lost. This is often under the control of the user. A
typical program for performing JPEG/JFIF compression will often provide some form of �quality
setting� to allow the user to make a choice. The higher the chosen Threshold, the smaller the
resulting JPEG file will be, and the more detail will have been discarded. The final process is the
Run-Length Encoding that packs the remaining information reasonably efficiently by exploiting
the runs of zeros that the Threshold tends to create.

19.3 ATRAC audio compression

When compressing or thinning audio data rather than photographic images we may have
different criteria for deciding what information might be �unimportant� and hence may be
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discarded. However, once this is done, we can apply similar DCT methods to those described in
the last two section to process the data. We can therefore concentrate here on the way in which
information is selected for thinning or being preserved. As with the JPEG/JFIF there are a
number of differing detailed schemes for thinning or compressing audio data.

Here we will tend to concentrate on the ATRAC system (Adaptive TRansform Acoustic
Coder)which was developed by Sony for their �MiniDisc� digital recording/replay system. It is
worth noting that, in general terms, the systems developed by Philips and others for other
applications employ similar methods but differ in detail. As with the JPEG what follows is just an
outline explanation designed to explain how the data thinning process works.

As indicated by the previous sections of this chapter, the incoming data is first divided up into
short chunks for processing by DCT. However, the process is a modified approach, hence often
referred to as MDCT (Modified Discrete Cosine Transform). The incoming stream of digital
values is pre-processed by passing the data through a digital filter. This separates the information
into three distinct data streams, each containing only the information about a specific frequency
band. (Remember that the signal is likely to be stereo audio, so this means two input channels
have been pre-processed to obtain six streams of digital data.)

The bands chosen for ATRAC are, 0 - 5·5 kHz, 5·5 - 11 kHz, and 11 - 22 kHz. Each band is then
MDCT processed to obtain the spectrum it contains. The division into these three bands is a
specific feature of ATRAC. It is designed to exploit the fact that the human ear responds
differently to high, medium, and low frequency signals and means each band can be processed
separately to try and achieve optimum results.

The MDCT process uses �overlapping� chunks � i.e. each chunk of data samples includes some
sample values from the adjacent chunks. This means that each of the resulting chunk spectra
contains duplicate copies of some data from the earlier and later chunks. The extra data is then
removed to avoid wasting storage space. Although not strictly necessary from the viewpoint of
information theory, this process of overlapping and discarding means the results provide a
smoother result when thinned data is reassembled.

The reason why MDCT overlapping is useful for musical and speech data can be understood by
considering what happens when a sudden transient sound occurs at a time that happens to make
it fall across a chunk boundary. The front edge of the transient is processed and thinned by
processing one chunk spectrum. The tail of the transient is processed and thinned by processing
the next. Since the spectra of the two parts of a quickly changing event are likely to be different
there may well be an abrupt change in the pattern which is reconstructed from the thinned data.
By making chunks overlap we can ensure that any sudden change in the waveform will always
appear in the main part of one chunk. Thus we can avoid discontinuous changes in the way such
events are stored and reconstructed. This property is quite important as human hearing is very
sensitive to the nuances of brief transient events and changes. Experiments show that these
features are a critical part of our ability to recognise sounds and determine their direction of
arrival. Overlap is therefore very useful in improving the perceived quality of sound patterns
reconstructed from the thinned data, although in strict information theory terms it is not
required.

A second feature of ATRAC is that the chosen block lengths for the data chunks is varied
depending upon how complex (and loud!) the signal is at any time. When the signal is a simple,
periodic pattern large blocks are collected and transformed. When the signal is complex and
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rapidly changing, the blocks transformed and processed are much shorter. By dividing the input
into the three bands it becomes possible to choose their block lengths independently. This tends
to help the system optimise the amount of compression (thinning). In practice, the data blocks
transformed can be as short as 1·45 ms, or as long as 11·6 ms, depending upon the details of the
signal.

Having obtained a set of spectra (one for each band of each audio channel) the next step is to
thin the actual data. For ATRAC recordings the data rate must be reduced to 292 kbits/second.
This is significantly less than the 1·4 Mbits/second used by conventional audio CDs. As with
images the approach is designed to exploit the behaviour of human senses, so we need to
consider the properties of human hearing to understand what takes place.

ATRAC encoding (and other forms of audio compression/thinning) makes use of the fact that
most musical/spoken signals consist largely of periodic or coherent signals which can be relatively
easily described as a combination of a modest number of sine/cosine wave frequency
components. It also exploits two characteristics of human hearing called Masking and the
Threshold level. Masking is the effect where a loud sound tends to overpower or �swamp� our ability
to hear a quieter tone at a similar frequency. The Threshold represents the lowest sound level
which can be heard. 

In principle, any sound components which are masked or below threshold can�t be heard. Hence
we can seek to exploit these effects to discard some frequency components without the perceived
sound being altered when the resulting thinned spectrum is used to reconstruct the audio
waveforms when the recorded music is replayed. In reality, of course, hearing varies from person
to person so it it is open to question how effective this may be in a given case. That said, the
results when using a modern ATRAC (or similar) system are generally quite convincing and
impressive given the large degree of data thinning that has occurred.

Hearing threshold of
a typical healthy young adult.
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The left-hand graph of figure 19.5 shows the lowest sound intensity which can be heard by a
typical healthy young adult. (A male, aged 15�25. Females tend to have have slightly better
hearing, older people often have worse hearing.) The line indicates the quietest sounds at various
frequencies which are just on the limit of being audible. The sound intensities are quoted in dBs
referenced to a level of 10  W/m  which is about the limit of hearing at 2 � 3 kHz. The right-
hand graph illustrates Masking. In this example a tone of 60 dB (10  W/m ) at 500 Hz makes
another tone of 30 dB (10  W/m ) at 700 Hz �inaudible�. (Note that in reality, normal human
hearing is rather better than the above values would apply. The values given here are purely for
the sake of explanation.)
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The spectrum of each channel band block is divided into a set of sub-bands as illustrated in figure
19.6. The encoding circuits examine the signal's frequency components in each sub-band. In sub�
band 1 the only component, �A�, is below the threshold of audibility, so the ATRAC encoder
ignores it. Similarly, there's nothing detectable in sub-band 2. In sub-band 3 there are two signal
components, �B� and �C�. If �B� were absent �C� would be above threshold so the encoder would
send information about it on to the recording. However, by comparing the two components the
encoder decides that �C� is masked by the presence of the signal �B�. So the encoder decides to
ignore �C� but sends information about �B� on to the MiniDisc.
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Some sub-bands of the frequency spectrum.Figure 19.6

In sub-band 4 the signal component, �D�, is high enough for the encoder to decide it is above the
threshold and the masking level set by �B�, so information about it should be sent to tape. In sub-
band 4 the component �E� is above threshold, so information about it should be preserved for
recording. The ATRAC system scans through all the sub-bands in this way and identifies those
signal components which can safely be ignored because they are below the threshold/masking
level. The components to be ignored are assigned zero values. Hence as with the JPEG example, if
we choose a high enough threshold we can thin out a significant amount of the data and obtain a
pattern which will compress efficiently.

The encoder has been programmed to assemble a specific number of output bits per data block
which it can use to describe the spectrum of the signal during that frame period. It carries out a
process of allocating some output bits to each of the �audible� components which are then used to
describe their amplitudes, phases, and frequencies.  This is a requantising process where we can,
again, reduce the number of bits required by lowering the precision of components the system
judges to be of lesser importance. The most powerful components tend to be allocated more bits
so that they can be specified more precisely. 

As with CD, ATRAC/MiniDisc recorders also employ data interleaving, Eight-to-Fourteen
Modulation, parity bit error detection and correction, CIRC encoding, etc, to try to avoid
problems due to data bits being lost during replay. Although some details are modified, the
MiniDisc is similar in many ways to CD. Here we can ignore these similarities as we are only
interested in using it as an example of data thinning.

The success of the thinning system can be seen at the most simple level in the fact that, despite
the similarities, the actual MiniDisc is physically much smaller than a normal CD. A MiniDisc
typically thins the number of bits which have to be stored by approximately a factor of five whilst
preserving a sound quality broadly similar to the uncompressed CD. Indeed, some modern
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MiniDisc recorders use ADC/DACs with more than 16 bits/sample (typically 20 bits/sample) so
in some ways they can be argued to be better than a conventional CD.

Summary

You should now know how the JPEG and ATRAC systems for Data Reduction or Data Thinning
work. That each exploits features of the situation where it is applied � the properties of human
vision and hearing � to identify and discard information that is judged to be relatively
�unimportant�. That each optimises its output in an adaptive way to the signal details. You should
now also understand that data reduction techniques can be useful provided that the process of
deciding which parts of the signal to discard is performed in a manner appropriate to the context
� i.e. it depends upon the nature of the signal and the use to which it is to be put. It should also
be clear that the success of data thinning depends critically on how well the system avoids
removing information about signal details which do, in fact, matter!
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Chapter 20

Chaos rules!

Engineers generally prefer to use circuits and systems which behave predictably. For example,
when designing digital logic they tend to use circuits that perform well-defined functions like
AND, OR, or NOT. A careful search through the catalogues of chip manufacturers won't uncover
any PROBABLY, SOMETIMES, or WHYNOT gates! Similarly, when we buy a new watch we
expect it to keep �good time�. The hands should move or the displayed number change at regular
intervals. A clock whose hands moved unpredictably faster or slower, perhaps even sometimes
going backwards, wouldn't be much use � except perhaps to someone producing a railway
timetable�

Most of the simple signal generators used in engineering and science produce periodic output
patterns like sinewaves or squarewaves of a well-defined frequency. We also tend to analyse more
complex signals in terms of combinations of sets of periodic signals � e.g. Fourier analysis which
represents signals as patterns of sinewaves. Despite this, there are signals which vary in a very
different way.

The most familiar non-periodic signals are random noise, and we spent some time considering
noise and its effects at the beginning of this book. In this chapter we'll consider a new sort of
signal and signal-source called Chaotic. Both random noise and chaotic signals/oscillators have
important uses in special applications like secret or Encrypted messages. We'll be examining secret
messages in the next chapter. First we need to discover some of the basic properties of chaotic
signals and the systems which create them.

20.1  Driven nonlinear systems and bifurcations

For a system to be able to produce a chaotic signal it has to exhibit some kind of Nonlinearity in its
behaviour. A simple example of a nonlinear electronic device is a diode. The current passing
through a diode isn't simply proportional to the voltage across it. Diodes do not obey Ohm's Law,
unlike resistors they have a nonlinear current�voltage relationship. Another requirement for a
system to behave in a chaotic way is that it has to have some kind of �memory� built into it so that
it's behaviour now depends upon what happened to it a while ago. Note that although these
general conditions are required, they don't guarantee that a system will show chaotic behaviour.

One of the simplest kinds of electronic system which fits the bill is illustrated in figure 20.1. The
resistors,  and , inductors,  and , and capacitor, , in this circuit make what RF and
microwave engineers would called a Lumped Element Network version of a very short length of
Transmission Line. (Here the term, �lumped element�, means �made from a set of distinct
components� rather than an actual length of cable or line.) The network connects a Varactor Diode
to a pair of signal sources,  and . A varactor is a capacitor whose capacitance varies with the
applied voltage. For reasons we won't bother with here some diodes, when reverse biassed, have
this property. Hence diodes of this type are called varactor diodes. In general, the varactor's
capacitance tends to fall rapidly as the applied voltage is increased.

R1 R2 L1 L2 C

V ac V d
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Varactor diode driven via a simple RCL circuit.Figure 20.1

An inductor will store energy in the magnetic field set up by the current flowing through it.
Similarly, a capacitor will store energy in the electrostatic field between its plates when charged by
an applied voltage. The above circuit has two inductors and two capacitors (including the
varactor), hence it contains four elements which are able to store some signal energy. This ability
to store patterns of energy gives the system its �memory� of what has happened in the recent past.
In effect, the system can �remember� four values � two inductor currents and two capacitor
voltages � which are a record of what has been happening recently.

In this system the nonlinearity is provided by the capacitance/voltage behaviour of the varactor.
Unlike a normal capacitor, the capacitance of a varactor can be specified in two ways. To see why,
let's go back to the basic definition of capacitance. For a fixed-value capacitor we can say that an
applied voltage, V, will cause the capacitor to store an amount of charge

Q = V C ... (20.1)

where C is the value of the capacitance. Alternatively, we can say that changing the applied voltage
by a small amount, , will alter the stored charge by an amount∆V

∆Q = ∆V C ... (20.2)

We can use either of these expressions to define the capacitor's value. Equation 20.1 gives us the
Static capacitance value. Equation 20.2 gives us the Dynamic or Small Signal capacitance value. For
a normal capacitor these values are identical, so can use the two equations and values
interchangeably. However, the static and small signals values are usually different for a varactor as
we can see from the following argument.

Consider now what happens when we change the applied voltage on a varactor from a level, V, to
. We can say that the change in the stored charge will beV + ∆V

∆Q = ∆V C {V } ... (20.3)

where  is the varactor's small signal (dynamic) capacitance at the voltage V. (We'll assume
 is very small so .) We can work out the total charge stored in the

varactor when the applied voltage is V by starting at zero volts and integrating expression 20.3 up
to V volts. This gives us

C {V }
∆V C {V + ∆V } ≈ C {V }

Q {V } = ∫
 V

0

C {V }  d V ... (20.4)

From the static definition of capacitance we can say that the varactor's static value at V will be

C ′ {V } ≡
Q {V }

V
=

1

V ∫
 V

0

C {V }  d V ... (20.5)

This result gives a static capacitance value of  which generally differs from  when the
capacitance varies with the applied voltage. When considering varactors it is therefore important
to keep this difference between the small signal and static (d.c.) values in mind. Most data on
varactor diodes show how the small signal capacitance varies with the applied voltage since this is

C ′ {V } C {V }
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what most rf/microwave engineers are interested in. We'll therefore use the small signal or
dynamic value unless otherwise specified.

The behaviour of the varactor + circuit system depends upon the choice of component values and
the details of the applied signals. Real varactors have very small capacitances � typically less than
100 pF � so for our example we'll use �artificial varactor� shown in figure 20.2a. This circuit
mimics a varactor, but has a much larger small-signal capacitance whose voltage dependence is
shown in figure 20.2b. (Anyone who wants to know more about this is welcome to read Electronics
World, June 1991, pages 467�72, but you don't have to read it to understand this chapter!) This
lets the system work at �audio� frequencies rather than at RF/microwave frequencies. 

0·14

0
2 V

C {V }

Voltage

C {V } =
d Q

d V

1µF

++
−−

1N4148's
4k7

741 741

µF
C {V }

20.2a  ‘Artificial’ varactor.

20.2b  Voltage dependence
of the capacitance of the
circuit shown in 20.2a.

An example of a circuit which provides aFigure 20.2

nonlinear voltage−capacitance relationship.

0·94 µF

For our purposes, the precise details of how this artificial varactor arrangement works don't
matter. We can just concentrate on what happens when we apply an input signal to the network of

V d + V ac Sin {2πf t } ... (20.6)

which is a combination of a d.c. level, , and a sinewave of amplitude, , and frequency, f. V d V ac

For our illustration we'll choose f = 1300 Hz and  V, and use component values of
 mH,  mH, Ω, Ω, and C = 2·03 µF. There is nothing �magic�

about these odd values. They're simply the values of the components picked out of the boxes
when this circuit was soldered together! Slightly different values would give slightly different
results, but the same overall pattern of behaviour.

V ac = 3·5
L1 = 3·24 L2 = 3·38 R1 = 105 R2 = 4

We can now examine what this nonlinear system does as we slowly increase the applied d.c.
voltage, starting at . Figure 20.3 illustrates the results of doing this. The top graph of
figure 20.3 shows the input sinewave. The graph immediately below it shows how the resulting
voltage across the varactor varies with time when the d.c. level is zero (i.e. ). Comparing
these top two patterns we can see that their shapes are very different, but that both waveforms
repeat with a period, . The next graph down shows the varactor voltage waveform when
we apply a small d.c. level,  V, which is added to the input sinewave. Now the period of
this �output� wave, , is twice that of the input. Increasing the d.c. level slightly, to  V,
increases the period of the output to .

V d = 0

V b = 0

T = 1 / f
V b = 0·08

T 0 V b = 0·11
T 0 = 4T
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Effects on output waveform of varying the d.c. input level.Figure 20.3

V b = 0

 VV b = 0·11

 VV b = 0·08

This process is called Period Doubling for fairly obvious reasons. If we explore the behaviour of the
circuit carefully we find that it occurs at a series of well-defined Threshold voltages, ,
etc. When , ; when , ; when ,

; when , ; etc� As a result, when we apply a d.c. level great
enough for n period doublings to have occurred, we find that the output waveform shape only
repeats itself after a period, .

V 1,  V 2,  V 3

0 ≤ V b < V 1 T 0 = T V 1 ≤ V b < V 2 T 0 = 2T V 2 ≤ V b < V 3

T 0 = 4T V 3 ≤ V b < V 4 T 0 = 8T

T 0 = 2nT

As a result of these doublings the output signal can have a repeat period which is much longer
than the period of the Driving or Pump signal (the input sinewave). For example, when we raise

 to get 20 period doublings, an input at a frequency of 1300 Hz (  milliseconds) will
produce an output waveform which only repeats itself every
minutes!

V b T = 0·769
220 × 0·769 milliseconds = 13·4

Consider now the voltage intervals between successive doubling thresholds. If it is always true that
 then the doublings become more and more closely spaced as we

increase the voltage. When this is the case it becomes possible to pass through an infinite number
of doublings while  remains finite. This is called a Cascade to Chaos. The output signal now only
repeats itself after a time interval of , i.e. the output waveform shape never repeats itself.
It is therefore a non-periodic waveform. Such an output is said to be Chaotic. Just like random
noise we can't predict what it will do later unless we know all the details of the system which is
producing it.

|V n + 2 − V n + 1| < |V n + 1 − V n |

V b

2∞T = ∞

Systems which are behaving chaotically exhibit a property called Sensitivity to Initial Conditions.
Although their behaviour is Deterministic � i.e. we know the rules or equations which determine
the behaviour from moment to moment � we can't say what they will do in the far future unless
we know with absolute accuracy all of the component values, voltages, and currents at some time.
Any errors in our values, however small, will eventually mean our predictions are totally wrong.
For the same reason it's impossible to make two chaotic systems which behave identically since we
can never find pairs of resistors, etc, which are absolutely identical. The processes which generate
weather are chaotic, hence the impossibility of making good long range forecasts!
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20.2  Chaotic oscillators

The system we've looked at so far is driven with a combination of a d.c. level ( ) and an input
sinewave. Figure 20.4 shows how it is possible to make the system's chaotic oscillations self-
sustaining without the need for an input sinewave. This Chaotic Oscillator consists of the nonlinear
system we've already considered plus an extra LC section and a Schmitt Trigger. The output from
the trigger circuit is then fed back to the input of the system and used to drive it's behaviour. The
Schmitt trigger acts as a high-gain amplifier which produces a �squared off� version of the voltage
on . The Schmitt circuit also distorts the signal (more nonlinearity!) and exhibits Hysteresis. For
our purposes the details of how a Schmitt trigger works don't really matter. We'll just look at what
happens when we build and use the above circuit.

V b

C 3

Chaotic ‘phase shift oscillator’.Figure 20.4

Varactor
diode.

L1 L2 L3

C 1 C 3

R3

R4

R5

V b

R1 R2

Feedback

Schmitt
Trigger

V 3

-
+

Circuits of the same general form as 20.4 are often used as �clocks� or oscillators to produce
regular � i.e. periodic � waveforms. If we replace the varactor with an ordinary fixed-value
capacitor the system becomes a conventional Phase Shift Oscillator. As an illustration of this, figure
20.5 shows how the voltage on  would vary with time if we make all three capacitors  have the
same fixed values. (i.e. we replace the varactor with an ordinary capacitor.)

C 3

V 3

time

Output from a conventional phase shift oscillatorFigure 20.5
(i.e. with a fixed-value capacitor replacing the
varactor shown in figure 20.4).

The voltages and currents then oscillate in a simple periodic way, with a periodic time set by the
values of the inductors and capacitors we've used. However, using our varactor as the middle
capacitor, the circuit shown in figure 20.4 produces output of the general form illustrated in
figure 20.6.
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V 3

time

Output observed during some time interval.

Output observed during a later time interval.

Output from chaotic phase shift oscillator (i.e. with varactor).Figure 20.6

Now the oscillations can be seen to �jitter� or vary unpredictably from cycle to cycle. Although
from time to time the oscillation appears to settle down into a repeating pattern, it eventually
changes into a pattern we've not seen before. The voltages and currents in the circuit vary
chaotically from moment to moment. The behaviour of the system depends upon the exact values
of the components used. The waveforms shown in figure 20.6 were produced by a system whose
varactor components are as shown in figure 20.2, and  Ω,  Ω,  kΩ,

 kΩ,  kΩ,  mH,  mH,  mH,  µF,
 µF,  V, with a Schmitt Trigger whose output is ±3·5 V.

R1 = 130 R2 = 4 R3 = 10
R4 = 10 R5 = 10 L1 = 3·24 L2 = 3·38 L3 = 3·5 C 1 = 2·03
C 3 = 2 V b = 0·1

Many different types of circuit have been developed which behave as chaotic oscillators. They all
have to provide the same set of basic features: the system must contain one or more nonlinear
elements; there must be some gain to boost the signal and counteract any losses; and feedback is
applied so that the boosted output is used to drive the system into further oscillations. It is
common for systems to employ hysteresis because this produces a �folding� action where one
input level can give either of two output levels depending on the system's recent history. (This is
another �memory� mechanism as well as a source of extra nonlinearity.)

20.3 Noise generators

It is surprisingly easy to make a digital �random number� generator. Figure 20.7a shows an
example of a Maximal Length shift register circuit which can be used to produce an apparently
randomly varying sequence of output �1�s and �0�s.
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Maximal length digital pseudo-random noise generator.Figure 20.7a

2·5 V

+
-

Analog
‘noise’
output

Analog noise generator based on a digital process.Figure 20.7b

In the analog systems we've looked at up until now signal information/energy was held by
capacitors and inductors. The pattern of current/voltage values remembered at any moment is
said to be the system's State at that instant. In the digital examples shown in 20.7 information
about the state of the system is stored as a pattern of bits in a shift register n bits long. The
feedback and nonlinearity are both provided by an Exclusive-OR gate which takes its inputs from
two of the register locations and drives the �lowest� or first location. If we now repeatedly step the
bits along the register we generate an apparently random sequence of output digits. Systems like
this are often used as simple noise generators. As illustrated in figure 20.7b they can also be used
as part of a circuit which produces an analog voltage which varies in an apparently random
manner.

Although often regarded as noise generators, these digital systems cannot actually produce true
random noise. This is because � like all digital systems with finite memory capacities � they are
Finite State Machines. Given n-bit storage patterns we can only store  patterns of information (or
states). As a result, if we drive the shift register with a shift clock whose period is  we find that the
output pattern must repeat after a time of, at most, . This is because the system will
have then �cycled through� all the possible bit patterns it can store and must then repeat a
previous state. The digital system therefore behaves like an analog system which has undergone a
finite number of period doublings. We can increase the repeat period, , by using a longer
register but we can't ever make the repeat period infinite.

2n

T
T 0 = 2nT

2nT

In fact there's always at least one �inaccessible� state. For a shift-register system of the type shown
this is the �All bits 0� state. If the system starts in this state it gets �stuck� there and never moves on
to any other. Since the system's step-by-step behaviour is reversible this also means it can never
reach this state if it is oscillating. There are therefore only accessible states for the shift
register to pass through during its �random� sequence, so the maximal length of time is strictly

, not . It is important in practice to ensure that the system isn't in the
inaccessible state when it is switched on, otherwise the oscillation process �won't start�. This is
another reason why the analog system illustrated in figure 20.4 includes a Schmitt Trigger. The
trigger prevents the system from sitting in the �all currents and voltages zero� state when it is
switched on.

(2n − 1)

T 0 = (2n − 1) T 2nT

Some typical register length and Tapping values (the values of m and n) are:  (7; 6) giving
, (15; 14) giving , and (31; 28) giving . This last

(m ; n ) =
T 0 = 127T T 0 = 32,767T T 0 = 2,147,483,647T
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choice would mean that driving the 31/28 system with a clock rate of  = 1 millisecond produces
an output which only repeats itself after 24·8 days! As a result, if we only observe or use the
sequence of values this system produces for a day or two, it's output can be regarded as
�indistinguishable from random� for most practical purposes.

T

Nonlinear analog systems which have undergone a finite number of period doublings can be said
to oscillate in a semi-chaotic manner and produce a semi-chaotic output signal. Just like the
maximal-length digital system their output can appear random if it's only observed over a time
interval less than . However, when observed for longer than this, the repetitive non-random
noise behaviour becomes clear. These repetitive properties mean that finite state and semi-
chaotic systems produce what is called Pseudo-Random Noise. It looks a bit like noise, but reveals its
periodic behaviour if you wait long enough.

2nT

True chaotic systems can make ideal noise generators since their output never repeats itself. A
random sequence can be generated in various ways. For example, we can present the �squared-off�
output from the Schmitt Trigger to a counter/timer circuit. This repeatedly measures the time
taken for the chaotic signal to oscillate through a given number of cycles (e.g. 32 cycles). Since
the chaotic signal oscillation jitters unpredictably, the sequence of time values produced vary in a
random manner, hence giving us an output series of random numbers. In the next chapter we'll
see how sequences of random numbers like this can be used for information encryption.

Summary

You should now know that nonlinear systems can be used to produce either Chaotic or Semi-Chaotic
output signals. That chaotic signals share with natural noise the property that they are
unpredictable and never repeat themselves. You should also now see the relationship between
digital Finite State Systems which generate Pseudo-Random output and semi-chaotic oscillations �
both of which do repeat after a specific time. You should now understand that chaotic oscillation
requires the system to include a combination of Nonlinearity, Feedback, and some way for the system
to store information/energy patterns which depend upon the system's State at previous times.

Questions

1) Draw a diagram of an example of an analog Chaotic Oscillator and say what features are essential
for it to be able to behave chaotically.

2) Explain the term Period Doubling. What is the essential difference between Semi-Chaotic and
Chaotic behaviour? Draw a diagram of a digital pseudo-random number generator. Why is it
impossible for such a system to generate �true� random noise? 

3) A digital system uses a 22-bit shift register and an Exclusive-OR gate to generate a maximal length
pseudo-random bit sequence. The system is clocked at 100 kHz. How long is the time interval
before the sequence repeats itself? [41·9 seconds.]
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Chapter 21

Spies and secret messages

21.1 Substitution codes

Usually we want to transmit information as quickly and efficiently as possible. This means using
systems which are simple and don't waste channel capacity. There are, however, times when the
priorities are different. These arise when we're concerned with the Secure transmission of
information. This requires us to devise methods of encoding and transmission which prevent
information from �falling into the wrong hands�. Alternatively, we may find ourself in the
situation of needing to discover information which the sender doesn't want us to have. We then
have to set about decoding a message which has been encoded in manner designed to make our
task virtually impossible!

Espionage and counter-espionage provides some excellent (and very interesting!) examples of the
basic methods of encryption and how codes can be �broken� by various means. One of the most
common systems during the 20th century uses five-digit Code Groups.

The system relies upon some form of Code Book which lists all the words which are likely to be
needed. Each word in the book is linked to a five- digit number, and (of course)  the numbers in
the book are in a suitably randomised order. Using this system we might encode a message 

     THE RAIN IN SPAIN   as

     24397 34651 50904 18253

This is a simple Substitution Code where each word is replaced by a specific Code Group of five digits.
We could now send the signal 24397 34651 50904 18253 to represent the message in an encoded
form. Using another copy of the book this stream of digits could be Decoded back into plain text by
the person receiving the signal. To anyone else, the signal just looks like a stream of numbers.

Now, in the English language, the letter �e� is far more common than �q�, and �th� is a lot more
common than �zq�. Similarly, the word �the� is more common than �zebra�, and combinations like
�nice day� are more common than �tree fish�. Hence, given a reasonably long encoded message,
an eavesdropper could attempt to unravel the code simply by seeing which groups of numbers
occurred most often and by looking for patterns. This use of relative probabilities is called Entropic
Attack because the expressions for the amount of information per symbol are linked to symbol
probabilities by expressions similar to those used for Entropy in thermodynamics. (Have a look at
the equations in Chapter 5 and compare them with ones for �real� entropy in a thermodynamics
book.)

In a case like the British listening to German transmissions during the war, or GCHQ listening
during the �cold war� to the USSR's embassy in London, a large number of code group strings can
be collected. Using entropy and relative probability methods based on the ideas outlined in
earlier chapters it would only be a matter of time before a simple substitution code was �broken�
and messages would become easily readable by the eavesdropper. The only way to prevent
entropic attack on encrypted messages from being successful it to keep changing the code book.
For example, �The� might equal �24379� one week, and then be changed to �19935� in the book
used for the next week's messages. Regular changes in the chosen code groups make it difficult
for a codebreaker to collect enough messages using the same code for entropic attack to work.
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Unfortunately, even a single long message may be enough to identify many of the most common
words. Its surprisingly easy to break substitution codes � especially if you have some idea of the
kinds of things which are likely to be in the message.

21.2  One-time pads

In order to ensure that entropic methods can't succeed it's necessary to �change the code book�
after EVERY code group � i.e. after every word. This results in a string of code groups which are
essentially random in appearance and makes entropic analysis useless. The only problem with this
method is that the information become so well encrypted that it may be a problem ensuring that
the intended recipient is able to decode the message!

For spies, the traditional method for achieving this �randomised� encryption was the One-Time Pad.
This consists of a pad of paper sheets. Each sheet has printed on it a string of five-digit random
numbers. For security only two copies of any pad of numbers are printed. One is given to the �spy�
and the other to whoever is meant to be receiving his messages. 

The sender (i.e. the spy) first encodes the message as before into a string of five-digit code
groups. These are written, in order, on the top sheet of the pad. The first code group is added to
the first random number, the second code group added to the second random number, and so
on to the end of the message. The numbers are added without performing a carry forwards. (This
ensures all the results are also just five digits long.)

Using the example given above this gives something like

    THE RAIN IN SPAIN    the message 

    24397 34651 50904 18253    from code book

    47656 23311 93705 49910    from pad

    61943 57962 43609 57163    combination

The codes transmitted are 61943, 57962, etc. If the numbers on the pad are a random sequence
then the transmitted code groups will be truly randomised. After being used just once the sheet of
the pad must be destroyed and the next sheet used for the next message. Entropic analysis will be
unable to  decipher the encrypted series of digits unless the codebreakers have some information
about the numbers on the pad. 

Used correctly, the one-time pad system is unbreakable as the transmitted numbers are genuinely
randomised. To decode a message you must know the random sequence used to encode it. The
weaknesses of the one time pad system are a direct result of the method it uses to ensure message
security. Firstly, every message requires a new sequence of randomly varying numbers.  Secondly,
a copy of this random sequence has to be delivered to the sender without being intercepted (and
copied) by anyone else. For a spy this system also has the additional unpleasant disadvantage that
being caught with a pad of such random numbers has, in itself, often been used as proof that the
possessor is a spy!

The drawbacks of the one-time pad system become a real nuisance when you want to use it to
send a large number of frequent, long, messages. During the second World War and afterwards
the USSR used one time pads for virtually all of their �secure� messages. This required vast
numbers of pads to be shipped around, each pad being destroyed after just one use. During the
war it was particularly likely that pads would be destroyed or copied in transit. To ease these
problems they decided to use each pad more than once. As a result, although the numbers in any
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individual message would seem random, those of a collection or Ensemble of messages could be
analysed to reveal a pattern. This lead to western intelligence agencies being able to break the
encryption of a number of Russian messages.

21.3 Mechanical �randomising� algorithms

The problems of one-time pads have been known for many years and an alternative method had
been available since the 1920s. This replaced the pad with a mechanical system which modern
information theorists would describe as providing an Algorithm to generate a string of codes which
act as if they were random. In this mechanical system, each letter was replaced by a different one
according to the positions of a set of Encoding Wheels in a coding machine. After each letter one or
other of the wheels is rotated by a set amount to change or �scramble� the code. 

A
B

C
D

E

F

G

H

1 2 3

First arrangement — Input ‘B’ leads to an output ‘D’.

Wheel ‘1’ rotated one step — Now an input ‘B’ leads to an output ‘F’

A
B

C
D

E

F

G

H

1 2 3

Reflector
plate

Code wheels

Mechanical encryption system.Figure 21.1

This system is the one used by the German forces during the second World War. The British
operation to break this code is the, now, much fabled Ultra story. The German code machines
were called Enigma. Messages based upon the use of these code machines can be broken using
entropic methods. This is because the codes are not truly random as the rotation (and patterns)
of the wheels progress in a set way. Given a reasonable number of long messages (in the jargon of
codebreakers, this is called �having enough traffic�) it is possible to break the code. The basic
structure of an Enigma code-machine is shown in figure 21.1. Here we'll use this example to show
how a Deterministic system can produce apparently randomised, encrypted signals. Note, however,
that the following description has been simplified to bring out the main points. The actual system
was rather better and more complex than it might seem from what follows. 

The machine contains three wheels or �rotors� with a set of metal contacts around each side near
the rim. Each contact on one face is wired to another on the opposite face, but the connections
are made in a fairly randomised way. The above example shows three rotors with different
patterns of connection. Wires are taken from the keys of a typewriter to contacts which touch
those of one side of the �first� rotor. Similarly, wires connect the rotors together.

The signal from a particular key (e.g. the �B� shown) passes through the rotors and wiring to
emerge on one of the wires touching the �far� face of the third rotor. Here there are a set of wires
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which make jumbled connections between pairs of rotor contacts. This �reflects� the signal back
through the series of wheels and hence has often been called a reflector plate. The signal then
passes back through the rotors by a different path, and emerges on the wire connected to a
different letter. (In the case shown above, �B� emerges as �D�.) 

If the rotors were not allowed to move, the encoded message would be easily broken. However,
the machine is arranged to move a rotor after every letter. Here, after encrypting our initial letter
(�B� as a �D�) the rotor #1 is rotated by one step. If the next letter in the message is also �B� it is
NOT coded as another �D� but as �F� because the wiring has changed due to the rotor movement.
After each letter the rotor is moved and we have a �new� code for every letter. When the first rotor
has made a complete turn the second rotor is moved one place and then left whilst the first makes
another rotation, and so on�

By using a Reflector Plate we can double the number of wheel connections each signal must pass
through. At first glance this may seem to provide a considerable increase in the amount of
jumbling produced, but this isn't really true. Take the illustrated example using three wheels. The
signal passes through a total of six wheel connections, but the jumbling produced by the fourth is
related to that produced by the second as it is physically the same wheel. Similarly, the second is
related to the fifth and first to sixth. This doesn't matter if we are sending messages which are
only a few letters long. However, as we keep rotating the wheels for a longer message we will begin
re-using connections which have already been used in the other direction. 

If each rotor has, say, 32 contacts we appear to have 32 × 32 × 32 possible codes. (Since this
represents the total number of physical arrangements we can find for a given set of wheels, this
number can't be increased by using a reflector plate.) Hence we could expect to send a message
containing 32,768 letters (including spaces, commas, etc, as letters) before having to repeat a
code setting. In English this is equivalent to a message around 8,000 words long. This number can
be increased if we have some spare code wheels which we can use to replace our initial trio when
we approach 32,000 letters.

In effect, we have a machine which can replace the one-time pad and mechanically recode each
letter of our message in a different way. This system is very easy to use. It also has the property of
being Self-Inverse � i.e. if we set up an identical machine and feed in the �DF� of the encoded
message we get the output �BB�. The same machine can therefore be used both for encrypting
and reading the messages! The machine, with a particular set of starting positions for the rotors,
gives us a mechanical version of a particular one time pad. We can �change the pad� by changing
the rotors or altering their starting positions. During the 2nd World War, the Germans added a
few extra gadgets to make the encryption more complex, but the basic system remained as
described. Each rotor had a ring attached to it which was inscribed with the letters of the
alphabet. These rings could be slid around to take various orientations with respect to a mark on
the rim of the rotor. The machine was then used as follows:

The operator would look up in a standard book which rotors were to be used on that day. The
book would also tell him which ring letter to align next to the mark on each rotor rim. The
receiver operator would use another copy of the book and set his rotors and rims in the same way.
The transmitting operator would then choose for himself the starting positions he wished to use
for his rotors when sending the bulk of the actual message. This was necessary to avoid all the
messages on a given day having the same encryption algorithm. However, the transmitter now had
to indicate to the receiver which starting positions he had chosen. This need for an Indicator in
the message is necessary unless the codes are to be totally pre-determined by a book or table of
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instructions (copies of which may fall into the �wrong hands�). It is a potential source of weakness.

In the German system, the operator could identify the starting positions chosen for the message
by telling the receiver which ring letters could be seen through three small openings in the
machine when the rotors were set up ready to start. This was done by setting the rotors in the
day's standard starting arrangement and sending the three letters which indicated the ring
settings he'd chosen for the rest of the message. To make sure there was no mistake these letters
were then repeated. The rotors were then re-set with the appropriate letters showing and the
actual message sent.

This method of indication is a poor one. It relies on assuming that the basic encryption is so good
that it is effectively unbreakable. In reality, the Enigma system can be broken given information
about how it works. Various accounts of how this was done have been published in recent years.
Perhaps the best explanations are in Hodges; The Enigma of Intelligence (a scientific biography of
Alan Turing, published by Hutchinson, London, 1983) and Hinsley and Stripp; The Code Breakers (a
collection of memoirs from people who worked at Bletchley Park during the second World War,
published by Oxford University Press, 1993). The basic method was as follows:

In Enigma codes it is impossible for any letter to be encoded as itself. This is because of the
reflector plate, which always returns a typed signal back through the wheels on a path different to
the one it followed on its way towards the plate. Hence the initial six letters �ADGSFH� in a
message must stand for an indicator where the first letter cannot be either �A� or �S�, the second
cannot be �D� or �F� and the third cannot be �G� or �H�.  Importantly, all the traffic on a given day
uses the same code scheme for those first six letters. Using these two pieces of information it is
possible to try various possible codes until one is found where, for every message, the first six
letters are a group of three repeated and none are the same as the corresponding encrypted
letters.

The Allies were fortunate in getting some information shortly after the start of the war on the
wiring of the standard rotors and the method of operation. (Some of the details of this remain
secret, although it is clear that considerable help was provided by the Polish intelligence service.)
Hence once the indicators were broken, all that day's traffic could be de-encrypted.

21.4  Electronic encryption

The Enigma system is an example of the use of an algorithm for encoding messages. Modern
systems exploit the power of large, fast, digital computers. This enables them to carry out far more
complex encryption schemes, and produce codes which are harder to crack. It remains true,
however, that any deterministic method of coding can  � in principle � be broken. The main
object of modern systems is to devise systems which are easy to use but extraordinary hard to
break. For practical purposes it doesn't matter if an encryption can be broken after 10,000 years
of effort! 

The simplest digital encryption systems rely on digital random number generators like the shift
register system described in the last chapter. The message sender and receiver arrange to use
similar systems starting in the same state and use the string of bits their generators produce as
electronic one time pads. In these systems the initial state of the random number generator
represents a Key to deciphering the signal. To crack such a message a codebreaker needs to know
both the encryption scheme and the value of the key. The indicator of the Enigma system was



Information and Measurement - 152 - Free PDF version (larger page)

used to tell the receiver the key for that particular message. 

Clearly, if a codebreaker knows the details of the encryption system, the signal can be broken as
soon as the key is discovered. For this reason, a system using a shift register of modest length isn't
very secure. The codebreaker can use the Brute Force Attack of trying every possible starting state
(i.e. every possible key) until finding one which turns the encrypted signal into a sensible
message. To avoid this, the encryption scheme should be capable of producing an enormous
variety of patterns. (i.e. a random sequence which only repeats itself after a very long sequence �
ideally infinite.) This would mean that trying every possible key would take far too long to be
worth trying unless the codebreaker is really desperate! For this reason chaotic and semi-chaotic
systems have attracted the interest of codemakers. 

Various encryption schemes have been devised during recent years. Here we will use as an
example a Trapdoor system of the general type outlined initially by Diffie and Hoffman (New
Directions in Cryptography, 1976). The specific example we will examine is the Rivest, Shamir,
Adelman (RSA) system. The name �trapdoor� comes from the analogy that it is easier to fall down
through an open trapdoor than to climb back up through it again. In this case, given the
appropriate information, the encryption method is designed to be easy in one direction and �
without the right key � virtually impossible in the other. The basic requirements of a trapdoor
system can be given in terms of four conditions which it must satisfy:

  i) There should be a Forward Algorithm, F, for converting an input message, X, into its
encoded form, Y, which uses some form of key, K, i.e.

Y = F {K , X } ... (21.1)

  ii) This encrypted message can easily be decoded given another key, L, (related to K) via
the appropriate Inverse Algorithm, I, i.e. 

X = I {L, Y } ... (21.2)

  iii) Without knowing the decoding key, L, it is computationally �impractical� to decode
the message (i.e. it should take far too long to make it worthwhile).

 iv) The number of possible key pairs, [K,L], is �very large� (i.e. it isn't worth trying each
possible L in turn because it would take too long to discover the correct value).

The difficulty of breaking such an encoding scheme now depends upon how well it satisfies the
third and forth properties. The terms, �impractical�, and, �very large�, in the above conditions
have been placed in quotation marks because they are rather difficult to define precisely. This is
because it isn't possible to devise a system which can be guaranteed to be invulnerable to attack.
The power of computing systems, and the skills of codebreaking mathematicians, tend to increase
with time. A code which was once considered unbreakable may soon fall victim to progress!

Any particular pair of functions or algorithms, F and I, are said to be symmetric. That is, F is the
inverse of I and I is the inverse of F. Well-designed trapdoor systems have a number of interesting
properties which can be very useful in practice. For example, it is possible to give someone the
encoding algorithm, F, and  key, K, without letting them know how to decode a message. This is
because the function, I, and the value of the decode key, L, aren't (or at least, shouldn't be!)
obvious from F and K. 

We can now imagine a situation where various people have devised their own, individual, forward
and reverse algorithms (equivalent to choosing a particular pair of [K,L] values),  and . Each
person can then freely publish the details of their particular forward algorithm (i.e., publish their

Fi I i
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key value ) with confidence that they remain the only one able to decode any messages sent to
them using that algorithm! The published value of  is then called their Public Key. The
corresponding inverse key value  which they keep secret is their Private Key.

K i

K i

L i

One particularly interesting property of these systems is that it is possible to �sign� messages. To
see how this works, consider the situation where a sender, A, wants to communicate a secret
message to a receiver, B,  and also wants to give B proof that the message cannot have come from
anyone but A.

Each of them chooses their own function/algorithm pair, F and I (i.e. selects their [K,L] pair).
They both then publish their forward algorithms. A takes his message, X, and initially encodes it
into a new form, Y, using his own inverse function

Y = I a {X , La} ... (21.3)

he then re-encodes this using the receiver's public forward algorithm into 

Z = Fb {Y , K b } = Fb {I a {X , La} , K b } ... (21.4)

and the message is then transmitted in the form of the signal, Z. Now, even if it is received by
anyone else, only the intended recipient, B, has the inverse function, , to recoverI b

I b {Z , Lb } = I b {Fb {I a {X , La} , K b } , Lb } = I a {X , La} = Y ... (21.5)

Having converted the message back into the form, Y, the receiver can now use A's public key to
perform

Fa {Y , K a} = Fa {I a {X , La} , K a} = X ... (21.6)

and obtain the original message. Given that only the sender possesses , the message must be
genuine if it can be de-encrypted using . Similarly, the message is secure from eavesdroppers if
only the intended receiver, B, possesses . Hence it is possible to send a secure, signed, message
even though  and  (and hence ) are public knowledge. 

La

Fa

Lb

K a K b Fa {} and  Fb {}

In the RSA system the algorithms reply upon the properties of prime numbers. To design a
particular coding scheme we must first choose a pair of �large� prime numbers, P and Q, which we
use to calculate the number

N = PQ ... (21.7)

Next, we select another �large� integer, R, which is prime relative to (i.e neither is a factor of the
other) the integer

S = (P − 1) (Q − 1) ... (21.8)

We should now find that there is just one number, E, in the range , which is such that1 ≤ E ≤ S

(ER ) MOD S = 1 ... (21.9)

having found this value we can publish the number, E, as the public key for our personal
algorithm. R is the secret key kept for deciphering messages. (Note that the enciphering and
deciphering processes must also agree on the value of N. This is also therefore �public
information�.)

The message sender and receiver now agree to represent each possible message symbol as an
integer, , in the range . For text messages each symbol can be a collection of two or
more successive letters from the message. Each message symbol is then converted into an
enciphered signal symbol

x i 1 < x i < N

yi = x E
i MOD N ... (21.10)
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The received message can then be deciphered using

x i = yR
i MOD N ... (21.11)

Here 21.10 and 21.11 are the forward and reverse algorithms. Clearly, these calculations are fairly
quick and easy given a decent computer provided that you know the correct value of R or E. The
problem for codebreakers is that, when P and Q are very large it can be �very difficult� to discover
the value of R  from knowing N and E.

For this system to work well it is important to bring together the message symbols into groups
large enough to use as many as possible of the available N integer values. For example, a system
which just used the 256 ASCII codes for text wouldn't make effective use of a system where N
≈100 000 since only a few of the codes would be used. Instead, it makes sense to group pairs of
letters of the message to make 256 × 256 = 65,536 message symbols � hence using over half the
possible integers. The reason for this is that the RSA system we've described is just a very
sophisticated substitution code. We must therefore ensure that N is much bigger than the length
of the signal traffic. Otherwise the signals may be vulnerable to straightforward entropic attack.

Summary

You should now understand how simple Substitution encryption works and why it is vulnerable to
Entropic Attack. That we can protect encrypted signals from attack be combining the message
information with a string of randomly varying values. As a result, systems which employ �true
random numbers� cannot be deciphered without knowledge of the random number sequence
used. You should now also understand that the practical problems of secretly transferring true
random One Time Pads (or their equivalent) can be avoided by providing the transmitter and
receiver with an agreed Randomising Algorithm which enables then to generate the same,
apparently randomly varying, sequences for enciphering/deciphering information. However, it
should be clear that these methods never produce true random sequences, hence it is possible to
break the codes given enough information about the algorithm used. 
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Chapter 22

One bit more

22.1 Problems with many bits

In Chapters 9 to 11 we saw how CD systems work. One of the subjects this included was the use of
multi-bit digital-to-analog convertors (DACs) to turn the digital values back into an analog
waveform. For various practical reasons it's difficult to make accurate multi-bit DACs. Figure 22.1a
illustrates a system which takes an input voltage, converts it to an n-bit digital value, and then
turns that value back into an output voltage. This represents a sort of �minimal� digital
information communication system. 

V i n

V out
n-bit
ADC

(perfect)

n-bit
DAC

V in V out
n-bit digits

Monotonicity
errors

Systematic
distortion
error

Perfect
DAC

Signal transfer using ‘back to back’ ADC−DAC pair.Figure 22.1

22.1a  ADC/DAC ‘communication system’

22.1b

22.1c 22.1d

The ability of the system to transfer a signal from input to output can be represented by a graph
showing how the output voltage, , from the DAC varies with the input voltage, , presented
to the analog-to-digital convertor (ADC). A plot of this kind is called the Signal Transfer Curve of
the system. For a perfect matching ADC/DAC pair we would expect the system to have a
�staircase� transfer curve of the kind illustrated in figure 22.1b. The steps of this staircase are
produced by the quantisation produced when the ADC represents each input voltage as an
appropriate digital value. For an ideal system all the steps should have the same heights and
widths. The resulting staircase shape is said to be Monotonic.

V out V in

Multi-bit DACs use a variety of techniques to convert digital values back into an analog voltage.
Unless they're perfectly made, these produce two general sorts of errors. Figure 22.1c illustrates
the effects of Monotonicity Errors. Here, imperfections in the DAC mean that some input digital
values produce incorrect output voltages. The effect of this is to lift or lower some of the steps in
the transfer staircase. Another type of problem is illustrated in 22.1d. This shows an overall or
Systematic nonlinearity where imperfections in the DAC cause the output voltage to be wrong by
an amount which varies relatively smoothly with the input. Both types of imperfection will cause
the output signal to become distorted. 

One way to avoid this distortion is, of course, to make and use very good ADC/DAC chips! This
solution is OK for the music companies who can afford to spend thousands of pounds on ADCs.
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They can also afford to employ technicians to regularly check the ADCs and replace/adjust them
if they aren't working properly. However, those of us who just want to buy and play CDs expect
the player to work well without being outrageously expensive or requiring regular adjustment.
The DAC systems in CD players should therefore be reliable, accurate, and (relatively) cheap. 

As we saw in chapter 8, Dither can be used to suppress the effects of the basic staircase quantisation
provided that it is applied before an original analog signal is digitally sampled.  Dither can also be
used to reduce the effects of monotonicity errors in either the ADC or the DAC. It does this by
producing a result which is effectively �averaged over� a number of levels, essentially smoothing
over small-scale errors. The bad news is that dither can't totally remove monotonicity error
distortions. The good news is that � unlike the dither used to suppress ADC quantisation effects
� dither added to the digitised signal before digital to analog conversion can reduce
monotonicity error problems. In a practical example like the CD audio system this means that
dither has to be added during recording to remove quantisation effects, but the CD player can
employ dither to reduce any tendency it has to distort the signals it recovers from the CD. This is
one of the reasons why some manufacturers proudly boast that their CD players �use dithering� to
achieve improved performance. 

In practice all multi-bit DACs will suffer from monotonicity errors at some level, however small.
To avoid this problem altogether many modern CD systems employ one-bit digital to analog
conversion systems. This chapter will examine how these work as they make an excellent example
of how information can be converted from one form into another without loss.

22.2  One bit at a time

A conventional 16-bit DAC can output 216 different output voltages, each corresponding to a
different input digital value. A one-bit DAC can only produce 2 possible output voltages � �high�
or �low�. Figure 22.2 illustrates how a typical one-bit system works.

1-bit
Quantisation

Z i

V z V out

Analog
signal
driver

R

C

Stream of
digital data.

Z iDigital output,

time

‘1’

‘0’

t

T

Basic ‘one-bit’ DAC  system.Figure 22.2

V zOutput from signal driver,

time

V r e f

−V r e f

t

T

The system uses one digital line, , which will either be �high� (=�1�) or �low� (=�0�) at any instant.
This digital level is used to operate an Analog Signal Driver � an amplifier whose output is
when  and  when . The choice of the value  isn't important provided it
is constant whilst the circuit operates. 

Z i

+V r e f

Z i = �1� −V r e f Z i = �0� V r e f

The digital output consists of a stream of pulse �cycles� with a period or interval, T. The duration
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or width of each pulse is t. The output from the driver is passed through a time constant (or some
other low-pass filter) chosen so that . We can think of the input waveform, , as being a
combination of a d.c. level plus some a.c. components which give the pulse shape. The output
voltage, , at any moment will therefore roughly equal the value of  averaged over the most
recent pulse cycles. 

RC ≫ T V z

V out V z

Now the average value of  during one pulse cycle will beV z

〈V z〉 =
t V r e f − (T − t ) V r e f

T
... (22.1)

where the angle brackets indicate that we're talking about an averaged or smoothed value. We can
therefore expect that

V out ≈
t V r e f − (T − t ) V r e f

T
... (22.2)

which can be simplified into the form

V out ≈
V r e f (2t − T )

T
... (22.3)

As a result � provided the value of  is large enough � the filter will smooth out the pulses
and the output will be a d.c. level whose value depends upon the ratio . Since t can't
be less than zero or greater than T this means we can obtain any output voltage we wish in the
range  by choosing appropriate values for the pulse width, t, and the cycle
period, T. 

RC
(2t − T ) / T

−V r e f ≤ V out ≤ V r e f

Low-pass filter

Pulse width modulation.Figure 22.3

t

T
Pulse Width Modulation (PWM)

0

V r e f

−V r e f

0

Output

V r e f

−V r e f

t =
T (V s + V r e f )

2V r e f

V z

0

Input Sinewave

V r e f

−V r e f
V s

Two basic methods which use this technique are Pulse Width Modulation (PWM) and Pulse Density
Modulation (PDM). Figure 22.3 illustrates the use of PWM to convey information which can be
converted back into an analog sinewave. Here the pulse cycle period, T, is kept constant and the
pulse width is varied according to the signal voltage level,  , we wish the system to output. Since
we require the final output level to equal  we can rearrange equation 22.3 and say that

V s

V s

t =
T (V s + V r e f )

2V r e f
... (22.4)

PDM keeps the pulse width fixed and alters the cycle period to achieve the required smoothed
output voltage level. In this system we therefore require
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T =
2V r e f t

(V s + V r e f )
... (22.5)

This produces the kind of signals illustrated in figure 22.4

Low-pass filter

Pulse Density Modulation (PDM)

0

V r e f

−V r e f

0

Output

V r e f

−V r e f

Pulse density modulation.Figure 22.4

T t

T =
2V r e f t

(V s + V r e f )

Vz

Both PWM and PDM are used in data telemetry/communications systems to send information
about analog levels in the form of a �digital� signal � i.e. one whose level is either �1� or �0� at any
instant. These forms of signal and the circuit which converts them back into analog form are
called �one-bit� since only two possible levels are involved. In practice PDM has a disadvantage
that the pulse interval becomes very long when . This means that the a.c.
components of the signal then extend to low frequencies and may not be very well suppressed by
the output filter. Hence PWM is usually preferred.

V s → −V r e f

Perhaps the simplest way to make a CD player one-bit DAC is the method illustrated in figure
22.5. Here  represents the series of 16-bit values recovered from the CD (for simplicity we'll
only consider one channel). The subscript, , indicates which sample in the series we're
considering. So the samples appear in the regular sequence,

 etc � CD sample values are integers in the range +215 to (�215+1). For this
particular form of one-bit DAC to work we have to begin by adding 215 to each sample value to
produce the �shifted� values , which are all in the range 0 to +216. The shifted 16-bit sample
values, , are then loaded into a Down Counter. This counter is driven by a clock whose period is

, where T is the time interval between successive samples. Each clock pulse or �tick�
makes the counter reduce it's stored value by one. The counter provides a one-bit output,  ,
which is �1� whenever the value stored by the counter is greater than zero. When the steady
countdown reaches zero,  is switched to �0� and this halts the counting process. As a result, each
input sampled value loaded into the counter produces an output �1� pulse whose width .
Higher (more positive) signal levels produce wider pulses and lower (more negative) signal levels
produce narrower pulses. The binary signal, , therefore represents the input stream of 16-bit
values converted into one-bit PWM form. Hence  should be the required analog music signal.

X i

i
...X (i − 2)) ,  X (i − 1) ,  X i  ,

X (i + 1) ,  X (i + 2) ,

X i ′
X i ′

t c = T / 216

Z i

Z i

t = X i ′t c

Z i

V out
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Simple PWM one-bit DAC system.Figure 22.5

In practice this type of one-bit DAC would be difficult to make work well. The main reason for this
is that, for CDs, the sampling interval T = 22·675 µs. This means that the countdown clock
required would have a clock interval of ns. This means a clock frequency

 of 2·89 GHz! Clock oscillators and digital logic operating at this high frequency are
currently too expensive for use in consumer products (although this may, of course, change in
the future). As a result this method isn't suitable for normal domestic systems. Another problem is
that we would require an excellent output filter to pass the required audio information whilst
blocking the high frequency pulse shapes. This difficulty could be eased by Oversampling to
increase the input sample rate and hence reduce T. However this would also increase , making
the system even less practical for normal applications.

t c = T / 216 = 0·346 
f c = 1 / t c

f c

22.3 From many to one

To overcome the problems described above we need to make use of the oversampling and Noise
Shaping techniques we met in an earlier chapter. Most CD player manufacturer like to devise their
own way to perform this operation � and, naturally, their newest way is always the �best�. For this
chapter we will take one method, the use of a Delta-Sigma (or �∆Σ�) DAC. Before looking at this in
detail it's worth making a general point about systems which oversample and change the �number
of bits per value� of a stream of digital data.

In previous chapters we saw how the first generation of Philips DACs used 4× oversampling to
permit the use of a 14-bit DAC to recover all the input 16-bit information. In general, we can
describe a p× oversampling and noise shaping system as taking in m samples per second and
generating  output samples per second. Each input sample will have n bits and each
output value will have  bits. The rate at which bits of information enter the oversampler will
therefore be . The rate at which they emerge will be . From the basic arguments of
information theory we can expect that � provided the system works in a sensible way � no
information need be lost provided that . This is because the amount of information
conveyed in a given time depends upon the rate of bit transfer. The effect of having fewer bits per
sample can be counteracted by having more samples. On the basis of this argument we can expect
that a system which oversamples by at least 16× should be capable of providing a stream of 1-bit
output values which carry all the information from an input stream of 16-bit samples. In practice
� as we might expect � it is normally advisable to ensure an Oversampling Ratio which ensures
that  is significantly greater than  to avoid effects of any imperfections in the signal
conversion process.

m ′ = pm
n ′

m n m ′n ′

m ′n ′ ≥ m n

m ′n ′ m n

22.4 First order delta�sigma conversion

Figure 22.6 illustrates a First Order Convertor. Here  represents the initial input stream of 16-∆Σ X i
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bit integer values coming from the CD. These are passed through a Transverse Digital Filter similar
to that described in an earlier chapter. This produces an oversampled stream of values,  which
is presented to a ∆ (or �difference�) unit. This compares the current oversampled value with the
single output bit, , currently emerging from the convertor. For this part of the circuit  is
treated as the �most significant bit� of a binary number having the same number of bits as each
oversampled value � i.e. for, say, 4-bit values,  �high� would be treated as +23 and �low� as

. The ∆  unit subtracts the value of  from  and passes the result,  , on to a Digital
Integrator.

X i ′

Z i Z i

Z i

(−23 + 1) Z i X i ′ Y i

Transverse Digital Filter
& Oversample Generator

X i

X i ′

Σ+
+

∆+
−

T ′

1-bit
Quantisation

Digital integrator

Y i I i

I i − 1

Z i

V z

V ou t

Analog
signal
driver

R

C

First order delta−sigma DAC system.Figure 22.6

Input digital data stream

The integrator consists of a Σ (�sum�) unit and a delay gate. The delay feeds the output from the Σ
unit back to its input, but delays it for one oversample clock interval. As a result, the output from
the digital integrator  , i.e. the sum of the current input to the Σ unit and the
�previous� output value. A steady input to this arrangement would cause the output to change
steadily at a rate proportional to the size of the input, hence the combination of the Σ unit and
the delayed feedback behaves as an integrator.

I i = Y i + I (i − 1)

The output from the integrator is passed to a unit which simply tests whether the result is greater
than zero or not. If  then it sets . If not, it sets . This output value is then
used to control the output driver and fed back to the input ∆ unit. The behaviour of this system is
illustrated in figure 22.7. Note that the conversion process shown has deliberately been done too
poorly for ideal conversion of 16-bit input values. This is to help make clear the characteristics of
this form of DAC. The example only uses 8× oversampling whereas at least 16× would be required
for no information to be lost. Also, the output filter does not reduce the effects of driver pulses
very much. A better output filter and a higher oversampling ratio would produce a much more
accurate output analog sinewave.

I i > 0 Z i = 1 Z i = 0
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X i

Z i

V out

8 × oversampling first order delta−sigma DAC.Figure 22.7

Output from the lowpass filter.

4kHz sinewave sampled 44100 times per second

1-bit output from 8 × oversamples passed through 1st orderDS

Examining figure 22.7 we can see that the output has the correct form, but has a high frequency
�frizz� error pattern superimposed upon it. Note that this error pattern essentially consists of
frequencies between 4× to 8× the basic sampling rate and above. Hence this unwanted addition to
the signal is at frequencies well above the audio range and could largely be removed by a better
output filter. A higher oversampling ratio would increase the frequency of this error pattern and
reduce its amplitude, making it easier to filter the unwanted �frizz� off the wanted audio
waveform. Current generations of Bitstream DACs (Philip's name for their one-bit systems) use
256× oversampling. As a result, the output error patterns they produce are mainly at frequencies
around 256 × 44·1 kHz = 11·289 MHz and above. These frequencies are far enough from the
audio band to be removable with relatively simple low-pass filters.

22.5 One last bit of chaos!

The first order ∆Σ considered above is the simplest member of a family of delta�sigma convertors.
Figure 22.8 illustrates a second order ∆Σ DAC.
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Second order delta−sigma DAC system.Figure 22.8
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Second order ∆Σ convertors are generally preferred to first order systems. This is mainly because
their Idler Pattern behaviour is better.

The idler pattern is the output pattern of �1�s and �0�s the DAC generates to produce a steady
analog output level. Figure 22.9 illustrates some idler patterns produced by a first order ∆Σ DAC
which has a 6-bit range. (That is, the maximum +ve output corresponds to .) The top line
shows the output pattern when the system is switched on and presented with a series of
values. The result is a series of alternating �1�s and �0�s. The lines below show the effect of
increasing the input series of number to +4, then back to 0, then to �6, then to 0 once more.

X i = 25

X i = 0

In each case the output series will, when averaged over a reasonable time, give the correct value.
However, this illustration shows two effects. Firstly, that an output of zero makes the DAC
generate a repetitive squarewave sequence, ��10101010101��. Secondly, that this sequence
reappears whenever the input signal returns to 0. Note that values of  near to zero also produce
waves which spend a large fraction of the time behaving like a ��10101�� squarewave. These
patterns tend to concentrate their high frequency energy into a few strong frequency
components. As a result we require a good low-pass filter to suppress them to the �100 dB level
required to ensure the full dynamic range of a CD system. In addition, the highly coherent,
repetitive nature of these patterns means that, if they are �mixed� or combined with any other
repetitive signal, a low frequency �whistle� may be produced in the audio output. Unwanted
whistles of this kind can appear as a result of nonlinear beating with clock harmonics or with rf
interference from other equipment.
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Output ‘idler’ patterns from a first order delta−sigma DAC.Figure 22.9

To avoid these effects we require a DAC system which produces idler patterns which are more
variable. Figure 22.10 illustrates some idler patterns produced by a second order ∆Σ DAC.

Note that in this illustration all the patterns shown are produced with an input series of
values. The top line of the illustration shows the pattern produced when the system is switched
on. Each of the lines below it were produced after the  values had been moved away from 0 for
a while and then returned to 0. From this illustration we can see that the second order system can
generate a wide variety of idler patterns when required to produce a steady analog output of zero.
In principle, any pattern of �1�s and �0�s can be produced provided that on average the numbers
of each in a long time are equal. The pattern the system settles on depends on it's �recent history�
(i.e. the values stored in its integrators) when the input series returns to zero.

X i = 0

X i
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Typical idler patterns of second order delta−sigmaFigure 22.10

DAC (all examples for               ).X i = 0

This variability of the idler pattern also applies to other, non-zero, series of  values. It means
that the second order system tends to produce an idler pattern which varies from time to time. As
a result, the unwanted high frequency spectrum of the idler pattern tends to consist of a large
number of low-power frequency components and this spectrum changes from moment to
moment as a signal is recovered. This tends to �blur out� any unwanted mixing problems and
hence the effect is to slightly alter the noise background of the audio signal. This effect is
undesirable, but not as objectionable as unwanted whistling noises! 

X i

There is a measure of �unpredictability� in which idler pattern a second order system will produce
since the pattern depends upon the system's recent history. Third (and higher) order ∆Σ systems
can also be made. These take this variability further and tend to produce Chaotic idler patterns. In
itself, this behaviour is desirable since it ensures that idler-produced whistles become impossible.
Unfortunately, high order systems sometimes become so unstable that the values stored in their
integrators rise until they overflow the register sizes. This can produce disastrous signal distortion,
hence higher order systems must be used with great care. (Fortunately, methods do exist to
�stabilise� them and avoid this effect.)

Note that the second order system does sometimes produce a regular idler pattern (a
squarewave). To prevent this being a problem, commercial systems usually deliberately add a
dither pattern to the the  values fed to the DAC. This tends to �break up� any repetitive
behaviour � in effect it produces a DAC whose order is �two-and-a-half�! The idler pattern this
produces is semi-chaotic. The system remains stable and should not produce integrator overflows.

X i

Summary

You should now know that Multi-Bit DACs can suffer from practical problems of Non-Monotonicity
and Systematic Errors which can distort the output waveform. That these problems can be avoided
by using a One-Bit DAC system. You should now also understand that any digital system which
takes an input of m samples/sec, each n bits long, and outputs  samples/sec, each  bits long
can ensure that no information is lost provided that . 

m ′ n ′
m ′n ′ ≥ m n
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You should now understand how Pulse Width Modulation (PWM) and Pulse Density Modulation
(PDM) can be used to generate a wave which can be averaged to obtain a required analog signal.
That this principle of averaging over a pattern of �1�s and �0�s can be used to recover an analog
signal from other one-bit systems. You should also now understand that simple PWM/PDM
systems aren't currently suitable for CD players. That ∆Σ DACs can work well using a combination
of noise shaping by Digital Integrators, and oversampling. That second order ∆Σ systems are
preferred because they have less regular Idler Patterns, and that higher order ∆Σ systems can
behave in a chaotic, unstable pattern.
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Chapter 23

What have we here?

23.1 Distinguishing messages

In many of the previous chapters of this book we have been concerned with the need to be able to
distinguish messages from random noise. We have also spent time looking at assessing the
information content of messages and the information capacity of channels. One important topic,
however, we have taken for granted. Up until now we have assumed that we can easily tell one
message from another. We have also tended to take for granted that the chosen patterns or
symbols in use can be easily distinguished from one another.

What is it that makes it possible to distinguish one message from another, and how can we choose
a system that maximises our ability to recognise the meaning of signal patterns when they arrive?

Patterns for sending messages.Figure 23.1

...

etc ...

Pattern library

Typical message pattern

�A� �B�

�C�

�T�

�A��C� �T�

In human terms, we tend simply to look at patterns and �recognise� them. In effect this means we
have a sort of mental library of patterns which we associate with given meanings. Figure 23.1 gives
an illustration of this process. Here each letter of the alphabet is represented as a specific pattern.
In this case we can imagine each pattern as showing how a received quantity � e.g. a voltage �
varies with time. We then compare a message when it is presented to us and choose the patterns
in our memory which seem �closest� to what has been presented to us.  In this case, when we look
at the message pattern shown an an example in figure 23.1 we can compare it with the library of
patterns for the letters and recognise the message as being �CAT�.

This is all very well when we are happy to recognise message patterns or symbol shapes by eye.
More generally, however, we need to be able to define, mathematically, what sort of process takes
place when we are identifying and recognising patterns. There are number of reasons for this. For
example, we may get bored and want to automate the message recognition process. In practice we
may want the messages to control equipment, or to send data at high rates, etc. In addition we
may find that the received messages aren�t always easy to recognise.
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A message altered by noise.Figure 23.2

RX SNR =  2.00 dB

‘?’

Figure 23.2 illustrates this situation. Here the pattern for just one letter has arrived. Which one is
it? If we compare, by eye, figure 23.2 with the library shown in figure 23.1 we can decide that it is
most probably a �B�, but it isn�t easy to tell, and the presence of the added noise may mean that
we have made an error. In all real signal transfer systems we can expect some random noise to be
present, so we need some objective, mathematical, way to take the signals as they arrive and
compare them with our library. This can then serve two primary purposes. Firstly, to speed up and
automate the process. Secondly, to help us assess how likely it is that we have identified the right
message. 

There is also a further useful advantage to employing a mathematical approach as it then helps us
to decide how we can choose the �best� library of patterns to aid the recognition process. When
recognising them by eye, the best set of library patterns would be chosen so that they all looked as
different to one another as possible. We will see later what �best� means here in a more objective
mathematical sense.

23.2 Correlation

The standard mathematical technique that is employed to compare patterns and assess how
�similar� they are is called Correlation. Given a library of continuous functions, , (i.e. a set of
functions;  to define the pattern for �A�,  to define the pattern for �B�, etc.), we can
define the correlation of each of these with some input, , using the integral

L i {t }
LA {t } LB {t }

x {t }

C i ≡
1

αi ∫
T

0

x {t } L i {t }  d t ... (23.1)

By performing a series of these integrals for each  in our library we can obtain a set of
values which we can then use to help us decide which � if any � of the library patterns is most
similar to . The term, , is a Normalisation factor whose value may be defined using the
expression

L i {t } C i

x {t } α

αi ≡  
∫

T

0

x 2 {t }  d t 


× 
∫

T

0

L i {t }  d t 


... (23.2)

This ensures that any values we obtain are always in the range

−1 ≤ C i ≤ +1 ... (23.3)

Normalisation is convenient as it means we can concentrate on similarities between the shapes or
patterns without having to worry too much about their amplitudes or lengths.
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Multiply together library patterns and input.Figure 23.3
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x {t }

x {t } LA {t }

x {t } LB {t }

x {t } LC {t }

To illustrate why the correlation is useful we can examine figure 23.3. This shows the results we
get when we try multiplying the input pattern by each of the library patterns. Looking at each of
the results we can see that the pattern for  is distinctive in that the result is generally
positive (or zero). The patterns obtained by multiplying the input by other library shapes all tend
to fluctuate in both the positive and negative directions with no obvious preference.

x {t } LB {t }

This tendency for one result to be positive is quite significant. It indicates that the two patterns
being multiplied together tend to share the same sign at every instant. It also means that the
integral of  tends to give a distinct positive result. Integrating the other output
patterns, for , etc., tends to give values of much smaller magnitude which are just as
likely to be negative as positive. This difference in behaviour makes the result of integrating

 stand out from the crowd, indicating that we may have identified a special
relationship between the noisy input  and the pattern for �B�, . Hence we can use it as
a way of recognising that in this case the pattern, , is probably that which signals a �B� despite
the noise which disguises this fact.

x {t } LB {t }
x {t } LA {t }

x {t } LB {t }
x {t } LB {t }

x {t }

In practice, we would often sample the signals and patterns, and then use numerical summations
rather than integrals. Theoretically, this gives the same results as if we had used (as indicated in
figure 23.3) analogue multipliers on the waveforms, but given the power of digital computers this
sample-based method is usually more convenient in practice. It also makes the argument for what
is happening slightly clearer, so we can adopt the approach here.

When dealing with series of sampled values we can define the correlation between a pair of
patterns in terms of a series

C {x , y} ≡
1

αx y
∑

N

j = 1

x jyj ∆t ... (23.4)

where the information in one pattern is now represented by the series of values
 each of which records the level of the pattern at a time  from the start of

the pattern. In a similar way, the other pattern�s information is represented by the values
 taken at the same moments. As we have seen in earlier chapters, these series

can hold all the information about the original patterns provided that the sampling interval, , is
small enough to ensure that we have satisfied the sampling theorem.

x 1,  x 2,  � x j,  � x N j∆t

y1,  y2,  �,  yj,  �,  yN

∆t

In terms of these sets of sampled values the normalisation factor will be
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αx y ≡ ∑
N

j = 1

x 2
j  ∆t × ∑

N

j = 1

 y2
j  ∆t ... (23.5)

Before considering the specific patterns in the example illustrated earlier it is useful to
understand the general properties of this numerical correlation. Once these are understood the
results which arise when we use correlation for pattern recognition should become clear.

Combining expressions 23.4 and 23.5 we can say that

C {x , y} ≡
〈x jyj〉

〈x 2
j 〉 ×  〈y2

j 〉
... (23.6)

where the angle brackets are used to indicate a quantity averaged over the  values of each
summation. The actual value of , and that of  have vanished from expression 23.6 as the were
present in both denominator and numerator and hence have been cancelled out and removed.

N
N ∆t

The above expression is simpler than those given earlier, so it makes the properties of the
correlation clearer. For example, we can see that the normalisation term is essentially the product
of the rms levels of the two series. The effect of the normalisation is therefore to produce the
same result as would occur if the input patterns happened to have rms levels of .
To further simplify the argument we can therefore assume that the levels have been prearranged
so that this is the case.

〈x 2
j 〉 = 〈y2

j 〉 = 1

The precise result we obtain will obviously depend upon the details of the sets of values,  and .
We can however obtain some general conclusions based upon assuming that the patterns we have
sampled are intended to efficiently communicate information. From previous chapters we already
know that an efficient signal has statistical properties similar to those of random noise. The above
normalisation implies that the most typical level of  and  will also be unity since they are
the square root of unity. Hence the most likely value, statistically, of  will also be around
unity. 

x j yj

| x j  | | yj |
| x jyj |

When calculating the average value of  we now say that there will be  contributions, each
having a typical magnitude of unity, but with an actual magnitude and sign which varies randomly
from sample to sample. As a result, when the patterns are unrelated, the most probable value of
the sum of this product will statistically be

x jyj N

∑
N

j = 1

x jyj ≈ N ... (23.7)

in effect, this is an example of random, incoherent, addition, so the level only tends to grow as the
square root of the number of contributions. When we divide the sum by the number of
contributions to obtain the mean level we therefore obtain a most probable result of

C {x , y} ≈
N

N
=

1

N
... (23.8)

Note that this only indicates the most probable magnitude of the result. The actual value can vary,
and is just as likely to be negative as it is positive. When correlating two unrelated patterns whose
amplitudes have already been normalised to  it is probably better to regard the
result as being

〈x 2
j 〉 = 〈y2

j 〉 = 1

C {x , y} ≈ ±
1

N
... (23.9)

to make it clear that result is really the most likely size for a range of possibilities. Pairs of patterns
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which produce results like this are said to be Uncorrelated as the calculation indicates that they are
unrelated.

23.3 The effects of noise

Now consider what happens where there is a relationship between the input pattern, , and the
pattern, , which we are correlating it with. For clarity we can now define the input to be

x j

yj

x j ≡ βyj + n j ... (23.10)

i.e. the input has two components, one being a scaled version,  of the signal pattern we are now
comparing it with, the other being random noise, represented by the series of value, . As before,
for the sake of simplicity we will assume that we have scaled the patterns so that they are
normalised to . The correlation now has the form

βyj

n j

〈x 2
j 〉 = 〈y2

j 〉 = 1

C {x , y} =
1

N





 ∑

N

j = 1

βy2
j + n jyj 






... (23.11)

The first term represents the part of the input, , that has the same pattern as the series, , we
are correlating it with. Hence it produces a value which is just equal to . The above is therefore
equivalent to

x j yj

β

C {x , y} = β +
1

N ∑
N

j = 1

n jyj ... (23.12)

The second term is a summation of the series of  values. n jyj

Since we can expect the random noise pattern, , to have no relationship with the pattern of, ,
this is similar to the result given in expression 23.7. However in that case we were correlating two
patterns whose sizes had already been scaled to ensure that . We have not scaled
the size of the series, , in this way. In this case, therefore, we find that

n j yj

〈x 2
j 〉 = 〈y2

j 〉 = 1
n j

1

N ∑
N

j = 1

n jyj ≈ ±
〈n 2

j 〉 × 〈y2
j 〉

N
... (23.13)

This is really just a more general form of the result used earlier. As before, we have pre-set
, so we can say that the above means that〈y2

j 〉 = 1

C {x , y} = β ±
〈n 2

j 〉
N

... (23.14)

In the absence of any noise contribution we would expect  and all . The result
would be a correlation value of unity and we would say that the  and  patterns were perfectly
Correlated. We would then use this as evidence to unambiguously say that the patterns  and
were the same.  The presence of the noise alters this in two ways. To understand these it is useful
to notice that expressions like  essentially indicate the �mean power� of the patterns.

β → 1 n j → 0
x j yj

x j yj

〈x 2
j 〉

The first consequence of the presence of the noise is that the signal pattern, , now only
provides a fraction of the total power of . It actually provides just  of the total. Since we have
scaled the size of the  values to get unity total power from the input combination of signal plus
noise, we can say that

βyj

x j β2

x j

〈x 2
j 〉 = β

2 〈y2
j 〉 + 〈n 2

j 〉 = 1 ... (23.15)
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Since we also know that we have arranged for  and we have a non-zero noise power it
follows that  will have a value less than unity, and that the greater the noise level, the smaller
will be. The primary effect of the presence of the noise is therefore to reduce the typical level we
get when we correlate a signal with the �correct� pattern that it contains since we are seeking a
correlation value approaching unity as a sign that we have identified the signal pattern.

〈y2
j 〉 = 1

β β

The second consequence of the presence of the noise can be seen by looking again at expression
23.14. The second term in that expression indicates that there will be a level of uncertainty or
error in the value obtained by performing the correlation. This is just the usual, inevitable, result
we would expect from the basic ideas of Information Theory. i.e. having made a �measurement�
(in this case a test to see if a specific signal pattern is present) we can expect some level of
uncertainty in the result due to the presence of noise. This limits the amount of information we
can gather, in this case meaning we can never be 100% certain we have correctly identified the
signal pattern.

To assess this level of uncertainty we can make use of the value of  to link the input and output
Signal to Noise Ratios of the measurement process implied when we correlate the input against
the �correct� pattern.

β

From expression 23.15 it follows that the relative level of the noise must be such that
. This allows us to link the input Signal to Noise Ratio (SNR) of  (i.e. the power

ratio of the actual signal level,  to the noise power level of ) to the value of  via the expression
〈n 2

j 〉 = 1 − β2 x j

yj n j β

in ≡
β2

1 − β2

... (23.16)SNR

Looking back at expression 23.14 we can take the two terms and identify the first with the
detected signal level, and the second with the output noise level. Since Signal to Noise Ratios are
always power or energy ratios we have to square these to obtain an output result of

≡
N β2

1 − β2
= × N ... (23.17)SNRout SNRin

This result tells us that the correlation process enhances the SNR and this can help us to �pick out
a signal from noise�.

The value of the ratio  is often called the Process Gain. The longer the pattern
sequence, the higher the process gain, and the greater the improvement we can obtain. As a
result we can often begin with a situation where the �raw� or input SNR is less than unity (i.e. the
input signal power is less than the input noise power) and by performing a correlation with the
relevant pattern obtain a clear detection of the presence of the signal pattern with a final SNR
well above unity. Correlation is therefore a very valuable technique when we are seeking patterns
which may be submerged in noise, as well as when we want to reliably decide which pattern from
a possible set has arrived.

/SNRout SNRin

This improvement should not really be a surprise as it is very similar to results obtained in many
cases described in earlier chapters. The accuracy or confidence of the output rises with the length
of the sequences of values we have available. In fact Correlation is a process we have already met
in this book in various disguises. For example, the integration technique used for signal averaging
in Chapter 15 essentially correlates the input with the �pattern� of a steady level. Similarly, the
Phase Sensitive Detection process described in Chapter 16 is a way of correlating an input with a
square-wave pattern of a specific frequency and phase.
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Applying the arguments of the Sampling and Nyquist Theorems we can expect that a series of
values, , will form a complete record of a continuous pattern provided they represent the values
taken at instants less than  apart. In this situation a series of  samples will take up a
record duration of . This means that we can say that when considering continuous signal
patterns which arrive with superimposed noise, the value of the Process Gain will be equal to

x j

∆t = 1
2B N

T = N
2B

G P = N =
T

∆t
= 2BT ... (23.18)

When we wish to estimate the amount of SNR enhancement a correlation process will provide we
can now choose to use  for situations where we have sets of sampled values, or the signal�s
bandwidth and duration when dealing with continuous waveforms.

N

23.4 Signal recognition using correlation

Since Correlation can provide Process Gain we can use it to detect signals in the presence of a
noise power level which may be higher than the signal�s power level. This often means receiving a
noise-dominated input and searching it for one or more �known� patterns which are expected.
This raises two issues which we have to resolve in order to be able to recognise signals. Firstly, how
can we optimise our chances of being to tell which signal has arrived? Secondly, how can we tell
when a signal arrives when it is buried in noise? Let�s start with the first question.

It should be fairly clear from the previous sections of this chapter that we can hope to identify
which pattern has arrived by performing correlations and finding which of our library gives the
largest correlation value. To be able to do this as effectively as possible we�d like to arrange for
two things to be true. Fairly obviously, we�d like to arrange for the highest possible input SNR to
make the signal stand out from the noise. This being the case, we can hope to minimise the effect
of the noise on the correlated output when we find the right message pattern and get a
correlation value that approaches unity. However, in addition to this, we will also find it useful to
make the actual signal patterns as �different from each other� as possible. To understand what this
means, we can assume that the actual noise level is small enough to be ignored, and that the input
signal is a specific choice, , from our library, . To maximise detectability we want to
arrange � if we can � that

Lk {t } L j {t }

1

αi ∫
T

0

Lk {t } L i {t }  d t ≡ 0  k ≠ iwhen

1

αi ∫
T

0

Lk {t } L i {t }  d t ≡ 1  k = i ... (23.19)when

This means that, in the absence of any noise, we should find that only one correlation will give a
value of unity, when we happen to try the library pattern for which . All other correlations
will give a result of zero. This makes the �correct match� stand out as clearly as possible.

k = i

Sets of functions or series of values which satisfy expression 23.19 are said to be Orthogonal
functions or series over the interval of the integral or summation. Choosing such an Orthogonal Set
is therefore desirable when selecting the signal patterns we are using as they optimise our ability
to distinguish one message from another. In fact, we have already seen this behaviour in earlier
chapters as sinewaves and cosinewaves are used as the Orthogonal functions which form the basis
for Fourier Transformation.
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Signal hidden in a section of noise.Figure 23.4

time

Signal added to this section.

Noise
Input

0

t m

T

By choosing a suitable set of functions we can minimise the risk of one message being mistaken
for another simply due to their being �similar�. However, we still have to deal with the
uncertainties introduced by noise, and may often have the problem of recognising the time when
a signal has arrived if it is weak compared to the noise level. To see how we can deal with this
situation we can use the example illustrated in Figure 23.4. This shows a signal pattern, of
duration, , added into a random noise pattern at a location starting at time, . If the signal
power is low compared to that of the noise, the signal seems to �vanish� when we just look at the
raw combination. In addition, as an efficient signal, the signal�s pattern can be expected to have
statistical properties similar to those of the noise, so it has no obvious features that show when it
occurs.

T t m

The situation shown in figure 23.4 represents the situation which arises when we are monitoring a
communication channel, waiting for the arrival of a signal, but not knowing when it might arrive.
As before, we can consider the situation in terms of series of sampled values, but whilst doing so
bear in mind that similar arguments and conclusions will arise for continuous functions and
patterns.

We can now represent the input as a series of values, , which arrive at instants, . The signal
pattern we are looking for (which may be just one of many we look for in parallel) can be
represented as a series of  values, . Once more than  input values have
arrived we can collect a consecutive series of them, starting at an instant , and correlate this
with the pattern we are looking for. For clarity we can ignore the normalisation terms and just say
that the result will be a correlation value

v i j∆t

N y1,  y2,  �,  yj �,  yN N
p∆t

C {N , p} ∝
1

N ∑
N

j = 1

(yjv j + p) ∆t ... (23.20)

As new sample points (new input data) arrives we can repeatedly recalculate this value for new
values of  and correlate later and later sections of the input against the Key pattern(s) in our
library of possible signals, searching for a match that tells us which pattern has arrived, and its
time of arrival.

p

Now the noise won�t have any specific relationship with the patterns we are seeking, so, provided
that  is reasonably large, this usually won�t contribute a significant amount to the result of the
summation. Similarly, if the signal pattern is efficient, each of its values will be independent in
information theory terms from its companions. (This was discussed perviously at the start of
Chapter 8.) This has an important consequence which we can understand by considering
expression 23.21

N
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C {m } =
1

N ∑
N

j = 1

a ja j + m ... (23.21)

Here  represents the result of correlating the pattern  with itself, but with an offset, .
We know from earlier in this chapter that when  the correlated value will be unity if the
signal level has been normalised. However, when  we find that inside the summation we
are multiplying pairs of values which aren�t the same. Indeed, if the signal pattern is efficient we
can�t predict any one value in the series from any of the others. The offset therefore breaks the
relationship that causes the  correlation to give a distinct positive value. The result is as if
we were correlating to completely unrelated patterns!

C {m } a j m
m = 0
m ≠ 0

m = 0

Sliding CorrelationFigure 23.5

time

Signal added to this section.

Input

0

0
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t m

Correlation peaks when
aligned correctly in time.

The result is shown graphically in Figure 23.5 which plots  as a function of  below the
original input. The �hidden� signal only correlates constructively with the Key message pattern we
are looking for when we arrange that we take the set of values starting where .
Conceptually, we are essentially �sliding the key pattern along the input looking for a match�.
Hence this type of process is sometimes called Sliding Correlation. The clear peak when we start
with the value for which  shows both that the sought pattern has arrived and also
indicates when it arrived. (For clarity, figure 23.5 shows the square of  to indicate the
SNR of the result.)

C {N , p} p∆t

t m = p∆t

t m = p∆t
C {N , p}

In practice, the above process may be quite tedious to perform as it involves repeated summations
over products of large sets of values, which must also be redone for each of the possible message
patterns in which we have an interest. Hence the whole process may become computationally
intensive and take longer than we would wish. Fortunately, there are some more efficient ways to
perform the same process. The most common of these is the use of an FFT-based method. This is
based upon pre-computing the complex conjugate of the Fourier Transform of each  library
pattern and using these instead of the initial patterns. We then collect chunks of  samples from
the input signal as they arrive, Fourier Transform them, multiply these values by our new library
of transformed patterns, then inverse transform the result.

N

If one of the patterns we are looking for is present in the input, the result shown the same kind of
peak we see in Figure 23.5. Although the details are more complicated in practice than described
here, the system has one great practical advantage. It simultaneously tests for possible signals
starting at  time offsets. This method is therefore often preferred as being faster and easier than
the �brute force� method of repeatedly just calculating each Correlation in turn, for every possible
starting time.

N

In fact, there are a variety of ways we can search for signal patterns that are, in information theory
terms, equivalent to the methods described in this chapter. For example, when building analog
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circuits, another common method has been based upon what is called a Matched Filter. This  uses a
filter which has been designed to give the maximum possible response when it is fed one of the
patterns we are looking for. Parallel arrays or Banks of such filters can then be employed to
quickly scan an input looking for signals. This approach is used less often these days as it has been
overtaken by digital computations, but a numerical equivalent is still employed. In principle,
however, both the FFT-based and Matched Filter based methods are equivalent to simple Sliding
Correlation. The choice of method is simply for reasons of convenience, not for any abstract
theoretical reason.

Summary

You should now understand how Correlation can be used to identify when a specific signal pattern
has arrived, and can determine the time of arrival. It should also be clear how choosing an
Orthogonal Set of patterns maximises our ability to decide which of them has arrived when the
reliability of recognition is affected by noise. You should also now know what is meant by Process
Gain, and that this increases with the number of samples in (or the duration of) a signal pattern.
It should be clear that, as a result, Correlation provides a signal to noise enhancement which
increases with the signal length.
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Chapter 24

Time and frequency

24.1 The meaning of frequency

Many of the chapters in this book consider how we can accurately measure the shape or
amplitude of signal patterns. In practice, we often also need to perform time or frequency
measurements. These measurements can be performed in a variety of ways. However, before
looking at some examples it is worth asking, just what do we mean by the �frequency� of an input
signal? The reason for this question is that, surprisingly, there is more than one definition of the
term �frequency� and we may get different results from a measurement depending upon which
one the chosen technique assumes. There are three related problems which arise when we want
to define and measure the frequency of a waveform. To understand these we can start by
considering figure 24.1. This shows three signal pattern observations, each made over a finite
duration, .T 0

24.1a Many cycles in
observed signal duration

24.1b  Around one cycle in
observed signal duration

24.1c  Is this a part of
a sinusoid at all???...

Figure 24.1 Three signal patterns of finite duration that may

be sections from a sinusoid.

T 0

The waveform shown in 24.1a exhibits very clear signs of being a sinusoid with a fairly obvious
frequency and amplitude. The presence of a number of repetitive cycles provides a strong
argument for this. In comparison, 24.1b is less obviously a section of a sinusoid, although it still
seems a reasonable deduction. Finally, with the signal pattern shown in 24.1c it isn�t at all obvious
that the shape is a section taken from a sinusoid since � if it is � we have so limited a section as to
make the shape�s nature unclear.

In practice, all observations are limited to a finite length or duration. However we tend to
associate the concept of �frequency� with sinusoids which, by definition, extend over an infinite
duration. In Chapter 7 we saw how Fourier Analysis can be employed to obtain the Frequency
Spectrum of an input waveform or signal pattern. This technique was applied using the assumption
that we could always treat a pattern of duration, , as being Periodic and that it would repeat itself
after this time interval. Taking 24.1b as an example, this implies that the signal � if observed for
much longer than  � would look like the non-sinusoidal pattern shown in Figure 24.2.

T

T 0
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T 0

T 0

Figure 24.2 Extended waveform implied by assuming that the
finite section shown in 24.1b repeats every     .

In the absence of any other information this result is fine since we would then have no reason to
expect the �chunks� shown in Figure 24.1 to actually be part of a sinusoidal wave at other times.
Hence we would not need to worry that the three examples shown would all show quite different,
and complicated, spectra when analysed using Fourier Analysis as applied in Chapter 7. However
in each case the result has an �enforced� periodicity imposed by the assumptions which then
influences the results we obtain. This may conflict with any periodic behaviour inherent in the
signal itself and lead to a misleading result in some circumstances. To avoid this problem, we can
choose to make some alternative assumptions about the nature of the waveforms. 

By looking at the patterns shown in figure 24.1 we can decide to assume that they are, indeed, all
sections of a sinusoid. In some cases, instead of subjective recognition as the basis for such an
assumption, we may have some extra information about the way the waveform was generated
which tells us that it is reasonable to make this new assumption. Starting from this new basis, we
can now hope to find a way of determining the relevant sinewave�s frequency without being
confused by the effects of the chosen finite duration, , upon the observations. Note that when
we make this alternative assumption we aren�t actually varying the information content of the
signals, just interpreting the content in a more appropriate way. This underlines that the
assumptions we make, and the methods used for analysis, can alter the values we obtain as the
results of a measurement. In effect, we have changed our minds about what quantity we are
measuring.

T 0

The second problem which arises when we make frequency measurements is that the waveform
may obviously be repetitive, and have a clear period, but not be sinusoidal. Examples of some
waveforms like this are shown in figure 24.3.

Figure 24.3 Various waveforms with the same repeat period.
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As in the previous case, simply applying Fourier Analysis to obtain a spectrum on the assumption
that the pattern is periodic over the entire observed interval may not provide a satisfactory
measurement of the pattern�s �frequency�. In many cases like this we find it convenient to define
the frequency of the waveform to be the number of times its shape repeats per second. i.e. we now
define the frequency to be

f ≡
1

t p
... (24.1)

where  is the repeat period of the waveform. This definition of a signal pattern�s frequency is
more general than our previous one which assumed sinusoidal behaviour. However there are still
cases where we want to measure the frequency of a sinusoid, and will use the sinewave-based
definition.

t p

The third problem that affects frequency measurements is that the actual signal may not be
perfectly periodic. Either as a result of drift, or random noise, or deliberate modulation, the
frequency may change with time. The rest of this chapter will ignore deliberate frequency
changes and only consider random noise effects as these can be expected to limit the accuracy of
a frequency measurement. 

24.2 Time and counting

Having established the way our assumptions can effect how a frequency value is determined, we
can now examine some examples of various measurement techniques, starting with those which
depend explicitly upon timing and waveform periodicity. Counting methods depend upon
identifying some specific feature of the incoming periodic waveform and using this to Trigger a
counting process. The chosen feature should only appear once per cycle. Hence by counting the
number of times this feature Event occurs in a given time we can determine a frequency for the
waveform. Using this method, we are defining the frequency to be the number of �events (or
cycles)per unit time� we observed.

An example of this method is illustrated in figure 24.4. The input waveform is passed through a
Comparator. This has the task of comparing the input with a chosen Decision Level (sometimes
called a Cut level). The output from the comparitor is binary � i.e. it provides one or the other of
two output levels which just indicate whether the input signal is above or below the chosen
decision level. This has the effect of converting the input waveform into a series of pulses. Usually,
the comparitor is designed to output pulses whose voltages are compatible with digital logic gates
(usually either TTL or CMOS).

Before proceeding to analyse the performance of this method it is worth noticing that we need to
take care and ensure that we know how many times per cycle the input waveshape�s level crosses
the chosen decision level value, , since this determines the actual number of events per cycle.
Usually we try and ensure there is only one event in each cycle. Multiple events per cycle do not
matter provided we know how often they are occurring. However if we assume the incorrect
number, the resulting frequency measurement will also be incorrect.

V c
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Figure 24.4 Frequency measurement based upon counting.

Counter ‘B’

Counter ‘A’
Input waveform whose
frequency we wish to
determine.

Clock pulses

Start command

Control line

Result

Decision level

V c

gate
comparator

gate

The system uses a pair of digital counters. The input to each of these is controlled by a Gate.
Depending upon a control level supplied to these gates, we can either allow signals to reach the
counters or block the inputs. When the gates permit, the lower counter, �B�, will count incoming
pulses being supplied from a Clock. However, once this counter has received a set number of clock
pulses, , it changes the level of an output line, labelled as the �control line�. This alters the
action of the gates, blocking the entry of any more signal and clock pulses into the system.
Counter �A� will count the number of signal events (and hence the number of input signal cycles)
allowed through by its gate.

M

The overall sequence for a measurement is therefore as follows:

• A �start command is received by both counters. This clears the values they hold to zero.

• A count now starts as clearing counter �B� caused its control line output to change, allowing
both gates to pass the input signals.

• The count continues until counter �B� has received  clock pulses. Once this occurs, the
control line level changes and counting halts.

M

• Counter �A� now stores the number, , of signal events (cycles) it observed during the
duration of the counting process.

N

Provided that we know the pulse-rate, , provided by the clock, and that this rate is stable, we can
now read counter �A� and say that  signal cycles occured in a measurement time interval of

. Hence the measured frequency value for the input signal waveform will be

f c l

N
M / f c l

f =
N

M
× f c l ... (24.2)

Having established the basic method we can now assess the precision of any measured values we
obtain using this method. This will clearly be affected, as usual, by the presence of noise. However
before considering the effect of noise we should note some limitations inherent in the method.
These arise from the quantised nature of the counting process.

The system counts whole events/cycles. Consider a situation where there happened to be, say,
1357·56 signal cycles during the observation interval. The counting would round this down to
1357. Hence the measured frequency would be in error due to the loss of the fractional part of
the true value. Also, if the frequency changed before a remeasurement to, say 1357·55, we would
not notice as this value would also be rounded down. The inherent frequency accuracy of this
measurement process is therefore such that we must expect a typical frequency accuracy of no
better than
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δf ≈ ± 
f

N
... (24.3)

This will be the case even if we could ensure a clock that was perfectly stable, running at a
precisely known rate, and remove all random noise from the system. In practice we can seek to
improve this measurement in two ways. The first, and most obvious, is to choose a larger value for

 or a lower clock frequency, hence increasing the counted value for . This increases the
required measurement interval and we observe the input signal for longer than before. A similar
improvement can be obtained by adding up and averaging a series of measurements as this also
increases the total observation time. 

M N

A second, less obvious, potential improvement is to consider swapping over the signal and clock
inputs and choose to use a very high clock frequency. This modified system counts how many
clock cycles occur during a set number of input signal cycles � i.e. the inverse of the original
process. The inherent accuracy is now determined to ± one clock cycle, not one signal cycle.
Hence in this alternative arrangement we would obtain a measurement with a typical inherent
accuracy of

δf ≈ ± 
f

M
... (24.4)

In practical cases we should use whichever frequency is the lowest to determine the counting
interval, and maximise the number of counts of the other, in order to obtain the most accurate
results.

24.3 Effect of noise on counting methods

For the sake of the explanations in this section we can assume that the counting method extends
over many cycles so we can therefore neglect the rounding accuracy limit explained in the last
section. Here we can consider the effects of noise upon frequency measurements obtained via
counting or timing processes. A detailed analysis of this is complex so here we will adopt a
simplified explanation which, nevertheless, gives the correct result in most cases of interest.

t 1 t 2 t 3 t N

T N

t s

δt 1 δt 2 δt 3 δt N − 1

Figure 24.5 Observing the periods of a series of cycles.

Figure 24.5 is a schematic representation of the process of performing a timing measurement
over a number of cycles. For the sake of clarity and simplicity we will only consider quasi-
sinusoidal waveforms here. We then also use the zero crossings in the positive-going direction as
our events indicating the start of each cycle period. 
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Before proceeding, it is worth bearing in mind that any periodic waveform can be regarded as
having a spectrum that consists of a nominal Fundamental frequency, plus harmonic components.
We could therefore choose to filter a waveform to remove the harmonics, leaving just the
fundamental sinusoid which could then be processed as considered here. This approach can, in
fact, be useful in practice as it removes the noise power present at frequencies well away from the
fundamental period/frequency, hence potentially improving the SNR.

If the observed waveform were perfectly periodic, and no noise were present, we could expect to
see a given number of cycles, , occurring in an appropriate total observed interval, . The
waveform�s period would then clearly be equal to . In practice, we can expect noise
to randomly alter the instants when the zero crossings are observed. Hence instead of the
observed period of every cycle being  it will have some value  which varies unpredictably from
one cycle to the next. Random fluctuations in the time intervals between successive events is often
called Jitter. These timing variations can be very important in some situation. For example, they
may lead to problems in 1-bit DAC/ADC systems of the kinds considered in Chapter 22.

N T N

t s ≡ T N / N

t s t i

Whatever the source of the noise we can represent it as a series of timing errors for the observed
events, . We can also represent the typical timing error level in terms of an amount . Now
when we just observe one cycle period we can expect each �end� to have its apparent time altered
by an unpredictable amount similar in magnitude to . As a result since there are unrelated
errors at the start and end of each cycle we would obtain an error in measuring the period of just
one cycle that will typically be around . i.e. The observed period would therefore typically be

δt i ∆

∆

± 2 ∆

t ′ = t s ± 2 ∆ ... (24.5)

where  represents the actual underlying signal period. Provided that the error is reasonably
small compared to the period this leads to an uncertainty in the measured frequency taken using
one cycle of around

t s

δf ≈ ± f 2 2 ∆ ... (24.6)

where  represents the nominal signal frequency. This frequency error is set by the relative levels
of  and , which is the observed time in this case. The above is therefore just equivalent to
saying that

f
2 ∆ t s

δf

f
≈

2 ∆
t s

... (24.7)

Consider now the effect of measuring the time taken for  cycles. We now ignore the timing
errors of intermediate cycle locations and just see the errors in timing at the start and finish of
this prolonged observation. So, since these timing errors are statistically similar to before, the
level of frequency error changes to

N

δf

f
≈

2 ∆
T N

=
2 ∆

N t s
... (24.8)

This result tell us that making a measurement over  consecutive cycles gives an -fold
improvement in the accuracy of the frequency measurement. Where the timing errors are due to
noise superimposed on a genuinely periodic waveform this is the correct result. However it isn�t
the right answer for situations where the jitter arises due to random fluctuations in the signal
source which affect its behaviour.

N N

The above analysis assumes that the actual signal generated by the signal source is perfectly
regular, and each cycle has a period identical to all the others. This perfect regularity is just
�masked� by noise which is superimposed in between the creation of the signal and the
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observation process used to make a measurement. As a result, each observed zero crossing tends
to remain within a typical  from the actual instant the perfect regular underlying signal crosses
the zero level. A similar result would apply for any other chosen event used to identify the start of
each period cycle.

±∆

However when the signal source itself is affected by noise the period of its output may change
randomly from cycle to cycle. Unless the source has some way to detect this and correct for the
effect, the resulting time errors tend to accumulate incoherently. The result is that after  cycles
the -th zero crossing will not typically have a timing error of , but  due to the �random
walk� addition of all the earlier errors. In such cases the likely error leads to an uncertainly

N
N ±∆ ± N  ∆

δf

f
≈

N   ∆
T N

=
 ∆
N  t s

... (24.9)

i.e. the probable accuracy of the frequency measurement only increases with , not  as would
be the case where the noise is superimposed upon a perfectly regular signal pattern. Since this
result implies a lower accuracy it is often wise to assume that it is so in order to avoid thinking that
a measured result is more accurate than is really the case!

N N

To obtain the above results we just have to count intermediate events (zero crossings) to ensure
that we know how many cycles have occurred during the observed period, . The precise
instants when the intermediate events occurred were not noted. Some textbooks argue that we
can obtain a more accurate result by recording each of the observed cycle periods, , , �,  �,

, and then taking their average. The argument presented is that all these values have
independent errors which can be reduced by the averaging process. Since this argument is put
forwards in some texts it is perhaps worthwhile pointing out that it is incorrect. We can see why
this is the case by looking again at figure 24.5 and imagining we had collected just a few cycle
period lengths.

T N

t 1 t 2 t i

t N

Take as an example, the error  which affects both  and . By looking at the figure we can
make two important points. Firstly that the effects of  upon  and  have the same magnitude.
Secondly, that they have opposite signs; i.e. if  makes  longer by delaying the zero crossing, it
shortens  by precisely the same amount. If we choose to collect all the individual observed
periods, , , , etc, we calculate their average by performing two steps � adding up all the
values, then dividing by how many values we collected.

δt 2 t 2 t 3

δt 2 t 2 t 3

δt 2 t 1

t 3

t 1 t 2 t 3

The first step of the averaging process means that we obtain a total time

T N = t 1 + t 2 + ... + t N ... (24.10)

which is obviously identical to the time we would obtain by simply determining how long  cycles
will take. The effects of all the intermediate error values vanish from this result because when we
sum over all the individual times the effects upon adjacent values cancel out. As a consequence, in
terms of obtaining an accurate result, there is no need whatsoever to record all the individual
time periods since the averaging process gives us precisely the same answer as measuring the total
time taken for  cycles.

N

N

The above does not mean that collecting the individual values is pointless. If we do not already
know the value of , collecting these values can be very useful in allowing us to assess the
magnitude of the possible uncertainty in our measurement. By collecting a series of individual
values and calculating their spread we can estimate  and hence estimate the accuracy of
measurement. However this process does not, in itself, alter the measured value we obtain.

∆
t i

∆
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24.4  Relationship between SNR and jitter level

In many cases the jitter arises due to the presence of a given superimposed noise. As usual with
measurement processes the accuracy of measurement will depend upon the input SNR and the
time taken for the measurement. The previous section is all in terms of the typical jitter level, ,
so we should now establish how this is related to the input SNR. To understand  their relationship
we can use the example illustrated in figure 24.6. For the sake of our example this combines a
sinusoid of amplitude, , with some random noise, of rms level . As usual, the effect of the
noise will be to change the signal level in a manner that varies unpredictably from moment to
moment.

∆

a v n

Figure 24.6 Jitter level caused by superimposed noise.

2∆

2v n

Since we are concerned with the typical or most probable effect of the noise we can imagine the
underlying sinusoidal signal pattern as being �surrounded� by a band of noise which typically
extends  above and below the actual sinusoid. If we observe many cycles (e.g. by overlaying
many cycles on an oscilloscope) this effectively �blurs out� the sinusoidal pattern by this amount.
Although this noise primarily alters the signal level, since the waveform crosses zero at a finite rate
of change it also affects the instant of zero crossing.

±v n

For a sinewave

S = a Sin {2πf t } ... (24.11)

the rate of change as the sinusoid crosses zero will be

d S

d t
= 2πf a ... (24.12)

A small change in level of  therefore alters the instant of zero crossing by an amount  where±v n ±∆

∆ = 
d S

d t


 − 1

× v n ... (24.13)

i.e. we can say that the probable jitter level will be around

∆ ≈
v n

2πf a
... (24.14)

This result is an approximation which assumes that  as it is based on assuming that the
slope of the sinusoid remains essentially constant over the time interval . In effect, we treat the
zero-crossing waveform as locally being a straight line and then deduce the relationship between

a ≫ v n

∆
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the values of  and  by assuming that their ratio tells us the slope of the line. Hence expression
24.14 is only reliable when the SNR is reasonably high. At lower SNR�s, however, the counting
method tends to fail to function reliably for the purposes of frequency counting. This is due to
the noise tending to unpredictably alter the number of trigger events per cycle when the noise
level is high. To obtain reliable counts we therefore require a reasonably high SNR. The above
estimate can hence be regarded as being valid in most cases where the results of a count are likely
to be accurate.

∆ v n

Expression 24.14 is in terms of amplitude levels. In general, the accuracy of measurements should
be related to the SNR in energy or power terms as the result is then more general in its
applicability. For a sinusoid the power level is proportional to . We can therefore say thata 2 / 2

≡
a 2

2v 2
n

... (24.15)SNR

Combining expressions 24.14 and 24.15 we obtain the result

∆ ≈
1

2πf
×

1

2 ×
... (24.16)

SNR

where SNR represents the input signal to noise ratio. By combining this result with expression
24.8 we can say that the resulting uncertainty of a frequency measurement will be

δf ≈
1

2πT N

... (24.17)
SNR

This result is just an approximation but it serves to act as a guide to the effect of superimposed
random noise upon the probable accuracy of frequency measurements based upon timing the
period length of a number of cycles of a repetitive waveform. Note that, as we would expect from
the basic concepts of information theory, the accuracy depends upon the observation duration,

, and the input signal to noise ratio.T N

In practice, frequency measurement methods based upon counting are actually comparisons
since they determine the ratio of the number of cycles of the input signal to the number of cycles
of the chosen clock which occur during the the observation time. This isn�t a surprise as we
established in the early chapters of this book that measurements are usually comparisons between
a reference standard (in this case the time taken for a number of clock cycles) and the item we
wish to measure. Once we are aware of the role of the clock in this process it becomes clear that
any jitter or uncertainty in the period of the chosen clock will also tend to introduce some level of
error or uncertainty into the result of the measurement process. When dealing with the methods
considered in this chapter this has two consequences we have to bear in mind.

• Any noise superimposed on the process of counting clock cycles will cause a jitter. The likely
effect of this can be estimated using an approach similar to that used to deduce expression
24.17

• Any error we make in defining or measuring the clock frequency will alter the results we
obtain.

In many situations we can ensure that the effects of clock errors are relatively small and hence our
measurements are limited by the signal SNR and the available obervation time, . However we
need to be aware of the need for a stable, well defined, clock to ensure this is the case.

T N
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Summary

You should now understand how Counting methods can be used to determine the period of a
repetitive waveform. It should also be clear that the accuracy of a measurement will depend upon
various factors which include the chosen clock rate, the signal�s SNR, and the total time devoted
to the measurement. You should also be aware that this kind of measurement is, like most others,
a comparison, hence the stability of the clock, and the reliability with which we know its frequency
will be important in ensuring an accurate result.



Information and Measurement - 185 - Free PDF version (larger page)

Chapter 25

Frequency measurement systems

25.1 Phase lock methods

Chapter 24 examined measurement techniques based upon counting methods. These are
particularly useful where we can employ digital circuitry, and where we we want to measure the
duration or period of a repetitive signal pattern. However they are not the best choice for every
purpose. This chapter examines some of the other methods that are widely used to perform
frequency and spectrum measurements. We will start by looking at the use of the Phase Lock Loop
(PLL).

The Counting approach described in Chapter 24 relies upon using a suitable oscillator as a Clock.
For accurate measurements to be possible this clock must have a well defined, and stable,
frequency . In essence, the PLL approach turns the counting method on its head and seeks to
adjust the clock frequency to Synchronise it with the incoming signal. If we then determine how
much we have altered the clock frequency we can use this information as a measure of the
frequency of the input signal. In practice, the term �clock� is avoided when describing the
oscillator that forms part of PLL systems since this word normally implies a stable frequency
source. In most cases using electronics the alterations in the oscillator frequency are produced by
applying a control voltage, hence the oscillator is referred to a Voltage Controlled Oscillator (VCO).
Figure 25.1 is a schematic diagram showing the basic form of a simple PLL.

Figure 25.1 Simple Phase Lock Loop  (PLL)

Amplifier

S {t }

fi

f r

e {t }
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The system consists of a VCO, an amplifier of voltage gain, , and a PSD connected together to
form a closed loop. We have already examined the behaviour of Phase Sensitive Detectors in Chapter
16. The Reference Frequency for the PSD is supplied by the VCO. We can define the VCO�s
behaviour to be such that it produces an output whose frequency is given by the expression

Av

f r = f 0 + k f v {t } ... (25.1)

where  is the voltage used to control the VCO. When  the oscillator outputs a
frequency, , which is called it�s Free Running frequency. i.e.  represents the frequency the VCO
will produce naturally when we make no attempt to alter its output.

v {t } v {t } = 0
f 0 f 0

From the basic properties of a PSD, the output, , can be defined ase {t }
e {t } ≡ k pA Cos {θ} ... (25.2)

where  is a measure of the gain of the PSD,  is the mean amplitude of the input signal, ,
and  is the difference in phase at any time between the input signal and the reference, . 

k p A S {t }
θ r {t }
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To understand how the system works we can start by considering the situation where the signal
frequency happens to equal the VCO�s free running frequency and the two happen to be in
quadrature � i.e. we start by assuming that  and the signal and reference differ in
phase by 90 degrees. When the signal and reference are in quadrature, , so ,
and hence . This means the VCO will continue to oscillate at . As a result, unless we
alter the input signal frequency this initial situation will continue.

f s = f r = f 0

θ = 90° Cos {θ} = 0
e {t } = 0 f 0

Consider now what happens if the input signal�s frequency changes slightly. At first the VCO
output remains unchanged. The signal and reference frequencies are now different. Since
frequency is the rate of change of phase, it follows that the phase difference between the signal
and reference now starts to change, and  departs from being 90 degrees. This alteration in
relative phase means that the output from the PSD will also change and will no longer equal zero.
The result is that, now , we get an amplified non-zero control voltage of

θ

Cos {θ} ≠ 90°

v r {t } = k pAAv Cos {θ} ... (25.3)

applied to the VCO, altering its output frequency to a new value

f r = f 0 + k f k pAAv Cos {θ} ... (25.4)

The behaviour now depends upon arranging the loop and VCO to obtain the correct sign for the
factors . Provided that we ensure that this is such that the change in VCO output frequency
has the same sign as the change in  we find that the VCO frequency now alters to �follow� the
change in input signal frequency. This change will continue whilst there is any difference between
the two frequencies. This is because a continued difference in frequency means that the phase
difference is changing, altering the PSD output that controls the VCO. However once the VCO
frequency has changed enough and become equal, once again, to the signal�s new frequency
their relative phase difference becomes steady again. The result is that the system eventually
settles at a new equilibrium where the signal and VCO frequencies are the same once more.
However there is now a new difference in phase, maintained at whatever value is required to
�push� the VCO output to  and preserve this equality.

k f k pAv

f s

f r = f s

The result is that the loop causes the VCO output frequency to Track the signal frequency. The
system is, in fact, a Feedback Loop (hence the word �loop� in its name). Most control loops feedback
a voltage, but this one feeds back a frequency, and always tries to adjust this frequency to match
that of the input. Provided that we know the values of  and  we can now expect thatk f f 0

f s = f r = f 0 + k f v {t } ... (25.5)

Hence by observing the voltage, , we can determine the signal frequency, .v {t } f s

PLL�s are often used as Frequency Demodulators in communications systems since the output voltage
will tend to vary in sympathy with any changes in  as time passes. PLL�s are widely used in radio
and microwave applications and lend themselves well to being incorporated into integrated
circuits. Their main drawback is that we must have reliable knowledge of  and  in order to
convert the observed output voltage, , into a frequency value. We also have to take care in
cases where the signal frequency fluctuates. When this happens, the output  will then,
temporarily, become �wrong� (i.e. incorrectly indicates the frequency) until the difference
between  and  allows the phase difference between them to shift to a new level that alters
to bring them back to being equal again.

f s

f 0 k f

v {t }
v {t }

f s f r v {t }

The system has a finite Response Time which determines upon how quickly it can react to changes
in the input frequency. In some cases this can be useful as it means the output value will be
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averaged over a period of time, smoothing away any brief frequency fluctuations. In fact, some
counting systems exploit this behaviour and use a PLL to �clean up� the input signal. In these
systems the input signal is used to drive a PLL and a counter is used to count the VCO output, not
the signal. Any swift temporary fluctuations in the input signal will tend to be smoothed away by
the time constant chosen for the PSD. Averaged over a long enough time the VCO output has the
same frequency as the signal, so can be counted in its place. The advantage is that the SNR
presented to the counter has been improved by using the PLL to filter away swift variations. The
disadvantage of the PLL is that we can�t use it to detect or measure changes that are too swift for
it to be able to respond.

25.2  Resonators and filters

Systems based upon Phase Lock Loops are now widely used in electronics as the circuits required
work well and are easy to manufacture. However, it isn�t always possible to employ a PLL. For
example, it is currently impractical to manufacture a conventional electronic system which acts
directly upon very high frequency signals � e.g. at the frequencies of visible light. Even at lower
frequencies it is sometime more convenient to use other methods that were in widespread use
before the development of the PLL. One of the most common alternatives is the use of some
form of filter or device whose behaviour is inherently frequency sensitive, and then use that
sensitivity as a route to performing frequency measurements. Figure 25.2 shows a couple of
examples of the kinds of electronic circuit often used for this task.

+- v o

C

C

2Q RR

2Q

v i

25.2a  Passive bandpass filter 25.2b Active bandpass filter

R

CL

v i v o

Figure 25.2 Examples of bandpass filters

Figure 25.2a illustrates a passive RCL Bandpass Filter. Figure 25.2b shows an active filter system
which performs in a similar manner. The practical advantage of 25.2b is that it does not require
an inductor. This makes it smaller, cheaper, and gives better defined performance. However, the
need for an amplifier means it requires power, and limits its use to frequencies where suitable
amplifiers are available.

Although the systems employed at optical frequencies are physically  constructed in quite
differently to the above they are used in similar ways. Here we can concentrate on using
electronic examples, but it should be remembered that equivalent arrangements can perform the
same functions in other frequency ranges. For example, the Fabry-Perot Resonator is often used at
mm-wave and optical frequencies as a filter in much the same way as the electronic arrangements
considered here.

For the sake of example, lets look at the behaviour of the circuit shown in figure 25.2b. Using the
standard methods of complex circuit analysis this can be shown to have a voltage gain
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Av {f } ≡
v o

v i
=

− j 2Q 2f f 0

f 2
0 − f 2 + j f f 0 / Q

... (25.6)

at a (sinusoid) frequency, , wheref

f 0 ≡
1

2πRC
... (25.7)

represents the filter�s Resonant Frequency, and  is the quantity usually referred to as the filter�s
Quality Factor.

Q

 0.90  1.0  1.10

 0.5
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f 0

∆f

Q = 50
For this example,

Figure 25.3 Frequency response of bandpass filter

Figure 25.3 shows a plot illustrating how the power gain of an example of this type of filter varies
with frequency. The graph is normalised in terms of the circuit�s resonant frequency and its
power gain at that frequency. You can see that the circuit�s gain has a peak value at .  The shape
of the response shows that the gain is only greater or equal to half its peak value over a limited
range of frequencies

f 0

∆f =
f 0

Q
... (25.8)

centred upon the resonant frequency. 

There are two ways we can imagine this system being employed. These differ as a result of the
assumptions we make about the nature of the incoming signal. The first case is where we have
reason to assume that the signal essentially consists of a single frequency component, although
the frequency may fluctuate slowly over a limited range. In this situation the system is usually
referred to as a Frequency Discriminator. The second case is where we assume the signal has power
spread out over a wide range of frequencies. Here it is the bandpass filtering property � i.e.
passing power in a selected band of frequencies � which is used.

Let�s start with the frequency discriminator. Here we try to arrange for the resonant frequency to
differ from the nominal signal frequency, , by an amount similar to . This is illustrated in
figure 25.4.

f r ∆f
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Figure 25.4 Bandpass frequency discriminator
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Here we have arranged for  to be equal to . Hence when at this frequency the output
power emerging from the filter is half the value it would have if the signal were at the resonant
frequency, . A small change in the signal frequency, , will cause a corresponding change, ,
in the output power level. We can therefore use the filter as a Frequency-to-Voltage convertor and
deduce a frequency change when we observe a change in the output power level. 

f r f 0 + ∆f / 2

f 0 δf δP

The Conversion Gain or Sensitivity of the filter can be defined as the ratio between the observed
change in output power level and the corresponding change in frequency. The value of this ratio
will depend upon the shape of the filter�s frequency response curve and the location we choose
for  relative to . We can, however estimate the approximate sensitivity by noting that the
power output falls by a factor of 2 as we change the frequency from  to . We can
therefore say that, approximately, the magnitude of the observed change in power will be given by
the expression

f r f 0

f 0 f 0 + ∆f / 2

δP ≈ P0

δf

∆f
... (25.9)

i.e. the sensitivity will be approximately

δP

δf
≈

P0

∆f
= Q

P0

f 0

... (25.10)

As usual, in practice our ability to detect a change in frequency will be limited by the smallest
change in the power level we can observe. Hence to obtain a high sensitivity we would wish to
arrange for the product  to be as large as can be arranged. However we must take care not to
employ too narrow a filter � i.e. have an excessively large  value. This is because the above result
will only be approximately correct for small changes � i.e. when  is somewhat smaller than .
Increasing  would increase the sensitivity, but also reduces the frequency range over which the
bandpass discriminator will work as expected. For example, in the case illustrated the signal
frequency is greater than . A small reduction in signal frequency will tend to cause the output
power to rise. However if the signal frequency falls below  the output power reaches a peak
value and then falls. Similarly, once the signal frequency is more than a few times  away from
the output will essentially be zero whatever the frequency since the filter is rejecting power at
these frequencies.

Q P0

Q
δf ∆f

Q

f 0

f 0

∆f f 0

In addition to having a limited useful range, determined by the chosen  value, the system has
two significant drawbacks. Firstly, the actual relationship between the output power and the signal
frequency is non-linear. Hence if we assume a linear relationship (as implied by expression 25.10)
we will obtain an incorrect or distorted output measure of the true frequency. To avoid this we
must either use a more precise knowledge of the filter�s properties to convert power observations

Q
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into frequency measurements, or restrict any frequency changes to be much less than . By only
using a very small portion of the filter�s power/frequency curve we can approach linear behaviour
as any short section of a small curve approaches a linear tangent provide we use a small enough
section.

∆f

The second problem is indicated by the fact that  appears in the expression for the sensitivity.
This warns us that the output power level depends upon the actual input signal power level.
Unless we take care we will therefore find that any unexpected changes in the signal power will be
interpreted, incorrectly, as being due to frequency changes. The simplest way to deal with this is
to monitor the input signal power and then compare this with the power level emerging from the
filter. This can also be done in optical systems by simultaneously measuring both the transmitted
and reflected power levels from the filtering element and summing these to deduce the input
power level. Some electronic systems also use two or more filters, tuned differently, and compare
their outputs to give an indication of the input power and also help correct some of the
distortions produced by the non-linear curves of the filters.

P0

The second method for using the bandpass filter is simpler to explain as it depends upon the
filter�s property of passing signals in a range of width  centred upon  whilst rejecting signals
at other frequencies. We can therefore just measure the output power and deduce that this
represents a measure of the power of the input signal�s frequency components in this range. By
employing a set of filters, each tuned to a different band, and measuring the output powers they
provide we can build up a spectrum of the input signal. This method is useful when dealing with
wideband signals rather than simple periodic waveforms. The results may sometimes have to be
interpreted with care as the above assumes that each filter has a �top hat� shape � i.e. has a
uniform gain over a range, , and perfect rejection of frequencies outside this band. In reality
the filter shape means some of the �in band� power is lost, and some power at other frequencies
may �leak� through. When dealing with smooth spectral distributions this isn�t a major concern,
but it may have an effect in other circumstances.

∆f f 0

∆f

A series of such filters, tuned to adjacent frequency bands, and employed in this way is called a
Filter Bank. Such a system allows us to monitor the power levels in a series of bands simultaneously.
A common alternative is to �sweep� the tuning of a single filter so as to vary the band where power
is passed through, and then note how the observed power varies as the filter is swept. This is the
method used for most RF Spectrum Analysers. The disadvantages of this method are that it may miss
changes that occur whilst sweeping is taking place, and that it only observes power at each
frequency for a small fraction of the time. Hence it is inefficient in SNR terms as signal energy
can go unobserved, and there is also a risk that power fluctuations may be appear, falsely, as
spectral features.

25.3 Fourier transform spectroscopy

We have already encountered Fourier Transformation in earlier chapters. This technique is
widely used to make signal frequency and spectrum measurements. The classical optical
instrument employed for this approach is the Michelson Two-beam Interferometer, although many
other forms of two-beam interferometer are used. At microwave or mm-wave frequencies
equivalent systems are sometimes used, but the signals may be carried along a variety of guiding
structures (waveguides, stripline, etc). 

Although these arrangements vary in their details we can explain how they all work in terms of a
�generic� form for a two-path interferometer as illustrated in Figure 25.5. This shows a system
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constructed using a pair of symmetric 50:50 power-splitter/combiner elements, linked via two
paths. The relative lengths of these paths, , and , may be varied. The two outputs of the
second splitter are directed onto a pair of power detectors.

Z 1 Z 2

50:50 50:50
Pi n P1

P2

Z 1

Z 2

Figure 25.5 Schematic of 2-path interferometer.

The splitter/combiners can be assumed to be free of loss and balanced in the way they behave.
This means that the sum of the fields (or voltages) exiting each equals the total field that arrives.
It also means that the total input and output powers must be the same.  At first glance this
apparently leads to a paradox since when we have two exit voltage levels, , and ,
produced by splitting an input,  it means that we must simultaneously ensure that both of
the expressions

V 1 {t } V 2 {t }
V in {t }

V 1 {t } + V 2 {t } = V in {t } ... (25.11)

[V 1 {t }]2 + [V 2 {t }]2 = [V in {t }]2 ... (25.12)

must be correct.  This is a consequence of the power of a signal being proportional to the square
of its voltage (or to the field of a distributed field). These two requirements can only be satisfied
together by allowing that the split fields have their relative phases altered. For an input
component at some frequency, , the outputs will have their relative phases so that they emerge
with a difference in phase of 90 degrees relative to each other � i.e. ±45 degrees relative to the
input.

f

The system shown in figure 25.5 has four Ports (ways in or out)by which signals may enter or leave.
In principle we can use these as we wish, but here we can consider allowing signals to enter just
via one port, and then observe the results that exit via the pair of ports at the other end of the
system. Taking the above point about phases into account a detailed analysis of the system will
establish that when we input a power, , at a frequency, , the powers exiting at this frequency
will be

P {f } f

P1 {∆, f } =
P {f }

2
[1 + Cos {2πf ∆ / c }] ... (25.13)

P2 {∆, f } =
P {f }

2
[1 − Cos {2πf ∆ / c }] ... (25.14)

where  represents the Path Difference value � i.e. the difference in the lengths of the
two signal paths within the system � and  is the velocity of the signals propagating through the
system. (In an optical system this would, of course, be the speed of light.)

∆ ≡ Z 1 − Z 2

c

Where the input signal consists of a set of components at various frequencies we can treat these as
propagating independently through the system and hence the resulting output power is just the
sum of what we would get according to expressions 25.13 & 25.14 for each spectral component.
We can represent these overall output powers as  and  to remind us that the result
depends upon the chosen value of .

P1 {∆} P2 {∆}
∆

It is usual practice to call the manner in which the observed output powers vary with the path
difference value the Interferogram of the input signal. To employ the system as efficiently as
possible we would wish to use both of the detected output power levels as part of a measurement
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process. When trying to make frequency measurements we also usually find it useful to normalise
any measurements against the input power level to try and prevent input power changes from
accidentally being interpreted as being due to frequency changes. As a result it is convenient to
mathematically define a normalised interferogram pattern as being

I {∆} ≡
P1 {∆} − P2 {∆}
P1 {∆} + P2 {∆} ... (25.15)

The interferogram shape we obtain by observing how the output powers vary with the path
difference now provides information about the spectrum of the input signal. 

Fig 25.6c

Figure 25.6 Some example interferogram shapes.

Wideband noise measured
using a detector sensitive
to the 25 − 180 GHz range.

∆0

0

+25 mm-25 mm
Path difference

I {∆}
Output

Fig 25.6a
95 GHz carrier
(i.e. sinewave)0

Fig 25.6b

95GHz carrier plus
sideband extending
over ± 5 GHz range

0

Figure 25.6 shows three examples which we can use to illustrate the relationship between the
shape of the interferogram and the spectrum of the input signal. Figure 25.6a represents the
output we would obtain from an input source which is generating one single (sinusoidal)
frequency component. In this example the source�s frequency is 95 GHz. We can see that � as
implied by expressions 25.13 to 25.15 � the interferogram shows a sinusoidal variation with . The
observed period of this sinusoidal variation of the interferogram shape will be , the wavelength
of the input signal. Hence by collecting the interferogram, and determining its period, we can
measure the signal�s frequency provided that we know the relevant propagation velocity, .

∆
λ

c

Figure 25.6b has a similar shape and shows a pattern that looks almost sinusoidal. However we can
see that the amplitude of the apparent sinusoid tends to decline as we move away from zero path
difference. In this case the input signal has a spectrum which contains power over a modest range
of frequencies centred upon 95 GHz. To understand this pattern we can consider again the
implications of expressions 25.13 and 25.14. By looking at these we can see that whatever the
input signal frequency, at zero path difference we would have  and ; i.e., since it is
normalised,  whatever signal we choose to input.

P1 = Pin P2 = 0
I {0} ≡ 1

As we move away from the zero path difference setting, each frequency component in the
spectrum varies its contribution to the output with a periodicity that varies according to its
wavelength. The total interferogram represents the sum of each of the sinusoidal contributions
they make, each with its own wavelength. At zero path difference (ZPD) these contributions are
all �in step� and give us a peak total output for . As we move away from ZPD these
contributions shift out of step and tend to interfere with each other.  When the spectral
components in the signal all have similar frequencies their contributions to the interferogram all
have similar wavelength, hence this movement out of step only manifests itself when we move a

I {∆}
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fair way away from ZPD. Hence we see an apparent sinusoid whose amplitude decays away from
the ZPD setting.

The example shown in figure 25.6c can be understood by taking this argument further. Now the
signal spectrum has components over quite a wide range of frequencies. The resulting
interferogram still has a peak at ZPD, but it quickly falls away to almost nothing when we move
away from the zero path difference. Here the width of the central spike of the shape is a guide to
the observed bandwidth of the signal. The wider the range of frequencies detected, the narrower
the spike will be as a result of the contributions rapidly getting out of step as we move away from
the ZPD.

Before moving on to the considering how Fourier Transformation can be applied to obtain
spectral information, it is worth noting two useful points that sometimes go unnoticed. The first is
that the interferogram shows a pattern that only depends upon the detected components of the
input signal. Once said, this should be obvious, but it has an interesting result. An interferogram
of the general form shown in figure 25.6c can often arise as a result of making observations with
an input signal that is actually wideband (e.g. thermal) noise. The spectrum we see in this case is a
signature of the frequency response of the detectors and the actual interferometer system we used
to make the observation. Interferometers work by exploiting Coherence. We don�t normally regard
random noise as being coherent. Here, however a level of coherence is Imposed by the finite
bandwidth of the system used to make the observations. The example shown in figure 25.6c
assumes wideband noise but using detectors that only responds to power over a specific range. In
this case its is the characteristics of the detectors that determine the shape of the interferogram.

The second point to note is that the above assumes that we are only permitting signal power to
enter via one of the two possible input ports shown at the left side of figure 25.5. In practice we
may also have a quite different signal entering simultaneously via the second input. When this
occurs the interferogram we observe will depend upon the difference between the power spectra
of the two input signals. This behaviour is a result of the symmetry of the system. If we had chosen
to use the alternative input for all the above explanations the results would have been the same
except for swapping over  and  and thus inverting .P1 P2 I

In most practical cases we are likely to find that some signal power � e.g. thermal noise from a
background � will enter the second input port even if we do not wish this to happen. We
therefore need to consider this possibility when making measurements as it may affect the results.
Alternatively, we can choose to deliberately make use of this symmetric property and employ the
interferometer for Nulling measurements. Here we can deliberately inject a controlled signal into
one input and seek to adjust this so that, when combined with the signal from the other input,
the result is a �flat line� interferogram where  is zero at all path differences. Once this occurs
we can deduce that the controlled and uncontrolled signals have identical power-frequency
spectra within the bandwidth the system can observe. Hence if we know the details of one, we
have determined the details of the other without having to know many of the details of the actual
measurement system.

I {∆}

The process by which a two-path interferometer is normally employed to make spectral
measurements can now be understood as a simple application of the Fourier Transform (FT)
methods described in earlier chapters. The usual process starts by sweeping the path difference
over a suitable range of values and recording the interferogram pattern this produces. In theory
we can choose any range we wish, but in practice the most sensible choice tends to be symmetric
about the ZPD. The result is that we have now observed an input signal pattern, , over a
known interval, , where  represents the range either side of ZPD that has been

I {∆}
−D ≤ ∆ ≤ D D
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recorded.

In theory there is no need to make a symmetric measurement as the interferogram pattern should
be such that . In practice, however, we may not have accurate pre-knowledge of
the ZPD location and there may be system imperfections which distort the interferogram shape.
We can generally detect and correct these by comparing the patterns either side of the ZPD and
noting any unexpected asymmetry.

I {∆} = I {−∆}

The input observation now forms a record of length  which we can expect to contain some
superposition of sinusoidal contributions with wavelengths and amplitudes related to the
frequencies and powers of the spectral components of the input signal. By Fourier Transforming
the interferogram pattern we calculate the nominal spectrum. This process is subject to the same
limitations and assumptions we considered in earlier chapters. The periodic assumption means
that we obtain a spectrum in terms of a series of frequency components whose wavelengths are

2D

λi =
2D

i
... (25.16)

where  i.e. any positive integer up to some limiting value. This means we have a
spectrum which essentially tells us the power levels in a series of bands centred upon the
frequencies

i  =  1,  2,  3,  �

f i =
i c

2D
... (25.17)

For the interferogram (and hence the spectrum) to form a complete record of the input we must
have enough samples to satisfy the sampling theorem. Hence if the highest detectable signal
frequency is  we must ensure that more thanf ma x

N ma x =
2Df ma x

c
... (25.18)

uniformly spaced samples are taken over the range .−D ≤ ∆ ≤ D

In practice the transformation is normally performed using an FFT method and it is therefore
often convenient for the number of samples recorded to be a power of two. However this is not
required for any theoretical reason, nor is it always vital to take samples uniformly spaced. These
arrangements are purely for practical convenience. It is also worth bearing in mind that we do not
have to perform a Fast Fourier Transform (FFT). We could use some analog arrangement (e.g. a
set of electronic filters) to analyse the interferogram. Digital sampling and FT methods have
become common simply because they are flexible, and convenient to use.

The conventional FT approach is based upon assuming that we can regard the signal spectrum as
a set of components periodic in the observed interval (  in this case). In general this is fine as
the resulting spectrum contains all the input signal�s pattern in a useful form. However � as
discussed in section 24.1 � where we have some other knowledge or expectation, we can analyse
the interferogram equally well on an alternative basis.

2D

A common example is where we have reason to feel sure that the signal source is producing a
close approximation to a sinusoidal output. i.e. it has a spectrum which is confined to a frequency
range narrow enough for us to regard it as being at a single frequency. We could then take the
interferogram pattern and apply some curve fitting technique to find a best fit to a sinusoid. (If
the interferogram is symmetric this would be a cosine in .) Another alternative is that we could
use the interferogram, plus a series of pulses from the system scanning the path difference as the
inputs to a counting system of the general type described in Chapter 24. This forms what is
sometimes called a Fringe Counting approach. Many interferometers employ some form of
stepping system to change the path difference, or employ an encoder that gives pulses that are

∆
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regularly spaced along the range of path difference. These can be used as the �clock� for
comparison with a periodic interferogram shape.

The above non-Fourier methods are only useful when we are confident that the signal is periodic.
However they have two very useful properties when this is the case. Firstly, they are not subject to
the Resolution Limit of a standard Fourier method. This stems from the way the FT only gives
results at a series of specific frequencies, spaced apart by an interval, 

δf =
c

2D
... (25.19)

As a consequence, when we employ Fourier methods to compute a spectrum for a signal which
may contain many components spread over a wide bandwidth, the result does not normally allow
us to unambiguously distinguish spectral features with a resolution finer than . The sinusoid-
fitting and fringe counting methods are employed in situations which are should not subject to
this limitation as the signal should be periodic. Provided that the measurements are made with a
high enough SNR, etc, we can then hope to determine the frequency of a periodic input more
accurately than . The fringe counting method can also provide results relatively quickly because
the counting process may proceed while the interferogram is recorded, whereas an FFT
computation takes some time and normally cannot start until the complete interferogram record
has been collected.

δf

δf

Despite the above, since Fourier Transformation does not lose any information we can post-
process an FT computed spectrum to obtain higher frequency accuracy provided that we are
confident that the input signal is periodic. In effect, this means we fit a shape to the spectrum and
find its �peak� even when the peak does not coincide with one of the frequency, , values where
the FT computed a nominal power level.

f i

This method would ultimately give the same results as fringe counting or fitting a cosine to the
interferogram, but is rather more �around the houses� in computational terms. The critical point
here is that we can only apply these methods when we are confident that we know that the input
signal is periodic. When this is the case we can apply sinusoid fitting, or fringe counting, or FT
and peak/shape fitting as we prefer and the results should be the same if the process was carried
out with care. 

When we have no pre-knowledge of the signal�s spectrum we cannot reliably apply these fitting or
counting methods as any results they produced would probably be meaningless. In general
therefore, where we have no other information, we must normally accept that the resolution of
measurements upon signals with complex spectra will probably be limited to the value of  given
by expression 25.19.

δf

Summary

You should now understand how a simple Phase Lock Loop can be used to make frequency
measurements and how it can be used to detect changes (or modulation) in the frequency of a
periodic signal. You should now also know how a resonant filter can be used, either to select
power in a chosen band for measurement, or as a frequency sensitive element to detect frequency
changes. It should also be clear that a filter should use used with care as fluctuations in the input
signal�s power may appear as frequency changes, and that to avoid this we may need to monitor
the signal power. Finally, you should now understand how a two-path (or two- beam)
interferometer can be used to make spectral measurements. That this is usually done using
Fourier Transform methods, but that other approaches can be useful when making
measurements upon a signal we feel confident is periodic.
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Appendix 1

Solutions to numerical questions

Chapter 2

Question 2. The total voltage range is 4 V (+2 to �2). The noise blurs out any reading over a range
of 2 mV (+1 mV to �1 mV). Hence we can divide the total range up into 4 V/2 mV = 2000 distinct
bands. Since each band requires its own symbol this means we need 2000 symbols to cover or
describe all the distinguishable levels. An n-bit ADC produces an n�bit binary word for each
sample. There are therefore only  possible values it can indicate. When , 2n n = 11 2n = 2048.

Question 3.  An oscillation at some frequency, f, means the level moves back and forth between a
given maximum and minimum level during each cycle, lasting a time . Since the level has to
both rise and fall it follows that it must switch from one level to the other in half this cycle time.
Hence a maximum frequency capability of 150 kHz means than the channel's response time must
be  µS.

1 / f

1 / 2f = 3·3

Question 4.  We have to take a new sample as soon as a response time has elapsed since the last
one. (Taking samples more often is a waste of effort since the level hasn't had time to change
significantly. If we take them less often we risk missing something.) Hence we have to take 1/3.3
µS samples per second � i.e. 300,000 samples/second. This means we'll collect 3 million samples
during a 10 second message. Each sample can contain 11 bits worth of information. So we can get
33 million bits of information from the message.

Chapter 3

Question 3.  Using equation 3.11 we can say that the thermal noise from a 10 kΩ resistor is such
that

〈e 2
n〉 = 4 × 1·38 × 10

−23 × 300 × 1 × 10000

= 1·65 × 10
−16  V2 / Hz

We can now use equation 3.14 to work out the noise per unit bandwidth entering the amplifier.
Choosing kΩ and  kΩ we can sayR = 10 Rin = 22

N =
1.65 × 10−16 × 22000

(10000 + 22000)2
= 3·54 × 10

−21  W/Hz

Question 4.  The maximum power transfer will occur when the source resistance and input
resistance are equal in value, so we require  kΩ. We can either use the same
equation as before, or use 3.15 to say that the noise power spectral density will then be

Rin = R = 10

N =
1.65 × 10−16

4 × 10000
= 4·12 × 10

−21 W/Hz

Chapter 4

Question 1.   The chance of a �1� being correctly transmitted is  and the chance of a �0� being
correctly transmitted is . The question tells us that we start with the values , ,

C 1

C 0 V 1 = 4·5 V 0 = 0·5



Information and Measurement - 197 - Free PDF version (larger page)

and 1·5. From the question we can set the decision level to be . (All values in volts.)
Using expressions 4.7 and 4.8 we can therefore say that

σ =  V ′ = 2·5

C 1 =
1

2
[1 + Erf {1·88}]  ;  C 0 =

1

2
[1 + Erf {1·88}]

Using the expression for Erf given in the question we obtain the result

C 1 = C 0 = 0·996

There are  �1�s and  �0�s, hence the total number of bits correctly received
will be

N 1 = 2000 N 0 = 2000

N o k = N 1C 1 + N 0C 0 = 3984 bits

Question 2.  Changing the decision level to V means thatV ′ = 3

C 1 =
1

2
[1 + Erf {1·41}]  and  C 0 =

1

2
[1 + Erf {2·36}]

i.e. 3953 bits.N o k = N 1C 1 + N 0C 0 = 2000 × 0·9769 + 2000 × 0·9996 =  
Changing to  V means that  and  so the correctly received bits
will probably then be . (Note that in each case this is only the �most likely� answer
since the actual number of errors depends upon the actual noise pattern during transmission.)

V ′ = 1 C 1 = 0·9999 C 0 = 0·7470
N o k = 3494

Chapter 5

Question 1.  1024 symbols × 2 bits/symbol = 2048 bits of information.

Question 2.  Equation 5.13 tells us the amount of information in a typical message. In this case
, , and , so for a typical messagen = 512 P1 = P2 = P3 = P4 = 0·125 P5 = P6 = 0·25

H t ypi c a l = ∑
M

i = 1

−N Pi log2 {Pi}

= −512 × (4 × 0·125 × log2 {0·125} + 2 × 0·25 × log2 {0·25})
If your calculator doesn't have a log2 button you can make use of the relationship

log2 {x} = 3·33 × log10 {x}
to work out this means that  bits for a typical 512 symbol message.H t ypi c a l = 1280

Equation 5.16 tells us 

H spe c i f i c = ∑
M

i = 1

−Ai log2 {Pi}

is the amount of information in a specific message which contains  occurrences of the each
symbol, . For the case described in the question this means that

Ai

X i

H spe c i f i c = −300 × log2 {0·125} − 100 × log2 {0·125} − 112 × log2 {0·25}
i.e.  bits for this particular message.H spe c i f i c = 1424

Chapter 6

Question 1.  In this case E = 0·1 and C = 0·9 for each bit. 

The message is N = 10,000 bits long. For �tell me once� C  × 10000 = 0·9 × 10000 = 9000 bits are
likely to arrive without errors. i.e. E  × 10000 = 1000 of the received bits can be expected to be
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incorrect.

Using �tell me three times� we can expect around N C 3 = 7290 of the bits to agree in all three
copies because they are all error free. The number of message locations where two copies are
correct and just one is erroneous will be 3N E C 2 = 2430. These errors can be detected and
corrected, and the recovered bits added to the 7290 which arrived without any errors to produce
a correctly received (including corrected) total of 9720. 

The number of times two bit locations are in error and just one is correct will be 3N E 2C  = 270.
Hence there will be around 270 occasions when we will see that an error has occurred, but will
make the wrong correction decision. These errors have been detected, but not corrected
properly. Only on N E 3 =  10 occasions will all three copies agree because they are all erroneous.
As a result the final �corrected� message is � following �tell me three times� transmission � likely
to contain around 270 + 10 = 280 undetected errors. 

Question 2.  Arrange the 16 bits into a 4 × 4 square. This contains all the initial information.
Adding one parity bit per column and one per row produces an extra 4 + 4 = 8 bits. Hence the
total number of bits, including parity is 16 + 8 = 24. The efficiency is defined as the ratio 

initial/total = 16/24 = 0·666 

The redundancy is defined as 1 minus the efficiency, i.e. 0·333 in this case.

Chapter 7

Question 1.  The bandwidth of the signal coming from the microphone is 18,000 - 10 = 17,990 Hz.
We therefore need to take at least 2 × 17,990 = 35,980 samples/second to make a complete
record. The song is 3 minutes (i.e. 180 seconds) long, so the total number of samples required is
180 × 35,980 = 6·47 million.

Question 2.  The only knowledge we have about the signal is confined to the 1 minute interval, ,
we've recorded. This means that the information carried by the observed pattern is completely
indistinguishable from that we'd get from a periodic signal which repeats itself with a period, .
We can therefore apply Fourier methods to obtain a spectrum showing the amplitudes and phases
at a series of frequencies, 0, , , , etc, where . This means we can't resolve
spectral details which are closer together in frequency than an interval, . In this case
seconds, so the resolution will be th of a Hertz. (Note that this result applies because
we have no �extra� knowledge about the signal so it consists of an otherwise unpredictable pattern
of frequencies. In some specific cases we may already �know� something else about the signal. We
might, for example, already have reason to know that the signal is �really� a single sinewave.
Under these conditions we can process the spectrum further to obtain a more accurate
determination of its frequency, amplitude, and phase. Such a measurement would be limited only
by the signal/noise ratio of the input signal. However we can't do this without the �extra�
knowledge about the signal's form. The point is that such a single sinewave signal with a
frequency  will produce an  0, , , , ..., spectrum which is indistinguishable �
during the limited observation time � from one produced by some other suitable combination .)

T

T

f 0 2f 0 3f 0 f 0 = 1 / T
f 0 T = 60

f 0 = 1 / 60

f ≠ nf 0 f 0 2f 0 3f 0

Chapter 8

Question 1.  The S/N power ratio is equal to the square of the ratio of the signal/noise voltages.
Knowing this we use equation 8.13 to say that the data capacity is
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C = 10000 × log2 {1 + ( 1

0·001)
2} = 199,314 bits per second

(N.B. this answer assumes that . If we use the easier to remember
approximation of  we get the less accurate result of 199,800 bps. In
practice this slight difference isn't likely to lead to problems, but you should bear in mind that the
accuracy of the result is affected when you use the rougher approximation.)

log2 {x} = 3·3219 × log10 {x}
log2 {x} = 3·33 × log10 {x}

Question 2.  The bandwidth is 100 kHz, hence the channel can carry a serial stream of 2×100,000
bps. Since each sample requires 8 bits this means the channel can carry up to 200,000/8 = 25,000
samples per second. From equation 8.21 we can say that the number of bits per sample we can get
through a given channel will be such that

m ≤
S

3kT W
This result arises from the requirement that the channel's data capacity  must at least equal the
data rate.

 is the bandwidth of the signal we're sampling,  is the signal power,  is the noise
temperature, and  is Boltzmann's constant. Since the sampling rate is 25,000 per second  must
equal 25,000/2 = 12,500 Hz (i.e. 1/8th of the channel bandwidth � no surprise since we're
sending 8 bits per sample). Rearranging the above we discover that the noise temperature must
be

W S T
k W

T ≤
S

3kW m
=

10 − 6

3 × 1·38 × 10 − 23 × 12500 × 8
= 2·4 × 10

11
K

(Remember that this isn't the �real� temperature of the system. It is the temperature a thermal
noise source would need in order to produce the same amount of noise.)

The same argument applied to an analog signal means that we now require

I ≤ C ana l o g

which, from expressions 8.17 and 8.15, is equivalent to saying that

2mW ≤ W log2 {1 +
S

kT W }
which can be rearranged into the inequality

T ≤
S

(22m − 1) kW

Using the values provided in the question this leads to a noise temperature of 88 million K.
Comparing the digital and analog results we can see that an analog transmission requires a much
lower channel noise level to equal the performance of the digital system.

Chapter 9

Question 2.  Since CD uses 16-bit samples it is able to indicate 216 distinct voltage (or sound
pressure) levels. This means that the ratio between the largest and smallest variations it can

indicate will be around  65,536. It is conventional to express S/N ratios and dynamic
ranges as power ratios in decibels. The above value corresponds to a power ratio of 65,5362 or
96·3 dB. The bandwidth can be up to half the sampling rate, i.e. up to 22·05 kHz. Taking 44,100
samples per second, for two audio channels, with 16-bit samples means we generate audio data at
the rate of  1,411,200 bps. 1 hour corresponds to 3600 seconds so the total number of audio bits
recorded on a 1 hour CD will be 5·08 × 109 bits. 

(216 : 1) =
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Chapter 12

Question 1.  The reference level for LP recording is a peak velocity of 5 cm/s. For a sinewave this
corresponds to an rms velocity of  cm/s. The cartridge's sensitivity is 0·2 mV/cm/s,
so it will produce an output of 3·53 × 0·2 = 0.707 mV rms when playing a 0 dB reference level
signal. A +26 dB signal has a power times that of a 0 dB tone. Since the voltage
varies with the square root of the power we can expect the +26 dB signal to have a velocity and
voltage level  times greater than a 0 dB signal. Hence when playing this tone the
cartridge will produce an output of  mV rms. 

5 / 2 = 3·53

1026/10 = 398 

398 = 19·95
0·707 × 19·95 = 14·1

Question 2.  The peak velocity of the above sinewave signal will be 5 × 19·95 = 99·75 cm/s. From
expression 12.4 we can see that this peak velocity corresponds to the factor  where  is the
peak amplitude and  is the sinewave frequency. We can therefore work out that  0·0158 cm.
The recorded modulation can therefore swing over a range of  cm or 31,751 steps of
10 nm. Ignoring any smoothing effects produced by the stylus resting on many molecules this
implies a dynamic ratio of 317512 = 90 dB.

2πf A A
f A =

2A = 0·0317

Chapter 13

Question 2.  To work out the noise factor we can assume that the source produces a thermal noise
spectral density of 

e 2
s = 4kT R = 4 × 1.38 × 10

−23
× 300 × 22000 = 3·64 × 10

−16
V2 / Hz

The values given in the question tell us that  = (5 × 10�9)2 = 2·5 × 10�17 V2/Hz, and  = (10�12)2 =
10�24 A/Hz. Using expression 13.10 we can therefore say that the amplifier's noise factor value
when used in this situation will be

e 2
n i 2

n

F =
3·64 × 10−16 + + 10−24 × (22000)2

3·64 × 10−16
= 2·39

2·5 × 10�17

From expression 13.13 we can say that the amplifier's noise temperature value will be

T n =
e 2

n + i 2
nR 2

s

4kRs
= 419  K

Chapter 14

Question 2.  The optimum S/N will occur when we arrange for the source resistance presented to
the amplifier to be equal to . This means we require a resistancee n / i n

Rs′ =
e n

i n
=

4 × 10−9

10−13
= 40,000 Ω

The actual source resistance is  10 kΩ. When using a turns ratio of β the transformed
resistance is  so we can say that the required turns ratio must be

Rs =
Rs′ = β2Rs

1 : β = 1 :
Rs′
Rs

= 1 : 2

The best signal power transfer would occur if we arranged for a transformed source resistance
which equals the amplifier's input resistance, i.e.

Rs′ = β
2
R = Rin
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Since  10 kΩ and  100 kΩ this means we require a value of  = 3·16, i.e. a turns
ratio of 1:3·16.

Rs = Rin = β = 10

Question 3.  Using the transformer which provides optimum S/N performance we have a source
resistance � as seen by the amplifier � of  kΩ. The amplifier doesn't know the
transformer exists. So far as it is concerned it has a 40 kΩ source connected to its input which is
generating thermal noise. The noise spectral density from the source therefore appears to be

Rs′ = 40

e 2
s = 4kT Rs ′ = 6·6 × 10

−16 V2 / Hz

By looking back at section 13.3 we can find expression 13.5 which tells us the output noise
spectral density, , as a function of the amplifier's noise, its gain, and the source resistance and
noise level. Using the above value for source noise, recognising that the effective source resistance
is 40 kΩ, and taking the amplifier noise and resistance values from question 2 we can therefore
work out that  18 µV/ . 

E2
0

E0 = Hz

Question 4.  To answer this question we can use expression 14.13. This produces the total noise
factor value

F = 1·1 +
2·5 − 1

10
= 1·25

Chapter 15

Question 2.  The time constant value equals the resistance × the capacitance. In this case this
produces the value 100,000 × 0·00001 = 1. The units of Ohms and Farads are defined such that
Farads × Ohms = Seconds, so the time constant in this case is 1 second.

The analog integrator's power gain value can be worked out using expression 15.8. Using the
values given in the question we get

G {1 kHz} =
Sin2 {π × 5·25 × 10}

( π × 5·25 × 1)2
=  0·003676

This corresponds to �24 dB. The integrator therefore strongly attenuates signal fluctuations at
this frequency.

Question 3.  To answer this question we can use expression 15.12. This tells us the signal to noise
power ratio we'll obtain from a given sequence of analog integrations in the presence of white
noise. In this case we're looking for the signal power which we would be able to observe with a
signal to noise ratio of unity. We can rearrange 15.12 to obtain

v =
S PS

2pt N

where  is the input signal voltage,  is the number of integrations,  is the duration of each
integration,  is the output (i.e. integrated) signal power, and  is the output signal power.  is
the input noise power spectral density. Note that since this is a power spectral density, it should be
in units of W/Hz. As is common in engineering, however, we have been given a noise level, , in
units of volts per root hertz. The standard relationship between voltages and powers is that

 where  is the resistance across which the voltage appears. We can therefore work
out the noise power spectral density using the expression

v p t
PS N S

e n

P = V 2 / R R

S = e 2
n / R
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As was stated at the start of chapter 15, the expressions derived in the chapter have been
simplified by assuming that the load/source resistances everywhere are one Ohm. We can
therefore say that . (By assuming throughout the argument that all load/
source resistances are one Ohm we have, in fact, produced a set of expressions where the noise
spectral densities are essentially in units of volts squared per Hertz so the above is equivalent to
=  =10�16  V2/Hz.)

S = e 2
n = 10−16 W/Hz

S
e 2

n

In this case we're considering the situation when  which means that the observed input
signal voltage will be

PS / N = 1

v =
S

2pt

Using the values provided this leads to an input of  = 0·7 nanovolts.v

Chapter 18

Question 3.  Since there are four symbols we need at least 4 distinct patterns of bits to represent
them. A fixed length representation therefore requires at least n bits where  i.e. we
require n  = 2 bits (or more).

2n ≥ 4,

A

B

C

D

0·2

0·05

0·22

0·53

0·25

BA

A B C
0·47

1

1

1

0

0

0

B = 110

A = 111

C = 10

D = 0

Huffman Code

produced by the tree.

The �tree� diagram shown above can be used to generate a Huffman code for the four-symbol set
described in the question. A typical message 512 symbols long would contain 0·2 × 512 = 102·4

's, 0·05 × 512 = 25·6 's, 's, and 's. Using the Huffman
code we have obtained means we need to send 1 bit per D, 2 bits per C, and 3 bits per A or B. The
total number of bits required for an average 512 symbol message will therefore be

A B 0·22 × 512 = 112·6 C 0·53 × 512 = 271·4 D

 . 102·4 × 3 + 25·6 × 3 + 112·6 × 2 + 271·4 × 1 = 880·6

(N. B. We can allow a non-integer number of bits here since we're talking about an average
value.) The specific message described in the question requires  bits to transmit the

's and  bits to transmit the 's. Hence it requires a total of 1024 bits.
256 × 3 = 768

A 256 × 1 = 256 D

Chapter 20

Question 3.  A 22-bit shift register can store  different patterns of �1�s and �0�s.
One of these will be the �inaccessible� state which a maximal length generator must avoid. As a
result the system will cycle through 4,194,303 states before repeating itself. At a clock rate of
100,000 states/second this means that it will take 4,194,303/100,000 = 41·91 seconds before
repeating itself.

222 = 4,194,304
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Appendix 2

Programs

The following programs have been written to help you explore some of the ideas described in this
book. Each program is presented in two versions: a BBC BASIC  version and a �C �one. My
personal preference is for simple programs is BBC BASIC. Unlike most basic �dialects�, the BBC
form is well structured, powerful, and easy to use. For those who (like me!) aren't highly skilled in
programming it also has the advantage of being easier to read and understand than �C�.

The main disadvantage of BBC BASIC is that it's use is much less widespread than �C�. This is a
pity since it � and the RISC OS computers which are its main home � have many practical
advantages over more common machines and languages. The BASIC programs are therefore
provided for those who, like me, are not professional computer programmers, and for those
fortunate enough to have access to a RISC OS computer. The �C� versions are provided as
programs which should be highly portable, although less readable by mere humans! The chances
are that � whatever computer you use � the �C� versions should run as given here whereas the
BASIC versions will probably need modifying for computers that don�t use RISC OS. 

Chapter 4 � Getting the message

The last question at the end of chapter 4 invites you to write a computer program to discover how
the number of bits transmitted correctly varies with the chosen decision level (the level used by
the receiver to distinguish a �1� from a �0�). The main purpose is to show you that the best choice
is, indeed, normally mid-way between the �0� logic level,  and the �1� logic level, . The
following program can be used to answer the question and satisfy yourself on this point. If you
wish you could try modifying the program and discovering what happens when the numbers of
�1�s and �0�s are different, or the effect of a noise level (sigma) which differs for �1�s and �0�s. You
should then find that � under these �non-symmetric� conditions the mid-level isn't always the
best choice!

V 0 V 1

�C� program showing number of bits received correctly
#include <stdio.h>

#include <math.h>

int n1,n0,bits;

float v1,v0,sigma,v_step;

float r2,v_decide,correct;

float erf(float);

float compute(void);

main()

{

  r2=sqrt(2.0);

  printf("Enter v0 and v1 > ");

  scanf("%f %f",&v0,&v1);

  v_step=(v1-v0)/20.0;

  printf("\nEnter sigma = ");

  scanf("%f",&sigma);

  printf("\nEnter total number of bits > ");

  scanf("%i",&bits);

  n0=bits/2;

  n1=bits/2;

  v_decide=v0;

  printf(" v_decide   #bits ok\n");

  do

  {

    correct=compute();

    printf("%6.3f  %6.0f\n",v_decide,correct);

    v_decide+=v_step;

  } while (v_decide <= v1);

}

float compute(void)

{

  float c1,c0,answer;

  c1=r2*(v1-v_decide)/sigma;

  c0=r2*(v_decide-v0)/sigma;

  c1=0.5*(1.0+erf(c1));

  c0=0.5*(1.0+erf(c0));

  answer=n0*c0+c1*n1;

  return answer;

}

float erf(float xin)

{

  float t;

  t=1.0/(1.0+0.47*xin);

  t=1-(0.348*t-0.0958*t*t+0.748*t*t*t)/exp(xin*xin);

  return t;

}
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BBC BASIC program showing number of bits received correctly
INPUT "Input v0 and v1",v0,v1

v_step=(v1-v0)/20

INPUT "Sigma = ",sig

INPUT " enter number of bits", bits%

n0%=bits%/2

n1%=bits%/2

v_decide=v0

PRINT" v_decide    #bits ok"

WHILE v_decide<=v1

  correct%=FNcompute

  PRINT v_decide,correct%

  v_decide+=v_step

ENDWHILE

END

:

DEFFNcompute

C1=SQR(2)*(v1-v_decide)/sig

C0=SQR(2)*(v_decide-v0)/sig

C1=0.5*(1+FNerf(C1))

C0=0.5*(1+FNerf(C0))

=n0%*C0+n1%*C1

:

DEFFNerf(xin)

t=1/(1+0.47*xin)

=1-(0.348*t-0.0958*t*t+0.748*t*t*t)/EXP(xin*xin)

Chapter 7 � Fourier Transforms

The following illustrates how we can use a Fourier Transform to compute the spectrum of a signal
observed over a specific interval. The program takes an input sinewave and generates 64 data
samples. These samples are then transformed to produce a spectrum of  and  values (sin and
cos amplitude components) which could be used to reconstruct the waveform using an
expression like 7.3. A simple �fitting� method is used to indicate how the spectrum can be used to
estimate the actual frequency of the input sinewave. Note that this fitting only means something if
we already �know� that the input is a portion of a single sinewave. Note also that the numerical
methods used in this program are deliberately fairly simple. The program therefore lacks both
elegance and accuracy! Much better methods can be found by looking in appropriate books on
applied maths or computer programming. In particular you're strongly recommended to use one
of the Fast Fourier Transform (FFT) routines listed in computing textbooks whenever you want to
process more than a few data points. Various FFT routines are available, all with their own good/
bad points. However, they're all much quicker than the �slow� methods used here. Their main
disadvantage is that the way they work is very difficult to understand! An example of an FFT
program is included after the �slow� example listed below.

An Bn

�C� program showing the use of a Fourier Transform
#include <stdio.h>

#include <math.h>

float generate(void);

float fourier(void);

float fit(void);

float get_mean(void);

float get_level(int);

int points=64;

int now;

float data[65], cos_amp[65], sin_amp[65];

float pi=3.1415927;

float f_in;

float f0,f;

float dc;

main()

{

  f0=2.0*pi/64.0;

  printf("N.B. All frequencies in number of cycles\nduring
observed interval.\n\n");

  printf("Enter i/p frequency (cycles) > ");

  scanf("%f",&f_in);

  generate();

  dc=get_mean();

  fourier();

  fit();

}

/* Generate creates data points from

   the frequency & phase provided.

*/

float generate(void)

{

  now=0;

  printf("\n\nData points are :-\n");

  do

  {

    data[now]=sin(f_in*f0*now);

    printf("%5.2f  ",data[now]);

    if ( now%8==7 ) printf("\n");

    now++;

  } while (now < 64);

}

/*  Get_mean recovers and suppresses the d.c. level

*/

float get_mean(void)

{

  float disc;

  now=0;

  disc=0.0;

  do
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  {

    disc+=data[now];

    now++;

  } while ( now < 64 );

  disc=disc/64.0;

  now=0;

  do

  {

    data[now]-=disc;

    now++;

  } while ( now < 64 );

  return disc;

}

  

/*  Fourier works out the spectrum in the form

    cos_amp*COS + sin_amp*SIN components

    and prints the results.

*/

float fourier(void)

{

  float cnow,snow;

  int fn;

  cos_amp[0]=0;

  sin_amp[0]=0;

  fn=1;

  f=f0;

  do

  {

    cnow=0.0;

    snow=0.0;

    now=0;

    do

    {

      snow+=data[now]*sin(f*now);

      cnow+=data[now]*cos(f*now);

      now++;

     } while ( now < 64 );

   cos_amp[fn]=cnow/32.0;

   sin_amp[fn]=snow/32.0;

   fn++;

   f=fn*f0;

 } while ( fn < 63 );

 fn=0;

 f=0.0;

 printf("\n\n  freq  sin_amp  cos_amp  ");

 printf("  freq  sin_amp  cos_amp  ");

 do

 {

   printf("%2i %6.3f %6.3f  ",fn,sin_amp[fn],cos_amp[fn]);

   fn++;

   f=fn*f0;

   printf("%2i %6.3f %6.3f\n",fn,sin_amp[fn],cos_amp[fn]);

   fn++;

   f=fn*f0;

 } while ( fn < 32 );

}

/* 

   Fit locates the spectral point having the

   greatest power and uses the levels of the

   two point either side to roughly estimate

   the frequency of the input sinewave. 

*/

float fit(void)

{

  float up,down,power,f_fitted;

  float dp,dm,a,peak;

  int now,peak_at;

  now=1;

  peak=0.0;

  do

  {

    power=get_level(now);

    if ( power > peak )

    {

      peak_at=now;

      peak=power;

    }

    now++;

  } while ( now < 33 );

  up=get_level(peak_at+1);

  down=get_level(peak_at-1);

  power=get_level(peak_at);

  dp=up-power;

  dm=power-down;

  a=2.0*dm/(dp-dm);

  f_fitted=peak_at-1.0-a;

  printf(" peak component at f = %3i cycles.\n",peak_at);

  printf(" f fitted = %6.3f cycles.\n",f_fitted);

}

/*  get_level provides the modulus of the power  */

float get_level(int now_at)

{

  float answer;

  answer=cos_amp[now_at]*cos_amp[now_at];

  answer+=sin_amp[now_at]*sin_amp[now_at];

  return sqrt(answer);

}

BASIC version of Fourier demonstration program
REM BASIC Fourier Demonstation

points%=64

DIM data(points%),cos_amp(points%),sin_amp(points%)

f0=2.0*PI/points%

PRINT "N. B. All frequencies in numbers of cycles"

PRINT "during the observed interval."

INPUT "Enter i/p frequency (cycles) > ",f_in

PROCgenerate

dc=FNget_mean

PROCfourier

PROCfit

END

:

DEFPROCgenerate

now%=0

PRINT CHR$(13)+CHR$(13)+"Data points are :-"

REPEAT

  data(now%)=SIN(f_in*f0*now%)

  PRINT FNpoint(data(now%),2);

  IF now%MOD8 = 7 : PRINT

  now%+=1

UNTIL now%=points%

ENDPROC

:

DEFFNget_mean

disc=0.0 : now%=0

REPEAT

  disc+=data(now%)

  now%+=1

UNTIL now%=points%

disc=disc/points%

data()=data()-disc

=disc

:

DEFPROCfourier



Information and Measurement - 206 - Free PDF version (larger page)

cos_amp(0)=0 : sin_amp(0)=0

fn%=1 : f=f0

REPEAT

  cnow=0.0 : snow=0.0

  now%=0

  REPEAT

    snow+=data(now%)*SIN(f*now%)

    cnow+=data(now%)*COS(f*now%)

    now%+=1

  UNTIL now%=points%

  cos_amp(fn%)=cnow*2.0/points%

  sin_amp(fn%)=snow*2.0/points%

  fn%+=1

  f=fn%*f0

UNTIL fn% = (points%-1)

fn%=0

f=0.0

PRINT : PRINT

PRINT "  freq    sin_amp    cos_amp    ";

PRINT "    freq    sin_amp    cos_amp"

REPEAT

PRINT fn%;"  ";FNpoint(sin_amp(fn%),3);"
";FNpoint(cos_amp(fn%),3);"   ";

fn%+=1

f=fn%*f0

PRINT "    ";fn%;"  ";FNpoint(sin_amp(fn%),3);"
";FNpoint(cos_amp(fn%),3)  

fn%+=1

f=fn%*f0

UNTIL fn%>=32

ENDPROC

:

DEFPROCfit

now%=1

peak=0.0

REPEAT

  power=FNget_level(now%)

  IF power>peak : peak_at%=now% : peak=power

  now%+=1

UNTIL now%=33

up=FNget_level(peak_at%+1)

down=FNget_level(peak_at%-1)

power=FNget_level(peak_at%)

dp=up-power

dm=power-down

a=2.0*dm/(dp-dm)

f_fitted=peak_at%-1.0-a

PRINT "Peak component at f = ";peak_at%;"  cycles"

PRINT " f fitted = ";FNpoint(f_fitted,3);"  cycles"

ENDPROC

:

DEFFNget_level(inow%)

answer=cos_amp(inow%)^2+sin_amp(inow%)^2

=SQR(answer)

:

REM   The ‘point’ function lets us print out

REM   in a flexible float format & mimics

REM   the control provided by ‘printf’.

:

DEFFNpoint(pval,after%)

pthis$=STR$(pval)

com%=INSTR(pthis$,".",0)

pfront$=LEFT$(pthis$,com%+after%)

com%=INSTR(pthis$,"E",1)

IF com%>0 THEN

  pend$=RIGHT$(pthis$,LEN(pthis$)-com%+1)

  pfront$=pfront$+pend$

ENDIF

=pfront$

:

Fast Fourier transformation

The following program shows a specific example of an FFT routine. The �C� program example
shows how the fft() routine can be used to produce the spectrum produced by a sinewave
input.  The BBC BASIC version just lists the fft and bit_rev procedures which do all the work.
Note that the method used requires the input data to be stored in an array in the form:

x[1] = first data point; x[3]= second data point; x[5] = third data point; etc, with the even-
numbered array locations all initially holding zeros. 

The output spectrum appears in the form:

x[1] = sin amplitude term, 1 cycle during observation; x[2] = cos amplitude term, 1 cycle; x[3] =
sin ampl. 2 cycles; etc.

As with most FFT methods, the program requires the number of data point (n or n%) to be an
integer power of 2. The array must, of course, be at least twice as big as n to satisfy this
requirement. The following example uses just 256 values, but the method can be used with many
more points if required. When used to process many thousands of data points the FFT is likely to
prove much swifter than the �slow� transform method illustrated earlier.

�C� example of the use of an FFT routine

#include <stdio.h>

#include <math.h>

void fft(void);

void bit_rev(void);

int n=256;

int nn=512;

float x[514];

int here,here2,fcount;

float f,f0,pi,phase;
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float rpart,ipart;

main()

{

  pi=3.1415927;

  f0=2.0*pi/256;

  printf("Input number cycles > ");

  scanf("%f",&f);

  f=f*f0;

  here=0;

  here2=0;

  do

  {

    x[here2]=sin(f*(here-1));

    here2++;

    x[here2]=0.0;

    here2++;

    here++;

  } while ( here2 < 513 );

  fft();

  here=1;

  fcount=0;

  do 

  {

    rpart=x[here]/128.0;

    here++;

    ipart=x[here]/128.0;

    here++;

    printf("%3i  %6.3f  %6.3f\n",fcount,rpart,ipart);

    fcount++;

  } while ( fcount < 16 );

} 

    

void fft(void)

{

  int mmax,istep,m,i,j;

  float theta,wpi,wpr;

  float wi,wr,tr,ti,wtemp;

  

  mmax=2;

  theta=2.0*pi/mmax;

  

  bit_rev();

  

  while ( nn > mmax )

  {

   istep=2*mmax;

   theta=2.0*pi/mmax;

   wpr=-2.0*sin(0.5*theta)*sin(0.5*theta);

   wpi=sin(theta);

   wr=1.0;

   wi=0.0;

   m=1;

   do

   {

     i=m;

     do

     {

       j=i+mmax;

       tr=wr*x[j]-wi*x[j+1];

       ti=wr*x[j+1]+wi*x[j];

       x[j]=x[i]-tr;

       x[j+1]=x[i+1]-ti;

       x[i]=x[i]+tr;

       x[i+1]=x[i+1]+ti;

       i+=istep;

     } while ( i < nn );

     wtemp=wr;

     wr=wr*wpr-wi*wpi+wr;

     wi=wi*wpr+wtemp*wpi+wi;

     m+=2;

   } while ( m < mmax );

   mmax=istep;   

  }

}

/* bit_rev shuffles the data before transforming  */

void bit_rev(void)

{

  int i,j,m;

  float tr,ti;

  j=1;

  i=1;

  do

  {

    if ( j > i )

    {

      tr=x[j];

      ti=x[j+1];

      x[j]=x[i];

      x[j+1]=x[i+1];

      x[i]=tr;

      x[i+1]=ti;

    }

    m=nn/2;

    while ( m >= 2 && j > m )

    {

      j-=m;

      m=m/2;

    }

    j=j+m;   

    i+=2;

  } while ( i < nn );

}

The following BASIC program just consists of the procedures which are required to carry out the
FFT.

BBC BASIC FFT procedures

DEFPROCfft

PROCbit_rev

mmax%=2

WHILE nn%>mmax%

istep%=2*mmax%

theta=2*PI/mmax%

wpr=-2*SIN(0.5*theta)^2

wpi=SIN(theta)

wr=1

wi=0

FOR m%=1TOmmax%STEP2

FOR i%=m%TOnn%STEPistep%

j%=i%+mmax%

tr=wr*X(j%)-wi*X(j%+1)

ti=wr*X(j%+1)+wi*X(j%)

X(j%)=X(i%)-tr

X(j%+1)=X(i%+1)-ti

X(i%)=X(i%)+tr

X(i%+1)=X(i%+1)+ti

NEXT

wtemp=wr

wr=wr*wpr-wi*wpi+wr

wi=wi*wpr+wtemp*wpi+wi
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NEXT

mmax%=istep%

ENDWHILE

ENDPROC

:

DEFPROCbit_rev

j%=1

FOR i%=1TOnn%STEP2

IF j%>i% THEN

tR=X(j%)

tI=X(j%+1)

X(j%)=X(i%)

X(j%+1)=X(i%+1)

X(i%)=tR

X(i%+1)=tI

ENDIF

m%=nn%/2

WHILE m%>=2 AND j%>m%

j%=j%-m%

m%=m%/2

ENDWHILE

j%=j%+m%

NEXT

ENDPROC

Sinc oversampling

The following program demonstrates how it is possible to use the Sinc function to generate
interpolated �oversamples� from a set of data samples. The program only performs summation
over a few data points generated from a few randomly chosen sinewave components. The
resulting values are �plotted� using a fairly crude method, chosen purely because it is likely to
work on most computers. Better results can, of course, be obtained by modifying the program to
increase the summing range and a graphical output which exploits the features of your particular
computer.

�C� program showing Sinc function interpolation
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int k=64;  /* number of samples  */

int r=4;   /* oversampling ratio */

float T=1.0; /* signal length      */

int c=3;   /* number components  */

int i_range=8; /* sinc calc. range */

float f0,dt,ddt;

float norm,two_pi;

float x[65]; /* sampled values     */

float fr[3]; /* freq values        */

float am[3]; /* amplitude values   */

float ph[3]; /* phase values       */

char slice[51];/* display slice    */

void generate_components(void);

void generate_signal(void);

void display(void);

float level(float);

void oversamples(int);

float sinc(float);

main()

{   

  f0=1.0/T; /* scale frequency    */

  dt=T/k;/*timestep between samples*/

  ddt=dt/r; /*timestep oversamples */

  two_pi=2.0*3.1415927;

  generate_components();

  generate_signal();

  display();

  printf("\n\n   *  = actual samples      o = sinc fitted
oversamples\n\n");

}

void generate_components(void)

{

  int i=0;

  char dummy;

  norm=0.0;

  while ( i < c )

  {

    fr[i]=f0*k*(rand()%1000)/8000;

    ph[i]=two_pi*(rand()%1000)/1000;

    am[i]=(rand()%1000)/1000.0;

    norm+=am[i];

    printf("f = %6.3f  a = %6.3f  ph =
%6.3f\n",fr[i],am[i],ph[i]);

    i++;

  }

  norm=1.0/norm;

  printf("\nnorm = %6.3f\n\n Press return\n",norm);

  dummy=getchar();

}

void generate_signal(void)

{

  int i;

  float this,now;

  i=0;

  this=0.0;

  now=0.0;

  while ( i < 64 )

  {

    this=0.0;

    now=dt*i;

    x[i]=level(now);

    i++;

  }

}

float level(float time)

{

  int j;

  float answer;

  j=0;

  answer=0.0;

  while ( j < c )

  {

    answer+=am[j]*sin(two_pi*fr[j]*time+ph[j]);

    j++;

  }

  answer=answer*norm;

  return answer;

}

void display(void)

{

  int i,j,i_stop;

  int here;

  i=0;
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  i_stop=64-i_range;

  while ( i < 50)

  {

    slice[i]=' ';

    i++;

  }

  i=i_range;  

  while ( i < i_stop )

  {

    slice[25]='|';

    here=24*x[i]+25;

    printf("\n %6.3f ",x[i]);

    if (here>=0)

    {

      slice[here]='*';

      j=0;

      while ( j < 50 )

      {

        printf("%c",slice[j]);

        j++;

      }

      slice[here]=' ';

      oversamples(i);

    }

    i++;

  }

}

void oversamples(int o_start)

{

  float time_now,t_then;

  float answer,x_then;

  int i_offset,h,j;

  int count=1;

  while ( count < r )

  {

    time_now=o_start*dt+count*ddt;

    answer=0.0;

    i_offset=-i_range;

    while ( i_offset < i_range)

    {

      x_then=x[o_start+i_offset];

      t_then=dt*(o_start+i_offset);

      answer+=x_then*sinc(3.1415927*(time_now-t_then)/dt);

      i_offset++;

    }

    

    slice[25]='|';

    h=24*answer+25;

    printf("\n %6.3f ",answer);

    if (h>=0)

    {

      slice[h]='o';

      j=0;

      while ( j < 50 )

      {

        printf("%c",slice[j]);

        j++;

      }

      slice[h]=' ';

    }

    count++;

  }

}

     

float sinc(float sc)

{

  float answer;

  if ( sc != 0.0 )

  {

    answer=sin(sc)/sc;

  }

  else

  {

    answer=1.0;

  }

  return answer;

}

BBC BASIC version of sinc oversampling program
K%=64 : R%=4 : C%=3

T=1.0 :

DIM x(65),fr(3),am(3),ph(3)

DIM slice% 51

slice%?51=13

f0=1/T : dt=T/K% : ddt=dt/R%

two_pi=2*PI

i_range%=8

PROCgenerate_components

PROCgenerate_signal

PROCdisplay

PRINT : PRINT

PRINT "  * = actual samples     o = sinc fitted oversamples
"

END

:

DEFPROCgenerate_components

I%=0 : norm=0.0

REPEAT

  fr(I%)=f0*K%*RND(1)/8

  ph(I%)=two_pi*RND(1)

  am(I%)=RND(1)

  norm+=am(I%)

  PRINT "f = ";fr(I%);"  a = ";am(I%);"  ph = ";ph(I%)

  I%+=1

UNTIL I%=C%

norm=1.0/norm

PRINT : PRINT

PRINT "norm = ";norm

PRINT " press return "

wait$=GET$

ENDPROC

:

DEFPROCgenerate_signal

LOCAL I%,this,now

I%=0 : this=0.0 : now=0.0

REPEAT

  this=0.0

  now=dt*I%

  x(I%)=FNlevel(now)

  I%+=1

UNTIL I% = 64

ENDPROC

:

DEFFNlevel(time)

LOCAL J%,answer

J%=0 : answer=0.0

REPEAT

  answer+=am(J%)*SIN(two_pi*fr(J%)*time+ph(J%))

  J%+=1

UNTIL J%=C%

answer=answer*norm

=answer

:

DEFPROCdisplay

LOCAL i%,j%,i_stop%,here%

i%=0

i_stop%=63-i_range%

REPEAT

 slice%?i%=ASC" "
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 i%+=1

UNTIL i%=51

slice%?i%=13

i%=i_range%

REPEAT

  slice%?25=ASC"|"

  here%=24*x(i%)+25

  PRINT FNpoint(x(i%),3)+" ";

  IF (here%>0) THEN

    slice%?here%=ASC"*"

    PRINT $slice%

    slice%?here%=ASC" "

    PROCoversamples(i%)

  ENDIF

  i%+=1

UNTIL i%=i_stop%

ENDPROC

:

DEFPROCoversamples(o_start%)

LOCAL time_now,t_then,answer,x_then

LOCAL i_offset%,h%,j%,count%

count%=1

REPEAT

  time_now=o_start%*dt+count%*ddt

  answer=0

  i_offset%=-i_range%

  REPEAT

    x_then=x(o_start%+i_offset%)

    t_then=dt*(o_start%+i_offset%)

    answer+=x_then*FNsinc(PI*(time_now-t_then)/dt)

    i_offset%+=1

  UNTIL i_offset%=i_range%

  slice%?25=ASC"|"

  h%=24*answer+25

  PRINT FNpoint(answer,3)+" ";

  IF (h%>=0) AND (h%<51) THEN

    slice%?h%=ASC"o"

    PRINT $slice%

    slice%?h%=ASC" "

    ELSE

    PRINT "out range answer = ";answer;"   h = ";h%

  ENDIF

  count%+=1

UNTIL count%=R%

ENDPROC

:

DEFFNsinc(input)

LOCAL answer

IF input=0 THEN

  answer=1

  ELSE

  answer=SIN(input)/input

ENDIF

=answer

:

DEFFNpoint(pval,after%)

pthis$=STR$(pval)

com%=INSTR(pthis$,".",0)

pfront$=LEFT$(pthis$,com%+after%)

com%=INSTR(pthis$,"E",1)

IF com%>0 THEN

  pend$=RIGHT$(pthis$,LEN(pthis$)-com%+1)

  pfront$=LEFT$(pfront$,2)

  pfront$=pfront$+pend$

ENDIF

IF LEFT$(pfront$,1)<>"-" : pfront$=" "+pfront$

=pfront$

Chapter 21 � Encrypting information

The following program is a simple example of an encryption and de-encryption process based on
the RSA method described in Chapter 21. Note that, as shown below, the encryption isn't very
good since the input text is only grouped into pairs before encryption. As a result, assuming that
text consists of the standard English set of less than 100 characters (a, b, c, ... plus A, B, C, plus
normal punctuation) there are less than 10,000 legal character pairs. Hence an encoded message
a few thousand characters long would be vulnerable to entropic attack. A practical system would
gather the characters into larger groups before encrypting them to avoid this problem. However,
this requires the program to cope with very large integer values and necessitates more involved
methods to achieve the same basic result. This is because of the finite precision with which digital
computers store and processes integer values. For the same reason the program shown below only
works correctly on most machines when given primes whose values are less than 255.

‘C’ encryption program

#include <stdio.h>

#include <math.h>

int n,p,q,s,t,r,e;

int here, count, ok;

char in_text[256];

int numbers[128];

int text_to_numbers(void);

int show_numbers(void);

int choose_primes(void);

int encrypt(void);

int decrypt(void);

int numbers_back_to_text(void);

main()

{

  printf("Input line of text to encode >");

  gets(&in_text);

  count=text_to_numbers();

  printf("Count = %i\n",count);

  printf("Text converted to integers >\n");

  show_numbers();

  ok=0;

  while (ok==0)

  {

  ok=choose_primes();

  encrypt();

  printf("\n\nEncrypted numbers >\n");

  show_numbers();
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  decrypt();

  printf("\n\nDecrypted numbers >\n");

  show_numbers();

  numbers_back_to_text();

  }

}

/*   The proceedure converts the text characters into a
series of integers in the range 1-99, pairs them, and stores
the resulting values.    */

int text_to_numbers(void)

{

  int first,second,so_far;

  here=0;

  so_far=0;

  do

  {

    first=in_text[here];

    second=in_text[here+1];

    if (first > 31 ) first=first-30;

    if (second > 31 ) second=second-30;

    numbers[so_far]=first+100*second;

    so_far++;

    here=here+2;

  } while( first!=0 && second!=0);

  return so_far;

}

/*  The following prints out the current set of numbers.*/

int show_numbers(void)

{

  int so_far, this_number;

  so_far=0;

  do

  {

    this_number=numbers[so_far];

    printf("%i  ",this_number);

    so_far++;

  } while (so_far < count);

}

/*  The following reads in the chosen prime values.*/

int choose_primes(void)

{

  int answer;

  printf("Input a pair of primes \n (Suggest 107 103) > ");

  scanf("%i %i",&p,&q);

  n=p*q;

  s=(p-1)*(q-1);

  printf("\nModulus  n = %i\n",n);

  printf("Input a new value prime w.r.t %i and %i \n(decode
key value).\n",p,q);

  printf(" (Suggest 101) > ");

  scanf("%i",&r);

  e=0;

  do

  {

    e++;

    t=(e*r)%s;

  } while ( t!=1 && e<=s );

  if (t==1)

  {

    answer=1;

    printf("\n OK, the encode key is;  e = %i\n",e);

  }

  else

  {

    answer=0;

    printf("\n NO key found !\n");

  }

  return answer;

}  

/*  The following encrypts the information using the public
key values of the modulus, n, and the value, e.*/

int encrypt(void)

{

  int so_far=0;

  unsigned long int

  temp,y,times;

  do

  {

    temp=numbers[so_far];

    y=temp;

    times=1;

    do

    {

      y=(y*temp)%n;

      times++;

    } while (times < e );

    numbers[so_far]=y;

    so_far++;

  } while ( so_far < count );

}

/*  This de-encrypts the encyphered numbers by using the
public modulus, n, and the SECRET value, r.*/

int decrypt(void)

{

  int so_far=0;

  unsigned long int temp,x,times;

  do

  {

    temp=numbers[so_far];

    x=temp;

    times=1;

    do

    {

      x=(x*temp)%n;

      times++;

    } while ( times < r );

    numbers[so_far]=x;

    so_far++;

  } while ( so_far < count );

}

/*  The following turns the recovered numbers back into
text.*/

int numbers_back_to_text(void)

{

  int so_far=0;

  int first,second,this;

  printf("\n Recovered text > \n");

     do

     {

       this=numbers[so_far];

       first=this%100;

       second=this/100;

       if (first > 0)

       {

          first=first+30;

          printf("%c",first);

        }

       if (second> 0)

       {

         second=second+30;

         printf("%c",second);

       }

       so_far++;

     } while (so_far < count);

}
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BBC BASIC encryption program 

DIM in_text% 256, numbers%(256)

FOR I%=0 TO 256

  in_text%?I%=0:numbers%(I%)=0

NEXT

:

REM **** Now the main routine

:

PRINT "Input line of text to encode >"

INPUTLINE $in_text%

count%=FNtext_to_numbers

PRINT "Count = ";count%

PRINT "Text converted to integers >"

PRINT

PROCshow_numbers

ok%=0

WHILE (ok%=0)

  ok%=FNchoose_primes

  PROCencrypt

  PRINT CHR$(13)+CHR$(13)+"Encrypted numbers >"+CHR$(13)

  PROCshow_numbers

  PROCdecrypt

  PRINT CHR$(13)+CHR$(13)+"Decrypted numbers >"+CHR$(13)

  PROCshow_numbers

  PROCnumbers_back_to_text

ENDWHILE

END

:

REM **** Routines named and used like 'C' version

:

DEFFNtext_to_numbers

LOCAL first%,second%

LOCAL so_far%,stop%

here%=0 : so_far%=0

stop%=FALSE

REPEAT

  first%=in_text%?here%

  second%=in_text%?(here%+1)

  IF (first%=13) THEN

    first%=0  : stop%=TRUE

  ENDIF

  IF (second%=13) THEN

  second%=0 : stop%=TRUE 

  ENDIF   

  IF (first%>31) : first%-=30

  IF (second%>31): second%-=30

  numbers%(so_far%)=first%+100*second%

  so_far%+=1

  here%+=2

UNTIL stop% OR (here%>250)

=so_far%

:

DEFPROCshow_numbers

LOCAL so_far%

so_far%=0

REPEAT

  PRINT numbers%(so_far%);"  ";

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

:

DEFFNchoose_primes

LOCAL answer%

PRINT "Input a pair of primes"

INPUT "(Suggest 107,103) > ",p%,q%

n%=p%*q%

s%=(p%-1)*(q%-1)

PRINT "Modulus n = ";n%

PRINT "Input a new prime w.r.t. ";p%;" and ";q%

PRINT "(Decode key value) "

INPUT "(Suggest 101) > ",r%

e%=0

REPEAT

  e%+=1

  t%=(e%*r%)MODs%

UNTIL (t%=1) OR (e%>=s%)

IF t%=1 THEN

  answer%=1

  PRINT "OK, the decode key is;  e = ";e%

  ELSE

  answer%=0

  PRINT "NO key found !"

ENDIF

=answer%

:

DEFPROCencrypt

LOCAL so_far%,temp%,y%,times%

so_far%=0

REPEAT

  temp%=numbers%(so_far%)

  y%=temp%

  times%=1

  REPEAT

    y%=(y%*temp%)MODn%

    times%+=1

  UNTIL times%=e%

  numbers%(so_far%)=y%

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

:

DEFPROCdecrypt

LOCAL so_far%,temp%,x%,times%

so_far%=0

REPEAT

  temp%=numbers%(so_far%)

  x%=temp%

  times%=1

  REPEAT

    x%=(x%*temp%)MODn%

    times%+=1

  UNTIL times%=r%

  numbers%(so_far%)=x%

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

:

DEFPROCnumbers_back_to_text

LOCAL so_far%,first%,second%,this%

so_far%=0

PRINT CHR$(13)+"Recovered text >"+CHR$(13)

REPEAT

  this%=numbers%(so_far%)

  first%=this%MOD100

  second%=this%DIV100

  IF (first%>0) AND (first%<>13) THEN

    first%+=30

    PRINT CHR$(first%);

  ENDIF

  IF (second%>0) AND (second%<>13) THEN

    second%+=30

    PRINT CHR$(second%);

  ENDIF

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

Finding prime numbers
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In order to use the above programs you need to select a suitable trio of prime numbers. The
following program provides a simple way to locate prime integers in a given range. The program
asks for the maximum and minimum values which limit the range to search. It then prints out all
the primes it finds in the given range.

�C� prime number lister.
/* finds primes in given range */

#include <stdio.h>

#include <math.h>

int min,max,now;

int ia,ib,ic, iremain;

float x,y,z, stop_at;

main()

{

  printf("Input max and min integers >");

  scanf("%i %i",&max,&min);

  if (min>=max)

  {

    now=max;

    max=min;

    min=now;

  }

  printf("Max = %i\n",max);

  printf("Min = %i\n",min);

  now=min;

  for (now=min; now<max; now++)

  {

    stop_at=sqrt(now);

    ia=1;

    do

    {

      ia++;

      iremain=now%ia;

    } while (ia<stop_at && iremain!=0);

    if (iremain!=0) printf(" %i PRIME ***\n",now);

  }

}

BBC BASIC prime finding program
REM Finds primes

:

PRINT "Input max and min integers > ";

INPUT min%,max%

IF min%>max% : SWAP min%,max%

PRINT "Max = ";max%

PRINT "Min = ";min%

now%=min%

REPEAT

  stop_at=SQR(now%)

  ia%=1

  REPEAT

    ia%+=1

    iremain%=now%MODia%

  UNTIL (iremain%=0) OR (ia%>stop_at)

  IF iremain%<>0 : PRINT now%;" is PRIME ***"

  now%+=1

UNTIL now%>max%

END
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