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Preface to the 2nd Edition

This new edition contains over 50 pages of new material. Most of this is contained in three
entirely new chapters. These deal with counting, frequency measurement, and the use of
correlation to detect and identify signal patterns. In addition, the original version of Chapter 19
on Data Thinning has been replaced by an entirely new chapter. The version in first edition was
relatively brief and chose the ill-fated example of DCC (Digital Compact Cassette). The new
version in this book is substantially longer and uses JPEG and MiniDisc as its examples. As well as
these major changes, the opportunity has been taken to correct some minor errors and omissions.

The flavour and intent of the book remains unchanged, but I hope that the changes will enhance
the book’s usefulness. As before, the approach I have taken is to base explanations upon the
underlying physics and use examples which the reader may be familiar with and find interesting.

Jim Lesurf
February 2001

Preface to the 1st Edition

Information has many faces. A physicist may take a course called Instrumentation or Measurement
Techniques. An engineer may study Information Technology, and a computer scientist or
mathematician Information Theory. Courses under these and similar names all tend to offer partial
views of a bigger underlying subject.

The specialisation of students taking different degree subjects has tended to lead to a visible
fragmentation in the coverage of existing textbooks. On the one hand there are many theoretical
books dealing with the mathematics of information theory which ignore the engineering required
to put theory into practice. On the other hand there are engineering books on instrumentation
technology which fail to give a clear explanation of the concepts which underpin their operation.
However, to collect information we have to make measurements. We need real, practical
instruments to collect and process this information. A pattern of numbers on a computer disc or
a waveform on an oscilloscope screen tells us nothing unless we know how it was produced.

The main purpose of this book is to provide a readable and interesting introduction to a subject
area wide enough to be useful to almost every scientist and engineer. The emphasis is on width
and clarity rather than an attempt to include every detail. In my experience many undergraduate
students find information theory textbooks too abstract and mathematical. This tends to deter all
but the most theoretically minded from understanding the subject. Yet information technology is
arguably the most important scientific topic of all for anyone who wants to understand and
participate in the new technologies which dominate our society. To be useful, the mathematics of
information theory has to be based on the properties of the real world and lead to practical
applications. As a result, the apparently distinct topics often called information theory,
measurement, and instrumentation are best understood by recognising that they are facets of the
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same jewel.

The approach I have taken in this book differs from most other texts. I have deliberately mixed
together the basic maths, engineering, and physics in order to show how they are linked in real
situations. I have chosen to illustrate the basic techniques of measurement and information
processing using examples which are likely to be of interest to most science and engineering
students (and, I suspect, their teachers!). For this reason a large portion of the book concentrates
on the Compact Disc audio system. There are also chapters on Encryption (secret codes) as well as
chaos and its uses. The CD system is particularly useful — both because most of us will have
encountered it, and because it provides an excellent illustration of how measurement and
information technology go together in the real world. The other examples show the range and
power of the subject.

For engineers and scientists ‘absolute truth’ is a matter of personal judgement, not objective fact.
In information theory this means that every measurement and message only conveys a finite
amount of information. In the real world nothing is absolutely certain or precise. Our state of
knowledge is always imperfect, limited, and subject to later improvement. I have tried to to avoid
the error — sadly common in textbooks — of presenting every detail and ramification of an
argument and burying understanding under a mound of facts. This book explains the concepts of
information theory on a ‘successive approximation’ basis. The explanations given in each chapter
are intended to be simple enough to guide the reader through the subject without causing
confusion. Later explanations give further details as required when more sophisticated
techniques are introduced.

If the book has a theme it is that ‘The best place to start is the physics of the real world's
behaviour’. The form of the book is designed to make it suitable as a ‘course book’ for an
undergraduate course of up to a couple of dozen one-hour lectures. Each chapter provides the
material for one lecture topic. Each finishes with a summary which the reader can use to check
that they have learned the main points. Most chapters are also followed by a set of tutorial
questions. Detailed answers to the numerical questions are provided in an appendix. The correct
answer value is also included (in bold type) at the end of each numerical question. You can use
this to check your answer before consulting the back of the book. There is an additional appendix
listing a number of programs in both BASIC and ‘C’. The purpose of these questions and
programs is to help the reader to discover how the ideas presented in the book are put into
practice.

I hope that I have produced a book which will be useful to a wide range of physical scientists,
engineers, mathematicians, and computer scientists. If I have been successful this book will help
illuminate how their individual interests and skills link together to form a greater body of
understanding. Finally, I would like to thank all the students and others who helped me to
discover and correct the mistakes which earlier versions of this book contained. They provided a
powerful error correction mechanism I haven't described in the book!

Jim Lesurf

July 1994
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Chapter 1

Where does information come from?
1.1 Introduction

This book is designed to provide you with an explanation of the basic concepts of information
collecting and processing systems. To do this we will examine examples ranging from secret codes
to compact disc players. Using these practical examples you should be able to see how the
mathematics of Information Theory can be applied in practical situations to make Instruments which
perform useful tasks. This first chapter is intended to a be a general outline. Most of the concepts
introduced here will be looked at more carefully later.

Scientists and engineers devote considerable attention to the processing and storage of
information, yet questions relating to how information is produced generally attract less
consideration. To some extent, this blind spot seems to stem from a belief that any interest in this
area smells strongly of philosophy, not engineering. In general, practically minded scientists don't
want to ‘waste their time’ with philosophy — although there are many notable exceptions to this
rule.

This book is not about philosophy. No time will be devoted to questions like:
‘What is the meaning of meaning?’

‘How do we know what we know?’

etc.

Despite this, when trying to understand information based systems it's vital to have some idea of
how information is created or captured.

1.2 Whatis information?

For our purposes, we can say that information initially comes from some form of sensor or
transducer. This generates some form of response which can then be measured. It is this
measurement or detection which ‘creates’ information. (In fact, the sensor is reacting to the
arrival of some input pattern of energy or power. It would be fairer to say it ‘picks up’ the
information, but we'll ignore this fact.) Once we adopt this starting point it becomes clear that the
topics of instrumentation and measurement form the basis of all practical information systems.

This viewpoint provides us with a double advantage over someone who is studying information
theory purely as a branch of mathematics. Firstly, it gives us a way to understand information
processing systems in terms of the physical properties of the real world. Secondly, it helps us sort
out questions related to the ‘value’ or ‘meaning’ of information without the risk of being dragged
into metaphysics. Instead we can simply ask, ‘How was this information produced?’

What is an ‘instrument’? At first glance, it can appear to science and engineering students that the
subject called Instrumentation is obsessed with describing how voltmeters and oscilloscopes work.
Yet the subject covers a much wider and more important area. A colour TV is an instrument. A
digital computer is an instrument. Each senses some form of input and responds by producing an
appropriate output. The TV responds to an electromagnetic wave from a distant transmitter to
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produce a corresponding picture on a screen and sound from a loudspeaker. The computer can
be affected by various sorts of input, from a keyboard, a mouse, or by reading a magnetic disc. It
can respond by altering the electronic pattern held in its memory, by altering its monitor display,
or recording something on a disc.

Most of the examples we'll look at in this book will be electronic or optical. This is because optical
and electronic methods are powerful and widely used. Despite this, it's important to realise that
the basic points made in this book aren't only true in these areas. To emphasise this, we can start
by considering a simple mechanical measurement system — a kitchen balance — to make some
fundamental points which apply to all measurement (information gathering) systems.

The balance has a pan or plate supported by a spring. When we place something on the pan the
added weight presses down on the spring, compressing it. The pan moves downwards until the
compression force from the squeezed spring balances the force of the increased weight. Most
balances have a rotary dial with a pointer attached to the pan. The movement caused by the
weight rotates the pointer to give us a ‘reading’ of the weight.

Downward
movement

Figure 1.1  Kitchen technology measurement system.

The first point to note is that, like most measurement systems, this one is indirect. What we actually
observe is a movement (rotation) of the pointer. We don't actually see the magnitude of the
weight. If, for example, we put an iron on the pan we might see the pointer move around through
120 degrees. If we liked, we could also use a ruler to find that the pan moved down 2 cm.
However, we don't usually quote weights in degrees or centimetres! In order to make sense of
these observed values we have to calibrate the balance. To do this we can place two or three
different known weights on the scales and make a note of how far the pointer goes around (or the
pan falls) each time. We can then use these results to make a series of calibration marks on the
face of the dial. Now, when we put something — e.g an iron — on the scales we can read off its
weight from the dial. This calibration process means that the balance provides us with a means to
compare the weight of the iron with a set of other ‘standard’ weights. In general, all
measurements are Comparisons with some defined standard.

Usually, we buy a kitchen balance which should already be calibrated (i.e. its dial is marked in kg,
Ib, etc, not degrees) and we don't bother to calibrate the weighing instrument for ourselves.
However, when we consider the need for a calibration process an awkward question springs to
mind — where did the ‘known’ weights come from that were used to calibrate the readings? If all
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measurements are comparisons, how were the values of those weights known? They, too, would
need to have been weighed on some weight measurement system. If so, how was that system
calibrated?

Any measurement we make is the last link in a chain of similar measurements. Each one calibrates
a system or a ‘standard’ (e.g. a known weight) which can be used for the next step. Right back at
the beginning of this chain (at the National Physical Laboratory in the UK and other standards
labs around the world) there will a Primary Reference system or standard which is used to define
what we mean by ‘1 kg’, or ‘1 second’ or whatever. In effect, when we plonk something on the
pan of a kitchen balance we're indirectly comparing it with the standard kg weight kept under a
glass cover at the NPL.

When we place an iron on the pan we have to wait a second or two to let the system settle down
and allow the pointer to stop moving. Similarly, when we remove the iron the system takes a short
time to recover. The second point we can make about the measurement system is, therefore, that
it has a finite Response Time — i.e. we have to wait for a specific time after any change in the
weight before we can make a reliable reading. This limits our ability to measure any changes
which take place too quickly for the system.

The third point to note is fairly obvious from our choice of an iron. If we put too large a weight
on the pan the pointer will go right around and move ‘off scale’. (If the iron is very heavy we may
even smash the scales!) No matter how well we search the shops, we can't find scales which can
accurately measure any weight, no matter how big. Every real instrument is limited to operate
over some finite Range. Beyond this range it won't work properly and Overloads or Saturates to give
a meaningless response.

The fourth and final basic point is something we won't usually notice using ordinary scales since
the effect is relatively small. All of the atoms in the scales, including those in its spring, will be at
room temperature. (In a kitchen this probably means at or above 20 Celsius or 293 Kelvin.) As a
result, they'll be moving around with random thermal motions. Compared to the effect of placing
an iron on the scales these movements are quite small. However, if we looked at the pointer very
carefully with a powerful microscope we'd see its angle fluctuating randomly up and down a little
bit because of the motions of the atoms in the spring. As a result, if we wanted to measure the
weight very accurately this thermal jittering would limit the precision of our reading. As a result,
no matter how good the scales, our ability to make extremely accurate measurements is limited by
thermal random effects or thermal noise.

1.3 Accuracy and resolution

It is important to realise that the amount of information we can collect is always finite. The
example of kitchen scales has introduced us to the limiting effects of clipping, noise, and
response time. It doesn't matter how clever we are, these problems occur in all physical systems
since they are consequences of the way the real world works. To see some of the other problems
which arise when we're collecting information, consider the system in figure 1.2. This diagram
represents a diffraction grating being used to measure the power/frequency spectrum produced
by a light source.
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The system is intended to provide us with information about how bright the light source is at
various light wavelengths. It relies upon the reflection properties of a surface made with a series of
parallel ridges called a Reflection Grating. For an ordinary plane mirror, the angle of reflection
equals the angle of incidence. For a grating, the angle of reflection also depends upon the
wavelength of the light and the details of the grooved surface pattern. Hence the arrangement
shown acts as a sort of adjustable filter. Only those light wavelengths which reflect at the
appropriate angle will make their way through the output slit onto the detector.

Light H N Diffr_action
source SR A RRE N ey Grating
o e

w
\\\><:/
—— C—— Output
0—/<]jl)etector
(Light Sensor)
Voltmeter Amplifier

Figure 1.2  Simple diffraction grating spectrometer.

As with the kitchen scales, the system provides an indirect way to measure the light's spectrum. We
use the angle of the diffraction grating to tell us the wavelength being observed. The voltage
displayed on the meter indicates the light power falling on the detector. To discover the light's
spectrum we slowly rotate the grating (or move the output lens/slit/detector) and note how the
voltmeter reading varies with the grating angle. To convert these angles and voltages into
wavelengths and light powers we then need to know the Sensitivity of the detector/amplifier
system and the angles at which various wavelengths would be reflected by the grating — i.e. the
system must be calibrated.

In most cases the instrument will be supplied with appropriate display scales. The voltmeter will
have a dial marked in units of light power, not volts. The grating angle display will be marked in
wavelengths, not degrees. These scales will have been produced by a calibration process. If the
measurements we're making are important it will probably be sensible to check the calibration by
making some measurements of our own on a ‘known’ light source.

As with the kitchen balance, our ability to measure small changes in the light level will be limited
by random noise — in this case random movements of the electrons in the measurement system
and fluctuations in the rate at which photons strike the detector. The accuracy of the power
measurement will depend upon the ratio of the light power level hitting the detector to the
random noise. We could increase the light level and improve the precision of the power
measurement by widening the slits and allowing more light through. However, this would have
the disadvantage of allowing light reflected over a wider range of angles to reach the detector.
Since the angle of reflection depends upon the light wavelength this means we are allowing
through a wider range of wavelengths.

In fact, looking at the system we can see that it always allows through a range of wavelengths.
Unless the slits are narrowed down to nothing (cutting off all the light!) it will always allow light
reflected over some range of angles, A® (and hence having a range of wavelengths, A1) to get
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through. As a result there is an unavoidable ‘trade off” between the instrument's power sensitivity
and its frequency Resolution or ability to distinguish variations in power confined to a narrow
frequency interval. This kind of trade off is very common in information collection systems. It
stems from basic properties of the physical world and means that the amount of information we
can collect is always finite — i.e. we can never make perfect measurements with absolute accuracy
or precision or certainty.

Summary

You should now know that information is collected by Instruments which perform some kind of
Measurement. That measurement systems usually give an Indirect indication of the measured
quantity and that all measurements are Comparisons which have to be Calibrated in some way. The
amount of information we can collect is always finite, limited by the effects of Noise, Saturation (or
Overload), and Response Time. That many information gathering techniques involve a Trade-Off
between various quantities — for example, between the Resolution of a wavelength measurement
and the Sensitivity of a related power measurement. That these limitations arise from the
properties of the physical world, not poor instrument design.
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Chapter 2

Signals and messages
2.1 Sending information

In the first chapter we looked at how measurement instruments can produce information. The
information produced and processed by these systems will be in the form of a Signal which carries
a message (specific set of information). In the case of the grating spectrometer shown in figure 1.2
the signal was a voltage communicated from the light detector to the voltmeter. This voltage will
vary in a specific pattern as the grating angle is altered. It is this pattern which carries the
message.

All information handling systems have the same basic form. Firstly, there will be some type of
information Source. This can take many forms, from the microphone in a telephone to the
keyboard of a computer. The source will be connected to a Receiver by some sort of Channel. In the
case of a telephone, the receiver will be an earpiece in another telephone and the information
carrying channel between them may be a set of wires. Information is sent along the wires in the
form of a varying voltage and current which acts as a signal whose details carry the actual
information or message.

In this book we will tend to talk about signals being ‘transmitted’. Despite this it's important to
realise that — from the theoretical point of view — there isn't any real difference between
transmitting signals, storing them on discs/tapes etc to read later, and processing them in a
computer. Most of the basic comments and properties outlined in this book apply to information
processing systems in general. They aren't restricted to telephones or TV broadcasts! For this
reason the concept of signals is of fundamental importance to information theory. Before the
invention of the telephone, people could send messages by posting written letters, or by getting a
chain of other people to stand on hilltops and wave semaphore flags, or even by lighting bonfires!
Before the desktop computer there was pen and paper. Modern systems are more convenient, but
if you really wanted to you could do it some other old-fashioned way!

No matter how it's done, before a signal can be used to communicate some specific information
in the form of a Message, the sender and receiver must have agreed on the details of how the
actual signals are to be used. It is not enough to agree that someone will stand on a hilltop and
wave flags. We have to arrange that, “These flags held like this represent the letter ‘A’; these held
like this represent ‘B’...” i.e there must be some sort of pre-arranged Code for sending the
information. It is also clearly important that we can distinguish one code Symbol (‘A’, ‘B’, ‘C’, etc
are examples of distinct symbols) from another, otherwise we will make mistakes.
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On the basis of ‘A=000, B=001, C=010, etc...” this signal
could be sampled at the points shown and then sent in the
form, ‘GGGHHEFED...’, etc.

H= 111 |
G=110 |

(.

Voltage D= 011

101
100

C= 010
B= 001

A= 000

Time ——
Figure 2.1 Sampling an analog signal.

It's important to realise that the same message can be conveyed in any form we like provided we
obey the basic rules of information theory. As an example, consider the message illustrated in
figure 2.1. This shows a varying voltage coming from a sensor. At this point it doesn't matter very
much where this pattern has come from or what it represents. It might be coming from a
telephone mouthpiece and carrying information about what someone is saying. It might be from
the light detector in figure 1.2 and indicates how the light level varies as the grating angle is
altered. What matters is that the details of the signal pattern constitute the message which carries
the information. In the case of the instrument shown in figure 1.2 the information is signalled
from detector to voltmeter by a smoothly varying voltage whose level is roughly proportional to
the detected light level. Signals of this type are called Analog since the varying level (the voltage)
is treated as a mathematical analog of the original (light power in this case) pattern. We can
therefore imagine that the shape of the curve plotted in figure 2.1 holds the information about
the spectrum of the light being observed.

If we wanted to communicate this information to someone we could connect up some amplifiers
and wires and send it as an analog voltage level which varies as shown. (In this case, the various
voltage levels which we can distinguish from one another are the ‘symbols’, although it's not
normal for analog signals to be described in that way.) Alternatively, we can adopt other ways to
communicate or store the same information. For example, we can choose to Sample the signal
waveform and convert it into a series of binary numbers. To do this we proceed as follows.

We begin by defining a specific maximum Signal Range which is wide enough to ensure that the
signal level is always inside the chosen range. We then choose a point on the waveform and ask,
‘Is the point in the top half of the range?’. If it is we write down a ‘1’, if not we write down a ‘0’.
We then define a new range which only covers that half of the original one which contains the
point and ask the question again to obtain another ‘1’ or ‘0’ answer. This provides a two-digit
number which tells us which quarter of the original range the point occupies. In principle, this
process of halving the range, asking the question, getting a yes/no answer, and noting the result
as a one or zero can be repeated as many times as we like. We can then repeat this whole process
for a series of points along the waveform. This process is called Sampling the waveform. Note that
if the signal level ever moves out of the initial signal range we've chosen we won't have any way of
indicating its actual level. Should this happen, the signal is said to have been Clipped since we can
only indicate its value by the nearest available set of ‘1’s and ‘0’s.
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In the example shown in figure 2.1 the question and answer process is performed three times for
each chosen point. This gives us a series of three-digit values which tell us which eighth of the
signal range contains each sample. The result is a series of binary numbers whose pattern holds
the information required to define or reconstruct the actual waveform. We could therefore
transmit these numbers to someone and they could then use them to draw out the original
waveform shape.

The process considered above converts the waveform information into a signal encoded in Binary
Digital form. Digital numbers are very convenient to transmit and are ideal for storing and
processing in modern digital computers. We can, however, encode the same information in any
way we find convenient. For example, if we wanted to record in a notebook, we could represent
each possible digital number as a letter. For example, as shown in the diagram, we could choose
000 = ‘A’, 001 = ‘B’, 010 = ‘C’, etc. The information in the waveform could then be written down
as ‘GGGHHFED...’. It doesn't matter what form of code we choose. Provided we have Encoded it
correctly, the same information will be preserved. The message will remain the same although the
form of the signal used (analog voltage, digital numbers, letters in a book) will be different.

2.2 How much information in a message?

In the above example we asked three yes/no questions about each chosen point on the initial
waveform. Yes/no questions like this are the simplest we can ask. Each answer is a yes/no or ‘1’/
‘0’ which gives us the minimum possible amount of extra information. This minimum possible
quantity of information is called a Bit. Having asked three yes/no questions per point we
therefore obtain a series of values, each of which contains just three bits worth of information. In
general, asking n questions per sample produces a series of n-bit binary numbers, each of which
defines which 1/2"th of the signal range each point occupies. There are only 2" possible n-bit
numbers. Hence we require 2" distinct symbols (‘A’, ‘B’, ‘C’, ... ‘H” or ‘000’, ‘001, ‘010’, ... ‘111°,
or whatever) to convey the information. The limited range of possible values means we can use a
limited ‘alphabet’ of 2" symbols.

The amount of information we collect about the waveform depends upon how many points we
sample and how many yes/no answers we get for each. We can therefore hope to get twice as
much information by taking double the number of samples. However, although asking an extra
question per sample doubles the number of symbols required it doesn't provide twice as much
information. In the example considered above, asking an extra question per sample would mean
each binary result would have four bits instead of three. This means we would collect four-thirds
as much information not twice as much! The basic rule of information theory is that the total
amount of information, H, collected will be

H = Nn .. (2.1)

where Nis the number of samples and n the number of bits (questions and answers) per sample.
Given an initial signal which lasts for a period of time, 7, sampled at a series of instant ¢ apart, we
would therefore obtain a total amount of sampled information

T T
H = T” - (7) log, { M)} . (2.2)
where M = 2" is the number of symbols available to convey the message.
In practice, the amount of information we can communicate in a given time will be limited by the

properties of the channel (the wires, amplifiers, optical fibres, etc) we use. We therefore often
need to know the information carrying capacity of a channel to decide if it is up to a given task.
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Consider the example of a varying analog voltage sent along some wires to be measured with an
Analog to Digital Convertor (ADC). Here the wires are the channel and the ADC is the signal
receiver. How many bits worth of information could an ideal ADC obtain from the analog signal
in a given time? The input seen by the ADC will be a combination of the transmitted signal level
and a small amount of random noise. This determines the size of the smallest signal details we
can expect to observe. There will also be a limit to how great a signal voltage can be transmitted
without ‘clipping’ or serious distortion. For the sake of example, let's assume that the channel has
a noise level of around 1 mV and can handle a maximum range of 1 V.

Ideally, the ADC's range should equal that of the input channel, i.e. the ADC should in this case
start with a voltage range, V,,,,, of 1 V. An n-bit ADC could then determine the signal level at any
instant with an accuracy of V,,,,./2". An 8-bit ADC could divide the input 1V range into
28 = 9256 bands, each 1 /2% = 0-0039 V wide, and determine which of these bands the input was
in at any instant. A 10-bit ADC could divide the 1 V range into 2'° = 1024 bands, each
1/2" = 0-00097 V wide. We might therefore expect to extract more information and obtain a
more accurate result by using a 10-bit ADC instead of an 8-bit one. However, if we tried using an
even better ADC giving 11 or more bits per sample we wouldn't obtain any extra information
about the signal. This is because the 10-bit ADC already divides the input range into bands just
0-97 mV wide — i.e. slightly smaller than the amount by which the random noise jitters the input
up and down. There's no point trying to determine the voltage level more accurately than this.
We'll simply be looking at the effects of the noise. So it would a waste of effort to use an 11-bit
ADC in this case as the ‘extra’ bits wouldn't tell us anything useful.

This effect arises because the input signal has a finite Dynamic Range — the ratio of maximum
possible signal size to the minimum detail detectable over the random noise. The dynamic range,
D, of an analog signal is defined as a power ratio given in decibels between the maximum possible
signal level and the mean noise level, i.e. we can say that

P 2
D =10 log{$} =10 log{VL;x} ..(2.3)

n vn

where V,,,, and v, represent the rms maximum signal and rms noise. This dynamic range should
be distinguished from the actual signal to noise ratio (SNR), at any time

P
SNR = 10 log{Fs} . (2.4)

n

where P; is the actual signal power level which is usually less than P,, .

There will also be a limitation on how quickly the voltage being transmitted along the wires can
be changed. This is due to the finite response time of any system. Here, for example, we can
assume that (due, perhaps to stray capacitances) the wires take a microsecond to react to a
change. This means we can't expect to obtain any extra information by making the ADC sample
the input it sees more often than once a microsecond, choosing a sampling rate above 1 MHz (10°
samples per second) won't therefore provide any extra information.

If it takes the channel (the wires) a microsecond to respond to a voltage rise and a microsecond
to respond to a fall, the highest signal frequency we can expect it to carry will be one cycle (one
up and down) every two microseconds — a maximum signal frequency of 0-5 MHz. The
Bandwidth of a channel is the range of frequencies it can carry. In most cases we can assume that
this range extends down to ‘d.c.” so the maximum frequency and the bandwidth usually have the
same value. In this case we see that the sensible sampling rate is about 1 MHz and the bandwidth
of the analog channel is 0-5MHz. This implies that, in general, we can expect the required
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sampling rate to be double the bandwidth.

In this case, the combination of 1 mV of noise, a signal voltage range of 1 V, and a 1 uS response
time mean that there is no point in using an ADC which tries to collect more than 10 bits per
microsecond. It is important to note that this limitation of the rate the ADC collects information
is imposed by the channel which transmits the analog signal to it, not a defect of the ADC itself. A
better ADC wouldn't give us any extra information since 10x10° bits per second is all this
particular analog signal channel can carry. The analysis we've carried out here is just a rough
approximation. We'll be considering the question of the information carrying capacity of a
channel more carefully in a later chapter. However, we can already see that the effects of random
noise, clipping, and response time/bandwidth combine to limit the information carrying capacity
of any information channel no matter what form of signal it uses.

Summary

In this chapter you saw how all information processing systems can be regarded as consisting of an
information Source connected to a Receiver by some form of Channel. That any particular set of
information is a Message which is sent as a Signal pattern using some form of Code made up of
appropriate Symbols. You saw how an analog (continuously varying) signal can be Sampled to
recover all the information it contains. That the amount of information a channel carrying an
analog signal can convey is finite, limited by the biggest unclipped level it can manage (Clipping),
the Noiselevel, and the time it takes to respond to a changed input (the channel's Response Time or
Bandwidth) .

Questions

1) Sketch a diagram of a typical analog Signal pattern. Use the diagram to help explain how such
a signal can be Sampled, and what we mean by a Bit of information.

2) An analog voltage Channel is used to transmit a signal to an Analog to Digital Converter (ADC).
The input voltage can vary over the range from +2 to —2 V and the channel Noise level
corresponds to £1 mV. How many bits per sample must the ADC produce to be able to measure
the input voltage level at any moment without any loss of information? How many different code
Symbols would be required to record all the possible values produced by the ADC? [11 bits/
sample. Minimum of 2000 symbols needed to cover all the levels. The 11-bit ADC actually
provides 2048 symbols. ]

3) The channel used for 2) can carry signal frequencies (sinewaves) from 0 Hz up to 150 kHz.
What is the value of the channel's Response Time? How many samples per second must the ADC
take to ensure that all the analog information is converted into digital form? [Response time = 3-3
us. 300,000 samples/s.]

4) A Message takes 10 seconds to transmit along the analog channel. How many bits of of
information is it likely to contain? [33 million. ]

5) Explain the difference between the Dynamic Range of a channel or system and the Signal to Noise
Ratio of a signal. Write down an equation giving the S/N ratio in decibels in terms of the signal
power and noise power.
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Chapter 3

Noise
3.1 The sources of noise

Whenever we try to make accurate measurements we discover that the quantities we are observing
appear to fluctuate randomly by a small amount. This limits our ability to make quick, accurate
measurements and ensures that the amount of information we can collect or communicate is
always finite. These random fluctuations are called Noise. They arise because the real world
behaves in a quantised or ‘lumpy’ fashion. A common question when designing or using
information systems is, ‘Can we do any better?’ In some cases it's possible to improve a system by
choosing a better design or using it in a different way. In other cases we're up against
fundamental limits set by unavoidable noise effects. To decide whether it is worth trying to build a
better system we need to understand how noise arises and behaves. Here we will concentrate on
electronic examples. However, you should bear in mind that similar results arise when we
consider information carried in other ways (e.g. by photons in optonics systems).

3.2 Jobnson noise’

In 1927 J. B. Johnson observed random fluctuations in the voltages across electrical resistors. A
year later H. Nyquist published a theoretical analysis of this noise which is thermal in origin.
Hence this type of noise is variously called Johnson noise, Nyquist noise, or Thermalnoise.

A resistor consists of a piece of conductive material with two electrical contacts. In order to
conduct electricity the material must contain some charges which are free to move. We can
therefore treat it as ‘box’ of material which contains some mobile electrons (charges) which move
around, interacting with each other and with the atoms of the material. At any non-zero
temperature we can think of the moving charges as a sort of Electron Gas trapped inside the
resistor box. The electrons move about in a randomised way — similar to Brownian motion —
bouncing and scattering off one another and the atoms. At any particular instant there may be
more electrons near one end of the box than the other. This means there will be a difference in
electric potential between the ends of the box (i.e. the non-uniform charge distribution produces
a voltage across the resistor). As the distribution fluctuates from instant to instant the resulting
voltage will also vary unpredictably.

Resistor D.C. Voltmeter
o D.C. Amplifier M
~ \
o ! Mobile \
° /
l ° Electrons PP

Figure 3.1 Fluctuating voltage produced by random
movements of mobile electrons.
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Figure 3.1 illustrates a resistor connected connected via an amplifier to a centre-zero d.c.
voltmeter. Provided that the gain of the amplifier and the sensitivity of the meter are large
enough we will see the meter reading alter randomly from moment to moment in response to the
thermal movements of the charges within the resistor. We can't predict what the precise noise
voltage will be at any future moment. We can however make some statistical predictions after
observing the fluctuations over a period of time. If we note the meter reading at regular intervals
(e.g. every second) for a long period we can plot a histogram of the results. To do this we choose
a ‘bin width’, dV, and divide up the range of possible voltages into small ‘bins’ of this size. We
then count up how often the measured voltage was in each bin, divide those counts by the total
number of measurements, and plot a histogram of the form shown in figure 3.2.

We can now use this plot to indicate the likelihood or probability, p{V }.dV, that any future
measurement of the voltage will give a result in any particular small range, V. — V + dV. This
type of histogram is therefore called a display of the Probability Density Distribution of the
fluctuations. From the form of the results, two conclusions become apparent:

Firstly, the average of all the voltage measurements will be around zero volts. This isn't a surprise
since there's no reason for the electrons to prefer to concentrate at one end of the resistor. For
this reason, the average voltage won't tell us anything about how large the noise fluctuations are.

p(V)

—

0 l I T 1 !
Voo V—>
Figure 3.2 Histogram of some noise voltage measurements.

Secondly, the histogram will approximately fit what's called a Normal (or Gaussian) distribution of
the form

—2V?
p{v} . dV o Exp{ = } ..(3.1)

(Note that you'll only get these results if you make lots of readings. One or two measurements
won't show a nice Gaussian plot with its centre at zero!) The value of o which fits the observed
distribution indicates how wide the distribution is, hence it's a useful measure of the amount of
noise.

The o value is useful for theoretical reasons since the probability distribution is Gaussian. In
practice, however, it is more common to specify a noise level in terms of an rms or root-mean-square
quantity. Here we can imagine making a series of m voltage measurements, vy, Vg, ... V... Uy,
of the fluctuating voltage. We can then calculate the rms voltage level which can be defined as

...(3.2)

In general in this book we can simplify things by using the ‘angle brackets’, (), to indicate an
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averaged quantity. Using this notation expression 3.2 becomes

Vyms = \[(UF) ...(3.3)
Since vf- will be positive when v; > 0 and when v; < 0 we can expect v, to always be positive
whenever the Gaussian noise distribution has a width greater than zero. The wider the
distribution, the larger the rms voltage level. Hence, unlike the mean voltage, the rms voltage is a
useful indicator of the noise level. The rms voltage is of particular usefulness in practical
situations because the amount of power associated with a given voltage varies in proportion with
the voltage squared. Hence the average power level of some noise fluctuations can be expected to
be proportional to v3,,,.

Since thermal noise comes from thermal motions of the electrons we can only get rid of it by
cooling the resistor down to absolute zero. More generally, we can expect the thermal noise level
to vary in proportion with the temperature.

3.3 Shot noise’

Many forms of random process produce Gaussian/Normal noise. Johnson noise occurs in all
systems which aren't at absolute zero, hence it can't be avoided in normal electronics. Another
form of noise which is, in practice, unavoidable is Shot Noise. As with thermal noise, this arises
because of the quantisation of electrical charge. Imagine a current flowing along a wire. In reality
the current is actually composed of a stream of carriers, the charge on each being ¢, the
electronic charge (1:6 x 107" Coulombs). To define the current we can imagine a surface
through which the wire passes and count the number of charges, n, which cross the surface in a
time, £ The current, i, observed during each interval will then simply be given by
i = 1" . (3.4)
4

Now the moving charges will not be aligned in a precise pattern, crossing the surface at regular
intervals. Instead, each carrier will have its own random velocity and separation from its
neighbours. When we repeatedly count the number of carriers passing in a series of m successive
time intervals of equal duration, ¢, we find that the counts will fluctuate randomly from one
interval to the next. Using these counts we can say that the typical (average) number of charges
seen passing during each time ¢ is

(n) = - ..(3.5)

="

where n; is the number observed during the j th interval. The mean current flow observed during
the whole time, m ¢, will therefore be

I = <"t> 1 .(3.6)
During any specific time interval the observed current will be
n .
i = ek ..(3.7)

t
which will generally differ from I by an unpredictable amount. The effect of these variations is
therefore to make it appear that there is a randomly fluctuating noise current superimposed on
the nominally steady current, I. The size of the current fluctuation, Aij, during each time period
can be defined in terms of the variation in the numbers of charges passing in the period, An; , i.e.
we can say that
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An;
Aij = qt ! where An; = n; — (n) ..(3.8)

As with Johnson noise, we can make a large number of counts and determine the magnitude of
the noise by making a statistical analysis of the results. Once again we find that the resulting
values have a Normal distribution. By definition we can expect that <An> = 0 (since (n) is
arranged to be the value which makes this true). Hence, as with Johnson noise, we should use the
mean-squared variation, not the mean variation, as a measure of the amount of noise. In this case,
taking many counts and performing a statistical analysis, we find that

(An®) ~ (n) ..(3.9)
Note that — as with the statement that thermal noise and shot noise exhibit Gaussian probability
density distributions — this result is based on experiment. In this book we will not take any

interest in why these results are correct. It is enough for our purposes to take it as an
experimentally verified fact that these statements are true. Combining the above expressions we
can link the magnitude of the current fluctuations to the mean current level and say that

*(An? ? P gl
(Ai2>ZQ<n>_9<n>:q_x_:q_ .(3.10)
12 12 1> q !
Hence we find that the rms size of the random current fluctuations is approximately proportional
to the average current. Since some current and voltage is always necessary to carry a signal this
noise is unavoidable (unless there's no signal) although we can reduce its level by reducing the

magnitude of the signal current.

3.4 An alternative way to describe noise

Up to now we've looked at the statistical properties of noise in terms of its overall rms level and
probability density function. This isn't the only way to quantify noise. Figure 3.3 shows an
alternative which is often more convenient.

Amplifier Band-Pass Filter
=

1; (i:g. H R \)@\g

RMS Volts

€n

Figure 3.3 Spectral noise measurement.

As in figure 3.1 we're looking at the Johnson noise produced by a resistor. In this case the voltage
fluctuations are amplified and passed through a band-pass filter to an rms voltmeter. The filter only
allows through frequencies in some range, f i, < [/ < fuax The filter is said to pass a bandwidth,
B = fuax — fmin- Rin is the input resistance of the amplifier. Note that this diagram uses a
common conventional ‘trick’ of pretending that the noise generated in the resistor is actually
coming from an invisible random voltage generator, e,, connected in series with an ‘ideal’ (i.e.
noise-free) resistor. If we build a system like this we find that the rms fluctuations seen by the
meter imply that the (imaginary) noise generator produces an average voltage-squared

(¢2) = 4kT BR .. (3.11)
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where: kis Boltzmann's Constant (=1-38 x 107* Ws/K); T'is the resistor's temperature in Kelvin; R
is it's resistance in Ohms; and Bis the bandwidth (in Hz) over which the noise voltage is observed.
(Note that, as with the earlier statements about Normal Distribution, etc, this result is not being
proved, but given as a matter of experimental fact.) In practice, the amplifier and all the other
items in the circuit will also generate some noise. For now, however, we will assume that the
amount of noise produced by R is large enough to swamp any other sources of random
fluctuations. Applying Ohm's law to figure 3.3 we can say that the current entering the amplifier
(i.e. flowing through R;,) must be

e
= ——— .. (3.12
R+ ko) o
The corresponding voltage seen at the amp's input (across R;,) will be
¢nRin
v =Ry, = ——— ..(3.13)
(R + R)
hence the mean noise power entering the amplifier will be
2 .
N = (iv) = {en) Rin . (3.14)
(R + Ri,)?

For a given resistor, R, we can maximise this by arranging that R;, = R when we obtain the
Maximum Available Noise Power,

(en)
4R
This represents the highest thermal noise power we can get to enter the amplifier's input
terminals from the resistor. To achieve this we have to match (i.e. equalise) the source and
amplifier input resistances. From this result we can see that the maximum available noise power
does not depend upon the value of the resistor whose noise output we are examining.

Nmax =

which, fromeqn 3.8 = kTB ... (3.15)

The Noise Power Spectral Density (NPSD) at any frequency is defined as the noise power in a 1 Hz
bandwidth at that frequency. Putting B = 1 into eqn 3.15 we can see that Johnson noise has a
maximum available NPSD of just kT — i.e. it only depends upon the absolute temperature and
the value of Boltzmann's constant. This means that Johnson noise has an NPSD which doesn't
depend upon the fluctuation frequency. The same result is true of shot noise and many other
forms of noise. Noise which has this character is said to be White since we the see the same power
level in a fixed bandwidth at every frequency.

Strictly speaking, no power spectrum can be truly white over an infinite frequency range. This is
because the total power, integrated over the whole frequency range, would be infinite! (Except,
of course, for the trivial example of a NPSD of zero.) In any real situation, the noise generating
processes will be subject to some inherent mechanism which produces a finite noise bandwidth.
In practice, most systems we devise to observe noise fluctuations will only be able to respond to a
range of frequencies which is much smaller than the actual bandwidth of the noise being
generated. This in itself will limit any measured value for the total noise power. Hence for most
purposes we can consider thermal and shot noise as ‘white’ over any frequency range of interest.
However the NPSD does fall away at extremely high frequencies, and this ensures that the total
noise power is always finite.

It is also worth noting that electronic noise levels are often quoted in units of Volts per root Hertz or
Amps per root Hertz. In practice, because noise levels are — or should be! — low, the actual units
may be nV/y/Hz or pA/,/Hz. These figures are sometimes referred to as the NPSD. This is
because most measurement instruments are normally calibrated in terms of a voltage or current.
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For white noise we can expect the total noise level to be proportional to the measurement
bandwidth. The ‘odd’ units of NPSD's quoted per root Hertz serve as a reminder that — since
power o volts? (or current’) — a noise level specified as an rms voltage or current will increase
with the square root of the measurement bandwidth.

3.5 Other sorts of noise

A wide variety of physical processes produce noise. Some of these are similar to Johnson and shot
noise in producing a flat noise spectrum. In other cases the noise level produced can be strongly
frequency dependent. Here we will only briefly consider the most common form of frequency-
dependent noise: 1/ f mnoise. Unlike Johnson or shot noise which depend upon simple physical
parameters (the temperature and current level respectively) 1/ f noise is strongly dependent
upon the details of the particular system. In fact the term 'l / f noise' covers a number of noise
generating processes, some of which are poorly understood. For this form of noise the NPSD, §,,,
varies with frequency approximately as

S, ~ f" ..(3.16)

where the value of the index, n, is typically around 1 but varies from case to case over the range,
05 < n <2

As well as being widespread in electronic devices, random variations with a 1 / f spectrum appear
in processes as diverse as the traffic flow in and out of Tokyo and the radio emissions from distant
galaxies! In recent years the subject of 1/ f noise has taken on a new interest as it appears that
some ‘Chaotic’ systems may produce this form of unpredictable fluctuations.

Summary

This chapter has shown how random noise arises from the quantised behaviour of the real world.
Two types of noise — Johnson Noise and Shot Noise — were described in detail and their nature
shows that they are, in practice, essentially unavoidable. You should now know that noise can only
be predicted or quantified on a statistical basis because its precise voltage/current at any future
instant is unpredictable. That its magnitude is quantified in terms of averaged rms voltages/
currents or mean power levels. The concepts of the Maximum Available Noise Power and Noise Power
Spectral Density were introduced and we saw that Johnson Noise (and also Shot Noise) have a
uniform NPSD — i.e. they have a White power spectrum. Other forms of noise can show different
noise spectra, most commonly a ‘1/f” pattern.

Questions

1) Explain with the help of a diagram how Thermal Noise arises. Explain why the mean noise
voltage, when averaged over a long time, is almost zero.

2) Explain what's meant by the Power Spectral Density of a signal. Thermal and Shot Noise are often
said to have a ‘white’ Noise Power Spectral Density (NPSD). What does this tell us about them?

3) A 10 kQ resistor at 300 K is connected to the input of an amplifier whose input resistance is 22
kQ. Given that Boltzmann's constant, k = 1-38 x 102 Ws/K, calculate the noise power spectral
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density of the thermal noise the resistor puts into the amplifier. [3-5x10 -2! W/Hz.]

4) What value of amplifier input resistance would draw the Maximum Available Noise Power from a
10 kQ resistor? What is the thermal NPSD entering an amplifier with this input resistance when
the the 10 kQ resistor is at 300 K? [10kQ. 4-12x10-2! W/Hz.]

5) How does 1/f noise differ from Shot and Thermal noise?
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Chapter 4

Uncertain measurements
4.1 Doubtful information and errors

Random noise has the effect of making the result of any quantitative measurement uncertain to
some extent. This lack of perfect precision is often referred to in terms of producing a given level
of Error in any result. Alas, many students are rather unhappy with the whole subject of errors.
After all, who likes to admit they may have made a ‘mistake’? In the minds of many, ‘more errors
= less marks’! For this reason it's useful to realise that the errors produced by unavoidable random
noise aren't something to be embarrassed about. They're a consequence of the real world we're
all stuck with. We'll be looking at ways to cope with the effects of noise later on. (We will also see
that there are situations where random errors are actually useful!) In this chapter we'll examine
how noise affects our ability to communicate information.

To see how noise affects information transmission, consider the situation illustrated in figure 4.1.

Transmitted Signal Received Signal + Noise

Transmitter Receiver

Figure 4.1 Digital communication over a noisy channel.

Here a message is being sent as a stream of binary digits, i.e. it is in the form of a Serial Digital
signal. The transmitter uses one voltage level, V, to signal a ‘1’ and another voltage, V|, to signal
a ‘0’. The information is therefore carried by the voltage pattern. Some random noise is
introduced during transmission. As a result, the received signal is a combination of the intended
signal voltage pattern and this added noise. For simplicity we can assume that the transmitter and
receiver are in themselves ‘perfect’, i.e. they don't generate any noise of their own. In reality this
won't be true. For our purposes here it doesn't really matter where the noise comes from. Any
actual noise coming from the transmitter/receiver circuits would have an identical effect to the
same total noise level injected onto the channel from an external source.

In the absence of any noise the receiver could repeatedly measure the input it sees and decide, “If
this is V I've received a ‘0, if it's V; I've received a ‘1’.” However, the noise means that the input
it sees is hardly ever actually equal to V, or V,. It therefore requires some other recipe for
deciding whether it's received a ‘0’ or ‘l’. The simplest way to do this is to define a sensible
Decision Level, V', mid-way between V, and V;

V0+V1
2

V= . (41)
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Figure 4.2 The effect of noise on the voltages seen by the receiver.

The receiver now works by saying, ‘If I see a voltage > V' I've received a ‘1, if I see a voltage < V”’
I've received a ‘0.

The results of decoding a noisy digital message in this way can be understood by looking at figure
4.9.

The effects of the noise can be assessed by making a large number of measurements of the
received voltage levels and plotting a probability distribution of the results. The top graph shows a
plot of the distribution of voltages seen by the receiver when the transmitter is sending V. In this
situation the received voltage will be V, + v, where v, varies randomly from one measurement
to another. Since the average noise voltage of lots of measurements is essentially zero the
resulting spread of voltages has its mean at V. For Normal noise the distribution therefore has a
Gaussian shape with its peak at V. A similar result, shown in the lower graph, arises when the
transmitter is trying to send V', but in this case the average (and peak of the shape) are at V.

Since the receiver decides that any voltage above V"’ is a ‘1’ and any voltage below V' is a ‘0’ we
can predict the frequency of mistakes by calculating the fraction of the plots which are the wrong
side of V’. When the transmitter is trying to send V; the probability or relative frequency, p{V 1,
with which the received voltage is seen to be in a small interval, dV, centred at some voltage, V,
will be

—2(V - Vi)

- }.dV . (42)

plv}dv = A.Exp{

Since the observed voltage must always be somewhere in the range from —e to +e we can say that
the value of the coefficient, A, must be such that

e 2V - vy’

J. A. Exp{% av =1 .. (4.3)
e o

i.e. the probability that the observed voltage is somewhere between —e and +eo is unity. Since the

total area under the distribution shape isn't affected by the choice of V), this is equivalent to
saying that

1 i -2V?
1= J. Exp{ 2 } av .. (4.4)
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When V; is being sent, the chance, Cjy, it will be correctly received is determined by the fraction
of the distribution which lays above V’. This can be determined from integrating over the
appropriate part of the curve to obtain

- " 2(V = Vy)
C :f p{v}av =f A. Exp{¥} A .. (4.5)
v’ & o
In a similar way, the chance Cy, that V,, will be correctly received is determined by the fraction of
the distribution which is below V’ when V| is being sent, i.e. we can say

v’ v’ 2
2Vy=V
Co = f p{v}av = 'f A, Exp{¥} A% .. (4.6)
e oo o
Using a book of standard integrals we can find that the above expressions are equivalent to
Cy = L [1 + Erf{\/z' Vi =V )H (47
2 o
Co= L. [1 + Erf{\/i' V" - VO)H .. (4.8)
2 o
and
1 2
A = (_) 2 . (4.9)
o 7

where Erf is a standard mathematical function called the Error Function. Since this isn't a pure
maths book the details of this proof and the precise nature of the error function don't matter very
much. It is enough for us to accept that it is just another function like sine or cos that we can
look up in a book and which happens to be the right one to solve the integrals. We can now use
the above expressions to see how often the receiver will pick up the correct signal level in the
presence of some noise.

Since we defined V’ to be mid-way between V, and V; we have a situation where C; = C.
Hence we only need to look at how one of the above depends upon the chosen voltages and the
noise level. The amplitude of the signal voltage being transmitted is V, = V; — V,,. The rms
amplitude of the typical noise voltage is 0. Since V' = (V| + V;)/ 2 we can therefore say that the
fractional chance of each ‘1’ or ‘0’ being received correctly will be

e = L[t ]] i

The dependence of C upon the signal/noise voltage ratio, V;/ o, can be seen by looking at the
curve plotted in figure 4.3. As we would expect C approaches unity when the signal to noise ratio
is high. In this situation the signal voltage is very big compared to the noise, hence the noise will
have no noticeable effect.

A more curious result is that when the signal/noise ratio is zero C = 0-5 —i.e. the receiver will
correctly pick up 50% of the message's pattern of ‘1’s and ‘0’s even when the transmitter doesn't
send the signal! At first sight this seems very odd. Surely, if the signal amplitude is zero the
receiver has no way to know what the message is...
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Figure 4.3 Fraction of ‘1’s and ‘0’s received correctly.

The reason for this odd result can be explained as follows. Imagine that we didn't bother with
using a proper signal receiver but instead just kept tossing a coin. Every time we get a head we
decide the message should contain a ‘1’. Every tail is taken as a ‘0’. In this way we can build up a
pattern of ‘I’s and ‘0’s without bothering to look at the actual signal. Since there are only two
possibilities (‘1’ or ‘0’), every time we throw the coin we have a 50% chance of getting the correct
result. As a consequence 50% of the ‘1’s and ‘0’s in our coin-generated version of the message will
be correct. However, this doesn't mean that we have received 50% of the actual information since
we don't know which 50% of the coin-generated bits are the correct ones! This result is just the
same as if we'd used random noise to make the receiver perform the equivalent of ‘toss coins’ to
generate a random string of bits.

This demonstrates an important feature of the way information is communicated and processed.
The amount of information we have doesn't just depend upon how many bits we've gathered. It
also depends upon how confident we are that each bit is correct. The amount of information
received depends upon how certain we are that the pattern is correct. If we're only 50% certain
and there are only 2 possibilities we don't actually have any real information since any other
outcome is just as likely to be the correct one.

Summary

This chapter has shown how the effect of noise is to produce random errors when we
communicate a signal. These random errors mean we can never be absolutely certain that we've
received the correct information. Since noise is present in all real systems this means that we can
never be certain that the information we have is absolutely correct. You should also now know
that the amount of information in a signal pattern depends upon how certain we are that it is
correct.

Questions

N.B. In the following, use the approximation
0-348¢ — 0-0958¢% + 0-748¢°
Exp {2}

Erf {x} ~ 1 -
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where
_
1+ 047x

1) A digital transmission system uses 0-5 V to signal a logical ‘0’ and 4-5 V to signal a logical ‘1’. A
message is transmitted which consists of a sequence which contains 2000 ‘1’s and 2000 ‘0’s. The
channel used to carry the message has a noise level we can characterise by a value of 0 = 1.5 V.
How many bits are likely to be received correctly using a receiver whose decision level is set mid-
way beween the logical ‘0’ and ‘1’ levels? [3984 in total.]

2) How many bits would have been received correctly in question 1 if the receiver's decision level
had been set at either a) 3V, or ) 1 V? (Remember that a chance of a ‘0’ being received correctly
is Cp and the chance of a ‘1’ being received correctly is C;.)[ a) 3953, b) 3494.]

3) Write a program to calculate how the chance of correct reception in the system described
above varies if the decision level is varied between 0-5V and 4-5 V.
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Chapter 5

Surprises and redundancy

In the last chapter we saw how the amount of information in a received signal pattern depends
upon how confident we can be that its details are correct. We also saw how the probability that a
digital bit of information will be correctly received is

o = i vmr{ L)) e

where V| is the peak-to-peak size of the signal voltage and o is a measure of the width of the noise
voltage's probability density pattern (histogram). This expression is theoretically fine, but it can
be awkward to use in practice. In most real situations it is more convenient to deal with signal and
noise powers or rms voltages. We therefore need to turn expression 5.1 into a more useful form.

A square-wave of peak-to-peak amplitude, V,, will have a mean power S = (V,/2R)? where R is
the appropriate resistance across which the observed voltage appears. Hence we can use

V, = 2VRS .. (52)

to replace the signal voltage in the above expression. To establish the noise power in terms of the
width, o, we have to evaluate the noise's rms voltage level, v,,,. To do this we can argue as follows:

In chapter 3 we saw that the noise level can be represented in terms of a probability distribution
of the form

V2
p{v}idv = AExp{——z}.dV ..(5.3)
o
where, to ensure that the actual voltage always lies between + c and — e , we can say that
12
A= —|— ..(5.4)
o\m

To compute the rms voltage we take many voltage readings, square them, add them together,
divide by the number of readings, and take the square root of the result. This is mathematically
equivalent to

Urms = wm V2p{V} dV . (55)

This is because, when we make lots of voltage measurements, the fraction of them which falls
between V.and V + dV is p {v}.av. By solving the above integral we discover that

o
s = — ..(5.6
Vs = 3 (5.6)
The noise power level will be N = v?,.. / R and hence we can say that
o = 2VRN ..(8.7)
We can now use 5.2 and 5.7 to replace V, and o in expression 5.1 and obtain the result
1 S
o - is e 2] o
2 2N

This expression tells us the chance that bits will be received correctly in terms of two easily
measurable quantities — the signal power, S, and the noise power, N.
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Whenever possible we should make the signal/noise power ratio as large as we can to minimise
the possibility of errors. If this is done we can often neglect the information loss produced by
random noise. It should be remembered, however, that the signal/noise ratio will always be finite.
Hence we can never get rid of this problem altogether. Despite this, a S/N power ratio of just 10
gives C = 0999214 — i.e. around 99-98% of the bits in a typical message received with this S/N
would be correct. A slightly better S/N ratio of 25 gives C = 0-9999997. This is equivalent to an
Error Rate of around 3 bits in every ten million (3:10,000,000).

It may seem that an error rate below ‘one in a million’ isn't really worth making a fuss about. Alas,
there are some factors which we have not, as yet, taken into account.

* We will usually be sending a number of bits to indicate a code word and these words may be
built up into a longer message. A given message may be composed of a lot of bits.

* Whilst a 1:1,000,000 error rate may be acceptable for many purposes, it may be a disaster in
other circumstances.

For example, consider one of the systems used to signal to strategic defence nuclear submarines.
These submarines are designed to cruise hidden below the ocean surface. They should remain
hidden up until such time as they might be required to launch a nuclear attack. For this reason
they avoid transmitting any radio signals which would give away their location to an enemy. Their
standing orders include an instruction to ‘launch retaliation’ if their home county is destroyed by
a ‘sneak attack’. The question therefore arises, ‘How can they tell if their home country has been
flattened?’. A country that has been destroyed may not have any radio transmitters left to transmit
a signal to the subs, ordering them to attack.

To get around this problem the military devised a ‘fail disaster’ system. The home country
regularly transmits a sequence of coded messages at prearranged moments. The sub pops up a
radio buoy at these times, listens for these broadcasts, and verifies that the codes are correct. The
submarine commander then uses the absence of these messages as a ‘signal’ to the effect that,
‘Home has been wiped out, attack enemy number 1’. An incorrectly coded message is interpreted
as a ‘signal’ that, ‘We have been taken over by an enemy and forced to make this broadcast
against our will. Attack!”. Clearly, for a signalling system of this kind a single error could be a
genuine disaster. Even a one in a million chance of a mistake is far too high. So steps have to be
taken to make an error practically impossible. The importance of errors varies from situation to
situation, but it should be clear from the above example that we sometimes need to ensure very
low error rates.

When dealing with the effects of errors on messages (rather than on single bits) we must also take
into account how effectively we are using our encoding system to send useful information and
how important the messages are.

Some messages are quite surprising, whereas others are so predictable that they tell us almost
nothing. To quote some examples from the English language.

1) ‘This car does 0 — 60 in 0-6 seconds.’

2) ‘If you want to catch a bus you should q over there.’

3) ‘Party at 8, bring a bottle.’
The contents of this first message indicate a remarkable car! Although every symbol in this
sentence looks OK by itself, the whole message is clearly rather suspect. We can only guess what
the correct message was. In the second message the error is pretty obvious and we can feel almost
certain that we know what the correct message should be. The third message looks fine, but it may
still be wrong, e.g. the party may be at 9 o'clock and the figure 8 is, in fact, a mistake. It is also
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ambiguous; the party may be at house number 8, not at 8 o'clock.

Messages 1 and 3 contain examples of errors which, if noticed, give no reliable indication of the
correct message. In order to deal with errors of this type we need to include some extra
information in the message.

Message 2 contains an error which can be corrected. In the context of the message and our
knowledge of the English language, the whole word ‘queue’ is unnecessary. The ‘ueue’ is
redundant. This relates to the observation that — in English — the letter ‘u’ is often redundant.
We could replace almost every ‘qu’ in English with ‘q’ without the correct meaning being lost
(although we'd get complaints about our spelling!)

Clearly, it is valuable to choose a system of coding which makes errors obvious and allow us to
correct received messages. To see how it is possible to produce systems which do this we need to
analyse redundancy and its effect on the probability of a message being understood correctly.

In an earlier chapter we saw that the amount of information in a message can be expected to
increase with logs of the number of code symbols available. This, in fact, assumes that all the
available symbols are used (a symbol which isn't used might as well not exist). It also assumes they
are all used with similar frequency. Hence the probability, P, of a particular symbol appearing
would = 1/ M where M is the number of available code symbols. We can therefore say that the
amount of information would vary with

1
log, {M} = 1og2{7)} = — log, { P} ..(5.9)

Consider the situation where we use a set of M symbols, X;, X, X3, ... X}, for sending messages.
By collecting a large number of messages and examining them we can discover how often each
symbol tends to occur in a typical message. We can then define a set of probability values

P=— ...(5.10)

from knowing that each symbol, X; , occurs N; times in a typical message N symbols long. In a
situation where all the symbols tend to appear equally often we can expect that P, = 3; for every
symbol X; — i.e. all the symbols are equally probable. More generally, the symbols appear with
various frequencies and each P; value indicates how often each symbol appears.

When all the symbols are equally probable the amount of information provided by each
individual symbol occurrence in the message will be logs { M }. The total amount of information in
a typical message N symbols long would then be

H = N.log;{M} = —N. log, {P} .. (5.11)

where P = P, for all 4, since in this case the probabilities all have the same value. This expression
giving the total amount of information in terms of symbol probabilities indicates how we can
define the amounts of information involved when the symbols occur with differing frequencies.
We can then say that the amount of information provided just by the occurrences of, say, the X;
symbol will be

H; = =N, log; {P;} = —NP; log, {P;} - (5.12)

From this expression we can see that the smaller the probability of a particular symbol, the more
informative it will be when it appears. Surprising (i.e. rare) messages convey more information
than boringly predictable ones! The total amount of information in the message will therefore be
the sum of the amounts carried by all the symbols
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M M
H = Y -Nilog{P} = 3 -NP;log{P} -~ (5.13)
i=1 i=1
From expression 5.12 we can say that every time X; appears in a typical message it provides a
typical amount of information per symbol occurrence of

h; = H;/N; = — log,{P;} ..(5.14)
(Note that to make things clearer we will use H to denote total amounts of information and A to
denote an amount per individual symbol occurrence.) From expression 5.14 we can say that the
amount of information per symbol occurrence, averaged over all the possible symbols is
M
H
h =— = —P; log, \ P; ..(5.15
5 Z e {P} (5.15)

In general, this averaged value will differ from the individual k; values unless all the symbols are
equally probable. Then P, =1/M and 5.15 would become equivalent to
h = Mx(—(1/ M) logy {P,}) = h;. It's interesting to note that the form of the above expressions
is similar to those used for entropy in thermodynamics. Many books therefore use the term entropy
for the measure of information in a typical message or code.

The above argument gives us a statistical method for calculating the amount of information
conveyed in a typical message. Of course, some messages aren't typical, they're surprising. The
information content of a specific message may be rather more (or less) than is usual. The above
expressions only tell us the amounts of information we tend to get in an average message.

Consider now a specific message N symbols long where each symbol, X;, actually occurs A; times.
The amount of information provided by each individual symbol in the message is still ~logs { P;},
but there are now A; of these, not the NP; we would expect in a ‘typical’ or average message. We
can therefore substitute A; into expression 5.13 and say that the total amount of information in
this particular message is

M
H = - ZA,-. log, { P;} .. (5.16)
i=1
In order to convey information, every one of the symbols we wish to use must have a defined
meaning (otherwise the receiver can't make sense of them). This is another way of saying that the
number of available symbols, M, must always be finite. Since any particular symbol in a message
must be chosen from those available we can say that

M
ZP" -1 . (5.17)

i=1
In most cases the chance of a particular symbol occurring will depend to some extent upon the
previous symbol (e.g. in English, a ‘u’ is much more likely to follow a ‘q’ than any other letter)
and some combinations of symbols occur more often than others (e.g. ‘th’ or ‘sh’ are more
common than ‘xz’). The term Intersymbol Influence is used to describe the effect where the
presence (or absence) of some symbols in some places affects the chance of other symbols
appearing elsewhere. To represent this effect we can define a Conditional Probability, P; _, ; to be
the probability that the jth symbol will follow once the ith has appeared. The chance that the
symbol combination X;X; will appear can then be assigned the jJoint Probability,

Just as the amount of information provided by an individual symbol taken by itself depends upon
its probability, so the extra information provided by a following symbol depends upon how likely
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it is once the previous symbol has already arrived. For example — in English, a ‘u’ is a virtual
certainty after a ‘q’, hence it doesn't provide very much extra information once the ‘q’ has
arrived. The ‘u’ is said to be redundant once the ‘q’ has arrived. However, although it doesn't
provide any real extra information it is useful as a way of checking the correctness of the received
message.

The term Conditional Entropy is often used to refer to h;_,; , the average amount of information
which is communicated by the jth symbol after the ith has already been received. Since h is
proportional to logs { P}, the joint entropy, hi; (the amount of information provided by this pair of
symbols taken together), must simply be

hij = hl‘ + hléj (519)

If we wish to maximise the amount of information in a typical message then we would like every
symbol and combination of symbols to be as improbable as possible (i.e. minimise all the P
values). Alas, expression 5.17 means that when we make one symbol or combination less likely
some others must become more probable. We can't make all the existing symbols less likely
without adding some new ones! From the English language example of a ‘u’ following a ‘q’ we
can see that the effect of intersymbol influence is generally to reduce the amount of information
per symbol since the ‘u’ becomes pretty likely after a ‘q’. Hence we can expect that the
information content of a message is maximised when the intersymbol influence is zero. Under
these conditions

hij = h; + h; (noinfluence) ...(5.20)

i.e. the amount of information communicated by two symbols is simply double that provided by
either of them taken by itself. In such a situation none of the transmitted symbols are redundant.
Since this is the best we can do, it follows that, more generally

hi sy <k .. (521)

i.e. the average extra information produced by the following symbol can never exceed that which
it would have as an individual if there were no intersymbol influence.

Summary

You should now understand how the amount of information in a message depends upon the
probabilities (or typical frequencies of occurrence) of the various available symbols. That the
chance of transmission errors depends upon the signal/noise ratio. That the amount of
information in a specific message can differ from an average one depending upon how surprising
it is (how many times specific symbols actually occur in it compared with their usual probability).
That Intersymbol Influence can help us check that a message is correct, but reduces the maximum
information content.

Questions

1) An information transmission system uses just 4 symbols. The symbols appear equally often in
typical messages. How many bits of information does each symbol carry? How much information
(in bits) would a typical message 1024 symbols long contain? [2 bits per symbol. 2048 bits. ]

2) An information transmission system uses 6 symbols. Four of these, X; X9 X3 and X4, have a
typical probability of appearance, P = 0-125. The other two symbols, X5 and X have
probabilities, P = 0-25. How much information would a typical message 512 symbols long carry?

How much information would a specific message 512 symbols long carry if it only contained 300
X1's, 100 X3's, and 112 X¢'s? [1280 bits. 1424 bits. ]
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3) Explain what's meant by the term Intersymbol Influence. Say why and when this can be either a
‘good thing’ or a ‘bad thing’ depending upon the circumstances.
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Chapter 6

Detecting and correcting mistakes
0.1 Errors and the law!

In chapter 4 we saw that random noise will tend to reduce the amount of information transmitted
or collected by making us uncertain that the resulting message pattern is correct. We've also seen
how redundancy can provide a way to check for mistakes and, in some cases, correct them. One of
the advantages of digital signal processing systems is that they are relatively (but not totally)
immune from the effects of noise. A S/N ratio of just 10:1 is enough to ensure that 99-92% of
digital bits will be correct.

For short, unimportant, messages this level of immunity from errors is fine, but it isn't good
enough for other situations. For example, consider a computer which has to load (read) a
200 kbyte (1-6 million bits) wordprocessing program from a disc. A 0-01% error rate would mean
the loaded program would contain around 160 mistakes! This would almost certainly cause the
program to crash the computer. By the way, note that the term ‘error rate’ doesn't mean the
errors appear at regular intervals. If it did, we could simply count our way along the pattern to
find and correct the errors! The errors will be randomly placed. The rate simply indicates what
fraction of the bits are likely to be wrong, not where they are. The term, ‘error rate’ is therefore
potentially misleading, although it is commonly used.

We can reduce the rate at which errors occur by improving the S/N ratio, but there is, in fact, a
better way, based on deliberate use of redundancy. By introducing some intersymbol influence we
can make some patterns of symbols illegal — i.e. we arrange that they can only occur as the result
of a mistake. This makes it possible to detect that the signal pattern contains an error. The main
disadvantage of this technique is that we have to reduce the amount of information we're trying to
get into a given message since some of the symbols are now being used to ‘check’ others rather
than sending any extra information of their own. (It can be argued that this doesn't really matter
since — if we don't do anything about it — random noise will destroy some of the information
anyway, although we may not know about it!) One of the simplest ways to deal with errors is to
repeat the message. The two versions can then be compared to see if they're the same.

If the probability that any particular bit or symbol in a message is correct is C, then the chance
that it's an error must be E = 1 — C. (It must be either right or wrong!) As a result, when we
send and compare two copies of a message, the chance that both copies have a symbol error in
the same place will be E 2. As an example consider a system whose S/N ratio provides a chance
C = 0999 that individual bits are correct. This means that £ = 0-001 per bit. The chance of
both copies of a specific bit being wrong will therefore be E* = 0-000001 — i.e. in a typical pair
of repeated messages there is only a 1:1000000 chance that both copies of any particular bit will
be wrong. Now the chance that a particular bit in ‘copy #1’ is correct and ‘copy #2’ is wrong will
be C.E = 0-000999. Similarly, the chance that just the first copy is wrong will be
E.C = 0-000999. The chance that both are correct will be C*> = 0-998001.

When we compare two versions of a long message we therefore typically find that
100x(C*> + E*)% = 99-8002% of the bits agree with their copies and just
100x2x (C.E) % = 0-1998% differ. As a result we can see that just under 0-2% of the bit ‘pairs’
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disagree. We have detected the presence of the errors which caused these disagreements and
know where in the message they appear. This is the advantage of this ‘repeat message’ technique
over just sending one copy. In this example, sending two copies is ‘redundant’ because they
should both contain the same information. Once we know about the errors we can take
appropriate action (e.g. ask the transmitter to repeat the ‘uncertain’ parts of the message). A
single copy of the message would contain about 0-1% mistakes but we wouldn't know about them
unless we arrange for some redundancy. Hence without redundancy we can't do anything to
recover what we've lost.

The system of using a pair of messages isn't perfect. (What is?) There are still £ ? errors which we
won't spot because both copies have been changed in the same place. As a result there are still
0-0001% undetected errors in the received information. However, this is much better than the
E = 0-1% of undetected errors we'd get if only one copy of the message had been sent.

By spotting differences between two copies of the message we can detect nearly all of the places
where there has been a random noise produced error. However, we still don't know which of the
differing versions is correct. A way to overcome this is to go one stage further and use the military
approach called, Tell Me Three Times. This means we send three copies of the same message. Using
the same arguments as before we can now say the chance that all three c0}2)ies of a specific bit are
correct is C° = 99.70%. The chance that any one version is wrong is 3C°E = 0-2994%. (There
are three chances for one version out of three to be wrong.) Similarly, the chance that two
versions both have an error in any specific bit is 3C.E* = 0-0002997%. The chance that all three
are wrong is E° = 0-0000001%. (N.B. These values have all been rounded to 4 significant figures
to make them more readable!)

One effect of tell me three times is to reduce the undetected error rate (E”) still further.
However, the main benefit is that nearly all the errors can now be corrected. This is because in most
cases a difference between the three versions of the message occurs because just one of them is
wrong. The signal receiver can therefore work on a ‘majority vote’ system and decide that, ‘when
two versions agree and one differs, the correct signal is the one shown by the two versions in
agreement’. It then can use this rule to recover the ‘correct’ information. Occasionally, this
means it will make a mistake when two versions have been changed by errors, but from the figures
shown above we can see this will only happen for about one correction in a thousand. Hence the
tell me three times technique allows us to detect and correct most of the errors produced by
random noise.

6.2 Parity and blocks

The disadvantage of tell me three times is that we have to send every message three times instead
of being able to send three different sets of information with the same number of bits or symbols.
This makes it a relatively inefficient and slow way to convey (or store) information. Fortunately,
there are various other methods available for detecting and correcting errors which don't reduce
the overall information carrying capacity quite so much. One of the most common digital
techniques is the use of Parity bits. Before explaining these it's useful to consider the concept of
binary Words.

From previous chapters you should already be familiar with the idea of using a set of binary digits
(bits) to represent information. (See, for example, chapter 1 where we represented a series of
sampled voltages as ‘000’, ‘001°, etc.) It's usual to refer to groups of eight bits as a Byte of
information. This stems from early computers which mostly handled 8 bits of information at a
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time. More generally, the term word has come to mean a group of bits which carry a convenient
amount of information. Most modern desktop computers have microprocessors which can handle
16 or 32 bits of information at a time. The information in such a processing system is said to be
held as a set of 16 or 32 bit words. Each binary word can then be regarded as a digital Symbol.
These symbols can be built up in patterns to represent the information. Unlike the term ‘byte’,
‘word’ can mean any convenient number of associated bits.

To see how Parity Checking can be used to detect and correct errors, imagine a system when the
information is initially held as a series 8-bit words. The system may want to transmit — or process
in some other way — a series of words, %10011100, %10010100, %11100101, etc. (Note that here
a ‘%’ before the number is used to indicate that it's in binary notation.) The parity of each word
can be defined to be odd or even depending upon how many ‘1’s it contains. On this basis,
%10011100 has even parity, %$1101010 has odd parity, %11100101 has odd parity, and so on. We
can now add an extra bit onto each word to represent its parity. For example, we can add a ‘I’
onto the end if the word was even or a ‘0’ onto the end if it was odd. This converts the initial
words as follows:

%10011100 = %100111001
%10010100 = %100101000

%11100101 = %111001010

We now transmit or process these new 9-bit words instead of the original 8-bit ones. This extra bit
we've tacked onto each original word doesn't carry any fresh information. It's called a parity bit
because it simply confirms the parity of the other bits in the word. This means the patterns we
transmit are now partially redundant and this redundancy can be used by the receiver to check
for errors. Under the system we've chosen every legal 9-bit word has an odd number of ‘1’s. The
receiver can now read each 9-bit word as it arrives and check that it's parity is, as expected, odd.

Random noise may occasionally change one of the bits in a word during transmission. As a result,
the received 9-bit word will now have an even number of ‘1’s. The receiver can spot this fact and
use it to recognise that the word is illegal. This means that it's not a pattern which the transmitter
would send. Hence the receiver can discover that it must contain an error. In this way the parity
bits allow error detection. Note that this isn't the only way to implement parity bits. We could put
the extra bits at the start of the words, or somewhere in the middle. We could choose to add a ‘1’
onto the odd words and a ‘0’ to the even ones to make all the legal 9-bit words have even parity.
The details don't matter so long as the receiver knows what to expect.

Using this example we can now define some ways to quantify the degree of redundancy in the
coding system used to transmit information. In this case, each 9 transmitted bits only contains 8
bits worth of real information. We can define the ratio of number of bit of information to the
number of bits transmitted to be the Efficiency of the coding system used, i.e. we can say

Efficiency — number of information bits 6.1)
¥ = humber of info bits + number of parity bits T

In this case the ratio is 8/9, hence the transmission system has an efficiency of 0-888. The
redundancy can be defined to be one minus the efficiency, 1 — § = 0-111. These values can be
compared with the ‘tell me three times’ system where we had to send three times as many bits as
were required to contain the original information — i.e. an efficiency of 1/3rd or redundancy of
2/3rds. Note that although the parity system we've described is more efficient than ‘tell me three
times’ it still requires us to send more bits than were needed for the original information. This is a
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general rule. Every system for detecting (and correcting) mistakes produced by random noise
requires us to communicate or store ‘extra’ bits which essentially repeat some of the information.

Comparing the parity checking system described above with ‘tell me three times’ we can see it can
detect occasional 1-bit errors, but has a much lower redundancy. However, it can't correct errors.
To do that we can use a slightly more complex approach based upon what are called Block Codes.

A simple example is shown below. Here we collect the words we want to transmit into a series of

blocks of the kind illustrated, e.g. a data stream %01011000, %11100011, %00011011,
%11001100, %010..., etc. is collected into blocks of four words to make patterns of 8x4 bits like:

'row' parity bits
%01011000 0
%11100011
%00011011
%11001100
‘column’ parity bits 2

%10010011

VAN

0
1
1

We now generate a set of ‘row’ parity bits for checking each words. We also generate a set of
‘column’ parity bits — using the first bit of each number for the first parity bit, then the second
bit of each number for the second, etc. In the example we've chosen this means that each original
block of 8x4=32 bits of information is used to produce an extra 12 bits. We then transmit all 44
bits to a receiver. To see what happens when a random error occurs during transmission we can
assume that the received version of the above turns out to be as shown below

Received Computed
%01011000 - 0 0
%11100111 - 0 1
%00011011 - 1 1
%11001100 - 1 1
l
Received %10010011
Computed %10010111

The receiver collects the received block of data and parity bits sent by the transmitter. It then
computes its own version of what the parity bits should be and compares them with the values it
has received. In this example one of the bits has been altered from a ‘0’ to a ‘1’ during
transmission. As a result, the received and computed parity bits won't agree and the receiver can
tell that there's a mistake in the block it has received. It can now use one parity disagreement to
identify which row the error is in and the other to identify the column it is in. As a result it can
locate and correct the mistake. This ability of block codes to both detect and correct mistakes is
an important feature of modern information processing.

Note that there's nothing magic about the choice of choosing an 8x4 block size. We could have
arranged the block as 8x8, or put two words on each row and used 16x16, or even split the words
to make some peculiar arrangement like 11x7. Provided the transmitter and receiver use the same
rules any arrangement may be OK. Note also that we aren't limited to a ‘two-dimensional’ block.
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We could arrange the bits in a ‘cube’ of, say, 8x8x8 bits, and collect a third set of parity bits
running through the pattern in another ‘direction’. (In principle, we can arrange the bits in a
many-dimensional pattern although it gets a little hard to visualise!)

The choice of block arrangement depends upon how worried we are about the effects of noise.
The 2-dimensional example shown above works fine for single bit errors, but runs into trouble if
there is more than one error in a block. For example, if there are two errors in a row then the
received and computed parity values for that row will agree. The receiver would then be able to
detect that two columns contained errors, but not which row they were on. Hence this simple
example can correct 1-bit errors but only detect 2-bit errors in a block.

In general, the error detecting and correcting ability of a block code can be defined in terms of
measure called the Minimum Hamming Distance. Block codes work because some transmitted word
patterns of ‘1’s and ‘0’s are illegal. The Hamming Distance between any pair of legal words is
defined as the number of bits which have to be changed to convert one word into the other. The
Minimum Hamming Distance is defined as the lowest Hamming Distance value we find between any
pair of legal words in the chosen code system. This provides us with a number which determines
how well a code system can cope with errors.

The properties of well designed code systems with various Minimum Hamming Distances are as
follows:

MHD =1 No error immunity (every pattern appears legal)
MHD =2 Detects 1 error, no correction

MHD =3 Detects and corrects 1 error

MHD = 4 Detects up to 2 errors and can correct 1 error
MHD =5 Detects 2, corrects 2

etc...

In a given situation we can start by deciding how many errors at a time we want to be able to spot
or correct. Then use the MHD to tell us how many illegal patterns have to ‘surround’ each legal
one. This then tells us how much redundancy and how many parity bits we need.

6.3 Choosing a code system

There is an enormous variety of data encoding systems. It sometimes seems as if theoreticians
keep inventing new ones purely as something to name after themselves! Despite this, many of
them are designed to have features useful in specific situations. Most are designed to combat
random errors and work along the lines described in the last section. We will be looking at an
example of a powerful error correcting code when we examine how Compact Discs work in a later
chapter. Here we will examine two special systems which have properties useful for particular
jobs. The first example is a digital Linear Encoder.
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Figure 6.1 Simple linear position encoder.

Figure 6.1 shows a metal plate which has a pattern of insulating material placed upon its surface.
A line of electrical contacts is arranged to press against the plate. When they touch the metal a
current can flow through them. This current will be blocked if they are touching a part of the
surface coated with insulator. The contacts therefore form a set of sensors which produce a
pattern of currents which changes in response to plate movements. In the figure these currents
are shown connected to a row of lights which would light up to indicate the plate position. More
commonly, the sensors would be connected to a computer system to input a binary number which
represents the position of the plate. Hence the system acts as an encoder which provides a signal
which changes as the plate is moved from left to right. The pattern shown in the illustration is
designed to provide a plain binary value which increases as the plate moves from left to right.

The main disadvantage of this arrangement is that it may require more than one bit to change
simultaneously, e.g. consider what happens as the plate moves from position 7 (%0111) to 8
(%1000). This requires all four bits to change at the same time. For any real device, the actual bits
sensed will alter at different instants as the plate moves from position 7 to 8. Hence between the
correct readings of 7 and 8 we may find the encoder gives momentary readings of 15 (%1111), or
13 (%1101), or 12 (%1100), or 3 (%0011). In fact, as every bit has to change between 7 and 8, we
could momentarily get any number from 0 to 15 as the plate moves from one position to the
other. A computer reading the sensed number at the wrong moment would therefore think the
plate was leaping about in a frantic way as it moved from 7 to 8!

To avoid this problem we can replace the simple binary code with a new code system (i.e. change
the pattern on the encoder plate) designed so that only one bit changes between adjacent
locations. Two possible systems are the Gray code and a ‘'walking' code shown below:

# Gray Walking # Gray  Walking

00 %0000 %00000000 08 %1100 %11111111
01 %0001 %00000001 09 %1101 %11111110
02 %0011 %00000011 10 %1111 %11111100
03 %0010 %00000111 11 %1110 %11111000
04 %0110 %00001111 12 %1010 %11110000
05 %0111 %00011111 13 %1011 %11100000
06 %0101 %00111111 14 %1001 %11000000
07 %0100 %01111111 15 %1000 %10000000
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Clearly the walking code uses redundancy to achieve its effect as it requires eight bits to cover the
range 0 — 15. The Gray code is more interesting as it is simply a re-arrangement of the pure binary
numbers from 0 - 15. The problem described above occurs because of imperfections in the way
the plate and sensors are built. The errors produced aren't random. As we slowly move across the
number boundaries the pattern of ‘jumping about’ is always the same for a given plate/sensor
system. Errors of this kind are said to be Systematic since they depend upon fixed physical
imperfections of the system we're using. The Gray code example shows that it is sometimes
possible to devise a code which overcomes a specific systematic problem without any loss of
efficiency. Dealing with random errors always requires a drop in efficiency. This is an important
difference between errors produced by random noise and errors produced by repeatable,
systematic effects.

The second example illustrates another weapon we can use to protect ourselves against mistaking
received errors for reliable information. This technique is called Soft Decision Making and it
depends upon being able to spot when received bits are ‘suspect’. Combined with a block-
checking code, this is a powerful way of reducing the effects of random noise.

To implement this technique we need to think about the transmission method rather than the
code system. A simple example is electronic digital transmission along metal wires. Here bits can
be lost due to momentary loss of contact (e.g. due to a rusty plug/socket somewhere) as well as
random noise. This can produce bursts of errors where a series of bits are missed. The most direct
method is to send, say, TTL voltage levels (between 0 and 1V for ‘0’ and between 3 and 5V for
‘1’). A momentary loss of signal may produce either 0 V (received as ‘0’) or allow a receiving TTL
gate to float high (giving a received ‘1’). Hence, depending upon the receiver circuits used, a
temporary loss of data looks like a string of ‘0’s or ‘1’s.

Various systems have been devised to avoid this. The most common is the transmission system
called ‘RS-232/432’. Here a positive current (typically about +3.5 mA) signals ‘1’ and a negative
one (-3.5 mA) signals a ‘0’. A momentary signal loss gives zero current which the receiver can
respond to by tagging the appropriate bits as 'don't know'. It is worth noting that this method is
essentially making use of three logic levels to send binary data; -3.5 mA=°‘1", +3.5 mA="0’, and 0
mA= ‘don't know’, although the transmitter is only attempting to send two of these.

In practice, this technique does have one potentially significant disadvantage which can be
illustrated using the example of the RS232 logic levels. In the absence of any attempt to detect the
‘don't know’ condition the receiver could decide whether a ‘1’ or ‘0’ was being communicated by
checking whether the received current was above or below 0 mA. Random noise would therefore
have to change the current level by at least 3.5 mA in order to produce an error.

In order to be able to sense message interruptions the receiver must be designed so as to respond
to some range of currents, = I, centred on 0 mA by deciding that the signal level is ‘undefined’.
Random noise now only has to alter the received current by an amount (3.5 — |I | ) mA, to make a
bit appear unreliable. Similarly, the random noise only needs to produce a momentary current
fluctuation of more than |I| to make a momentary loss of signal as an apparently reliable ‘1’ or ‘0.
This means that we can't avoid this problem by making I very small without giving up the ability
to spot when data is failing to arrive. As a result, assigning an intermediate range of levels to mean
‘undefined’ leads to an increase in the frequency of errors produced by random noise. However,
provided that the S/N ratio is high, this increase can be small enough to be an acceptable price
for being able to sense momentary data losses.
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Summary

You should now know that the effects of random errors can (usually!) be detected and corrected.
In it's simplest forms this can be done using a method like ‘tell me twice’ or ‘tell me three times’
which repeat all the information. That parity bit generation methods and the use of block codes
‘dilute’ the amount of information repetition to provide a lower amount of protection but a
higher transmission Efficiency (lower Redundancy) than simple ‘tell me again’. You should also
understand that the amount of protection from random errors depends upon the amount of
redundancy since we require a given amount of extra ‘illegal’ symbols or bit-patterns in between
the legal ones to be able to deal with random errors. You should also now know that the ability of
a code system to detect and correct errors can be measured in terms of the code system's
Minimum Hamming Distance value.

Finally, the example of the Gray code shows that non-random or Systematic errors can be corrected
without the need for any extra bits or words — i.e. without any redundancy. The example of RS-
232 shows that giving the receiver the ability to spot data losses, called Soft Decision Making, can be
useful in dealing with Bursts of errors produced by problems like temporarily loss of contact with
the transmitter.

Questions

1) A message is transmitted in the form of a series of digital bits. The signal is carried by a channel
with a signal to noise ratio which means that each individual bit has a 0-9 chance of being
received correctly. The message is 10,000 bits long. How many noise-produced random errors is a
single copy of the message likely to contain when received? To try and reduce the effects of noise
the message is sent using the Tell Me Three Times method. After error correction, how many
undetected errors are likely to appear in the received message? [1000. 280.]

2) Explain what is mean by the terms Parity Bit and Parity Checking. A Block Code system groups 16
message bits at a time into a two-dimensional block in order to generate a set of parity bits. Draw a
diagram of this process and explain how it enables single bits errors in a block to be detected and
corrected. Explain why the presence of two bit errors in a block can be detected but not always
corrected using this system. What is the value of the transmitted signal's Efficiency including the
parity bits? What is the value of the signal's Redundancy? [Efficiency = 16/24. Redundancy =
0-333.]

3) Draw a diagram of a Linear Encoder and use it to explain why the normal binary number
sequence, %0000, %0001, %0010, etc., isn't a very suitable choice for the encoder pattern.
Explain how either Walking Code or Gray Code can overcome the problem. Explain what advantage
Gray Code has over Walking Code.

4) Explain the term Soft Decision Making. Give a brief explanation of how the RS-232 data
transmission system can indicate data losses during transmission.
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Chapter 7

The Sampling Theorem
7.1 Fourier Transforms and signals of finite length

In the first few chapters we saw that the amount of information conveyed along a channel will
depend upon its bandwidth (or response time), the maximum signal power, and the noise level.
The way we estimated the effects of these was fairly rough. We now need to look at this
fundamental question of a channel's information carrying Capacity more carefully. The amount of
information contained in a message can be formally defined using the Sampling Theorem. The
maximum information carrying capacity of a transmission channel can be defined using
Shannon's Equation. Taken together, they provide the basis of the whole structure of Information
Theory. Rather than tackle the Sampling Theorem or Shannon's Equation ‘head on’, it is useful
to take a diversion and begin by considering the relationship between a time-varying signal and its
Frequency Spectrum.
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Figure 7.1 A signal observed during the interval, 0 — T.

A message which requires an infinite time to finish isn't of any practical value. This is because we
can't know what information it contains until it has all arrived! As a result, in practice we can only
observe or deal with signals which have defined ‘start’ and ‘stop’ points. The fact that information
about a real signal or process can only cover a finite duration or interval has some important
consequences.

Consider the situation illustrated in figure 7.1a. This shows how a particular analog signal is seen
to vary over a time interval, =0 to ¢ = 7. (For simplicity we've ‘switched on the clock’ at the start
of the observation. Note that this doesn't affect our conclusions.) Now the only message
information we have is confined to the chosen time interval. Logically, therefore, we have to
accept that if we had looked at the signal for at other times we might have seen any of the
alternatives shown in figure 7.1b, c, etc. However, the limited information we have doesn't allow
us to know what happened outside our observation. We can, of course, theorise about what we
might have seen if we had observed what was happening at other times. Provided any hypothesis
doesn't conflict with the information we possess it can be accepted for the purpose of argument.

The signal we have observed can be described by some specific function of time, p{t}, which is
only known when 0 < ¢ < T. From the argument given above we can, in principle, imagine an
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infinite variety of theoretical functions, p’ {¢}, which are defined so that

p{t)=plt}io<e<T L (1.1)

but which allow ¢’ {¢} to do whatever we like at other times.

Using functions like p{t} or ¢ {t} we can describe the behaviour of a signal in terms of its
variations with time. An alternative method for describing a signal is to specify its frequency spectrum
in terms of some suitable function, § {f } We can then consider the signal level at any instant, ¢, as

ple) = Y a, Cos{onf,t + ¢} (72)

i.e. the signal is regarded as being composed of a series of contributions at a set of frequencies, f,.
The size of each contribution, a, and its phase at =0, ¢,, being defined by the value of § {f} at
the appropriate frequency, f,. (Note that this means that, in general, S {f } must specify two
values, an amplitude and a phase, hence it is most convenient to treat this as a function which

produces a complex result.)

Clearly the time domain description, p{t}, of a signal and its frequency domain description, S {r},
must contain identical information if they are both to specify the same signal or message. The two
functions must therefore be linked in some way. Mathematically, this link can be made using the
technique called Fourier Transformation.

Experience shows that it can be a mistake for a student to read more than one book which uses
Fourier analysis! Comparing one text with another reveals a host of odd factors of 2, 7, etc., which
seem to pop up and disappear without any obvious reason. The most common result of this is to
make most engineering and science students decide to avoid the topic whenever possible!
Unfortunately, Fourier methods are very useful. Ignoring them is a bit like avoiding using saws
when doing woodwork because you aren't sure which type of saw is best. Since this isn't a maths
book we won't examine Fourier Transforms in detail, but it is worth making a few comments
which may be helpful.

Firstly, we can see from equation 7.2 that to specify the effect of a given frequency component on
a signal we need to have two values. In 7.2. these were an amplitude, a,, and a phase, ¢,. We
could, however, achieve the same effect in other ways. For example, we could define the same
signal in terms of pairs of values, A, and B,, in an expression like

ple) = ) A, Cos{2af,t} + B, Sin{22f,¢} .(13)

or we could use something like

it} = Z Real [a, Exp{—j27f,t + ¢u}] . (7.4)

All of these are equivalent ways to achieve the same result, but they alter the form of the Fourier
Transform expressions required to link the time and frequency domains.

Secondly, the form of the Fourier Transform expressions depends upon whether we are
interested in knowing the power (or amplitude) of the signal or the total energy it conveys. This
affects whether the expressions have to be multiplied by a factor proportional to + since power =
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energy per unit time. Here we will use the type of expression given in 7.3 and consider the
amplitude (e.g. the voltage) of the signals. This determines the details of the Fourier Integrals
we'll use. In fact, we would come to the same conclusions using any of the other approaches.

Sines and cosines are an example of a set of Orthogonal Functions. The general topic of the
properties of orthogonal functions is beyond the scope of this book. All we have to do is outline
some of their basic properties which are relevant here. In general, a set of functions, F, {z}, which
satisfy the integral

b
f F,{z}F,{2} dz =0 whenn # m ..(7.5)
are said to be ‘orthogonal over the range a to b’ For the case of sine or cosine functions we can
regard F, {z} and F,, {z} as having two different angular frequencies, w, = 2nf,, v, = 2xf,. If
we consult a book of integrals or a text on the properties of functions we can find that, provided
n #m

'[ Sin{mx} Sin{nx} dx = f Cos{mx} Cos{nx} dx = 0 ...(7.6)
0 0
where m and n are integers. This is equivalent to saying

T T
f Sin {nwot} Sin{mwyt} dt = f Cos{nwot} Cos{mwot} dt = 0 (17
0 0
where wy, = 7/ T. We can interpret this as defining a ‘fundamental frequency', fy = g%, which

can fit one half-cycle into the interval, T.

This orthogonal behaviour is very important for the usefulness of Fourier analysis. The reason for
this can be understood by going back to the signal we considered at the start of this chapter. This
is a signal, p{t}, whose value is known only during the interval, 0 < ¢ < T.

As we have seen, we can imagine a variety of functions, p’{t}, which are identical to p{t} during
this observed interval but behave however we wish at other times. Provided we always ensure that
v {t} = p{ t} during the signal interval every possible choice of p’ {¢} provides us with exactly the
same information (pattern) during this period as p{t}. All these possible choices are
indistinguishable from one another if we only observe this finite interval. This gives us the
freedom to choose any p’{ t} which is identical to p{t} during the observed interval. We can
therefore select one which is convenient for the purpose of analysing the signal. There is nothing
to stop us from choosing a form for p’ {¢} which is Periodic — i.e. one which repeats itself over and
over again — with a period equal to the observed signal's interval, 7. This assumption is
convenient for the purposes of Fourier analysis. If we assume ¢’ {¢} is periodic in this way it will
take the form shown in figure 7.1d.

It should be clear that a signal which repeats itself in this way can only contain frequencies which
are multiples of a fundamental frequency, f, = 1/ T (plus, perhaps, a non-zero d.c. level). This is
because the presence of any other frequencies would mean each ‘cycle’ of the periodic function
would differ from its neighbours. We can therefore say that the function must be of the form

N
p e} = Y A, Cos{omnfot} + B, Sin{2mnfyt} . (18)
n=0

where Nrepresents the highest frequency present and the A, B,, values determine the magnitude
and phase of the n th frequency component of the signal. Note that this expression only contains
a d.c. level (n = 0), a component at the fundamental frequency, f(, and components at its
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harmonic frequencies, nf,. (As Sin {0} = 0 and Cos{0} = 1 the d.c. level equals Ay. By has no
physical meaning.) Since this function is chosen so as to be indistinguishable from p{¢} during
the observed period we can therefore say that p{¢} is indistinguishable from

N
ple} = D A, Cos{2anfot} + B, Sin{27nfst} . (19)
n=0
during the observed period. The coefficients, A, and B, may be obtained from p{¢} using the
Fourier integrals,

2 T
A, = —_[ p{t} Cos{2nnfot} dt .. (7.10)
TJ

2 T
B, = —_[ plt} Sin{2mnfot} di .. (7.11)
TJ,

These expressions represent the Fourier Transform of the known signal, p{t}, and allow us to
calculate the signal's frequency spectrum. (Expressions 7.10 and 7.11 can be seen to be true once
we accept that 7.6 and 7.7 are correct. In effect, the above expressions let us ‘pick out’ the two
coefficients we want from g {¢} at any chosen frequency, nf,.)

From the above arguments it should be clear that we can freely convert information back and
forth between the time domain and the frequency domain. Given this ability it must be true that
the frequency spectrum contains the same information as the time-varying signal.

7.2 The Sampling Theorem and signal reconstruction

Any real signal will be transmitted along some form of channel which will have a finite bandwidth.
As a result the received signal's spectrum cannot contain any frequencies above some maximum
value, f,,. However, the spectrum obtained using the Fourier method described in the previous
section will be characteristic of a signal which repeats after the interval, 7. This means it can be
described by a spectrum which only contain the frequencies, 0 (d.c.), fo, 2f0, 3f0, ... Nfo, where
Nis the largest integer which satisfies the inequality Nfy < f,,.. As a consequence we can specify
everything we know about the signal spectrum in terms of a d.c. level plus the amplitudes and
phases of just N frequencies — i.e. all the information we have about the spectrum can be
specified by just 2N +1 numbers. Given that no information was lost when we calculated the
spectrum it immediately follows that everything we know about the shape of the time domain
signal pattern could also be specified by just 2N +1 values.

For a signal whose duration is 7' this means that we can represent all of the signal information by
measuring the signal level at 2N +1 points equally spaced along the signal waveform. If we put the
first point at the start of the message and the final one at its end this means that each sampled

point will be at a distance 57— from its neighbours. This result is generally expressed in terms of

the Sampling Theorem which can be stated as: ‘If a continuous function contains no frequencies higher
than [, Hz it is completely determined by its value at a series of points less than % apart.’

Consider a signal, p{¢}, which is observed over the time interval, 0 < 0 < T, and which we know
cannot contain any frequencies above f,,,,. We can sample this signal to obtain a series of values,
x;, which represent the signal level at the instants, ¢; = X, where 7 is an integer in the range 0 to
K. (This means there are K + 1 samples.) Provided that K > 2N, where N is defined as above,

we have satisfied the requirements of the Sampling Theorem. The samples will then contain all of
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the information present in the original signal and make up what is called a Complete Record of the
original.

In fact, the above statement is a fairly ‘weak’ form of the sampling theorem. We can go on to a
stricter form:

‘If a continuous function only contains frequencies within a
bandwidth, B Hertz, it is completely determined by its value at a series of

points spaced less than 1 / (QB) seconds apart.’

This form of the sampling theorem can be seen to be true by considering a signal which doesn't
contain any frequencies below some lower cut-off value, f,,;,. This means the values of A, and B,
for low n (i.e. low values of 2nn f) will all be zero. This limits the number of spectral components
present in the signal just as the upper limit, f,,,, means that there are no components above
[ max- This situation is illustrated in figure 7.2.

Figure 7.2 Spectrum of a band-limited signal of finite length.

From the above argument a signal of finite length, 7, can be described by a spectrum which only
contains frequencies, fo, 2fy, ... Nfy. If the signal is restricted to a given bandwidth,
B = fuax — fmin, only those components inside the band have non-zero values. Hence we only
need to specify the A, and B, values for those components to completely define the signal. The
minimum required sampling rate therefore depends upon the bandwidth, not the maximum
frequency. (Although in cases where the signal has components down to d.c. the two are
essentially the same.)

The sampling theorem is of vital importance when processing information as it means that we can
take a series of samples of a continuously varying signal and use those values to represent the
entire signal without any loss of the available information. These samples can later be used to
reconstruct all of the details of the original signal — even recovering details of the actual signal
pattern ‘in between’ the sampled moments. To demonstrate this we can show how the original
waveform can be ‘reconstructed’ from a complete set of samples.

The approach used in the previous section to calculate a signal's spectrum depends upon being
able to integrate a continuous analytical function. Now, however, we need to deal with a set of
sampled values instead of a continuous function. The integrals must be replaced by equivalent
summations. These expressions allow us to calculate a frequency spectrum (i.e. the appropriate
set of A, and B, values) from the samples which contain all of the signal information. The most
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obvious technique is to proceed in two steps. Firstly, to take the sample values, x;, and calculate
the signal's spectrum. Given a series of samples we must use the series expressions
K K
2

2 .
Ay = % ;x Cos{2znfoti} B, = — ;x Sin {27nf ot} - (7.12)

to calculate the relevant spectrum values. These are essentially the equivalent of the integrals, 7.10
and 7.11, which we would use to compute the spectrum of a continuous function. The second
step of this approach is to use the resulting A, and B, values in the expression

N
x{t} = Y A, Cos{2anfyt} + B, Sin{27nfst} .(7.13)
n=0

to compute the signal level at any time, ¢, during the observed period. In effect, this second step is
simply a restatement of the result shown in expression 7.9. Although this method works, it is
computationally intensive and indirect. This is because it requires us to perform a whole series of
numerical summations to determine the spectrum, followed by another summation for each x {¢}
we wish to determine. A more straightforward method can be employed, based upon combining
these operations. Expressions 7.12 and 7.13 can be combined to produce

x{t} =
N ) K
ZE )" xi[Cos {27nfot:} Cos{2mnfor} + Sin{2manfot;} Sin {2mnfot}]
n i=0

=0
.. (7.14)

which, by a fairly involved process of algebraic manipulation, may be simplified into the form

x{t} = ixi Sinc{w} .. (7.15)

ot At
where the Sinc function can be defined as
Sinc{z} = — ... (7.16)

and At = T / K is the time interval between successive samples.

Given a set of samples, x;, taken at the instants, {;,, we can now use expression 7.15 to calculate
what the signal level would have been at any time, ¢, during the sampled signal interval.

.- samples

7.3b Sinc function interpolation from samples.

Figure 7.3 Signal reconstruction from a series of sampled values.

Clearly, by using this approach we can calculate the signal value at any instant by performing a
single summation over the sampled values. This method is therefore rather easier (and less prone
to computational errors!) than the obvious technique. Figure 7.2 was produced by a BBC Basic
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program to demonstrate how easily this method can be used.

Although the explanation given here for the derivation of expression 7.15 is based upon the use
of a Fourier technique, the result is a completely general one. Expression 7.15 can be used to
‘interpolate’ any given set of sampled values. The only requirement is that the samples have been
obtained in accordance with the Sampling Theorem and that they do, indeed, form a complete
record. It is important to realise that, under these circumstances, the recovered waveform is not a
‘guess' but a reliable reconstruction of what we would have observed if the original signal had
been measured at these other moments.

Summary

You should now be aware that the information carried by a signal can be defined either in terms
of its Time Domain pattern or its Frequency Domain spectrum. You should also know that the
amount of information in a continuous analog signal can be specified by a finite number of
values. This result is summarised by the Sampling Theorem which states that we can collect all the
information in a signal by sampling at a rate 2B, where B is the signal bandwidth. Given this
information we can, therefore, reconstruct the actual shape of the original continuous signal at
any instant ‘in between’ the sampled instants. It should also be clear that this reconstruction is
not a guess but a true reconstruction.

Questions

1) A single microphone is used to make an analog recording of a song 3 minutes long. The
microphone only responds to signals in the 10 Hz to 18 kHz frequency range. How many digital
samples are required to convert all the song's information into a complete digital record? [6-47
million. ]

2) A complex signal is digitally recorded for 1 minute. The recorded information is then used to
work out the spectrum of the observed spectrum. What will be the value of the frequency
resolution of the spectrum we obtain? [1/60th of a Hertz. ]
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Chapter 8

The information carrying capacity of a channel
8.1 Signals look like noise!

One of the most important practical questions which arises when we are designing and using an
information transmission or processing system is, ‘What is the Capacity of this system? — i.e. How
much information can it transmit or process in a given time?’” We formed a rough idea of how to
answer this question in an earlier chapter. We can now go on to obtain a more well defined
answer by deriving Shannon's Equation. This equation allows us to precisely determine the
information carrying capacity of any signal channel.

Consider a signal which is being efficiently communicated (i.e. no redundancy) in the form of a
time-dependent analog voltage, V {t} The pattern of voltage variations during a specific time
interval, 7, allows a receiver to identify which one of a possible set of messages has actually been
sent. At any two moments, ¢; and ¢9, during a message the voltage will be V {t,} and v {1,}.

Using the idea of intersymbol influence we can say that — since there is no redundancy — the
values of V {¢,} and V {¢s} will appear to be independent of one another provided that they're
far enough apart (i.e.[t; — to| > 35) to be worth sampling separately. In effect, we can't tell what
one of the values is just from knowing the other. Of course, for any specific message, both V {tl}
and V {tg} are determined in advance by the content of that particular message. But the receiver
can't know which of all the possible messages has arrived until it has arrived. If the receiver did
know in advance which voltage pattern was to be transmitted then the message itself wouldn't
provide any new information! That is because the receiver wouldn't know any more after its
arrival than before. This leads us to the remarkable conclusion that a signal which is efficiently
communicating information will vary from moment to moment in an unpredictable, apparently
random, manner. An efficient signal looks very much like random noise!

This, of course, is why random noise can produce errors in a received message. The statistical
properties of an efficiently signalled message are similar to those of random noise. If the signal
and noise were obviously different the receiver could easily separate the noise from the signal and
avoid making any errors.

To detect and correct errors we therefore have to make the real signal less ‘noise-like’. This is
what we're doing when we use parity bits to add redundancy to a signal. The redundancy
produces predictable relationships between different sections of the signal pattern. Although this
reduces the system's information carrying efficiency it helps us distinguish signal details from
random noise. Here, however, we're interested in discovering the maximum possible information
carrying capacity of a system. So we have to avoid any redundancy and allow the signal to have the
‘unpredictable’ qualities which make it statistically similar to random noise.

The amount of noise present in a given system can be represented in terms of its mean noise
power

N = V&/R (8.1

where R is the characteristic impedance of the channel or system and V is the rms noise voltage.
In a similar manner we can represent a typical message in terms of its average signal power
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S = VZ/R ..(8.2)
where Vy is the signal's rms voltage.

A real signal must have a finite power. Hence for a given set of possible messages there must be
some maximum possible power level. This means that the rms signal voltage is limited to some
range. It also means that the instantaneous signal voltage must be limited and can't be beyond
some specific range, V. A similar argument must also be true for noise. Since we are assuming
that the signal system is efficient we can expect the signal and noise to have similar statistical
properties. This implies that if we watched the signal or noise for a long while we'd find that their
level fluctuations had the same peak/rms voltage ratio. We can therefore say that, during a typical
message, the noise voltage fluctuations will be confined to some range

Vi = 2nVy ..(8.3)
where the form factor, n, (ratio of peak to rms levels) can be defined from the signal's properties as
Vs
= —2 ..(84
=y, (8.4)

When transmitting signals in the presence of noise we should try to ensure that S is as large as
possible so as to minimise the effects of the noise. We can therefore expect that an efficient
information transmission system will ensure that, for every typical message, § is almost equal to
some maximum value, P, ,,. This implies that in such a system, most messages will have a similar
power level. Ideally, every message should have the same, maximum possible, power level. In fact
we can turn this argument on its head and say that only messages with mean powers similar to this
maximum are ‘typical’. Those which have much lower powers are unusual — i.e. rare.

8.2 Shannon's equation

The signal and noise are Uncorrelated — that is, they are not related in any way which would let us
predict one of them from the other. The total power obtained, Py, when combining these
uncorrelated, apparently randomly varying quantities is given by

Pr =S+ N ...(8.5)
i.e. the typical combined rms voltage, V1, will be such that
Vi=Vs+ Vi .. (8.6)

Since the signal and noise are statistically similar their combination will have the same form factor
value as the signal or noise taken by itself. We can therefore expect that the combined signal and
noise will generally be confined to a voltage range 5V .

Consider now dividing this range into 2° bands of equal size. (i.e. each of these bands will cover
AV = 2yV; /2" To provide a different label for each band we require 2° symbols or numbers.
We can then always indicate which AV band the voltage level occupies at any moment in terms of
a unique &-bit binary number. In effect, this process is another way of describing what happens
when we take digital samples with a &-bit analog to digital convertor working over a total range
2V .

There is no real point in choosing a value for b which is so large that AVis smaller than 25V .
This is because the noise will simply tend to randomise the actual voltage by this amount, making
any extra bits meaningless. As a result the maximum number of bits of information we can obtain
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regarding the level at any moment will given by
Vr
Vi

b = . (8.7)

1.e.

2! = JV% = \/(V—?V) + (V—g) = 1+ (S/N) .. (8.8)

Vi vy \vi
which can be rearranged to produce

b = Log {(1 + %)1/2} ...(8.9)

If we make M, bbit measurements of the level in a time, 7, then the total number of bits of
information collected will be

12
H = Mb = M. Logz{(l + N) ] ...(8.10)
This means the information transmission rate, I, bits per unit time, will be
M s\
= (M) e+ 5] e
T) 0% N (8.11)

From the Sampling Theorem we can say that, for a channel of bandwidth, B, the highest practical
sampling rate, M / T, at which we can make independent measurements or samples of a signal
will be

M
2 _op ..(8.12)
T

Combining expressions 8.11 and 8.12 we can therefore conclude that the maximum information
transmission rate, C, will be

12
S
C = 2B L0g2{(1 + N) } = BLog2{1 + N} ... (8.13)

This expression represents the maximum possible rate of information transmission through a
given channel or system. It provides a mathematical proof of what we deduced in the first few
chapters. The maximum rate at which we can transmit information is set by the bandwidth, the
signal level, and the noise level. Cis therefore called the channel's information carrying Capacity.
Expression 8.13 is called Shannon's Equation after the first person to derive it.

8.3 Choosing an efficient transmission system

In many situations we are given a physical channel for information transmission (a set of wires
and amplifiers, radio beams, or whatever) and have to decide how we can use it most efficiently.
This means we have to assess how well various information transmission systems would make use
of the available channel. To see how this is done we can compare transmitting information in two
possible forms — as an analog voltage and a serial binary data stream — and decide which would
make the best use of a given channel.

When doing this it should be remembered that there are a large variety of ways in which
information can be represented. This comparison only tells us which out of the two we've
considered is better. If we really did want to find the ‘best possible' we might have to compare
quite a few other methods. For the sake of comparison we will assume that the signal power at our
disposal is the same regardless of whether we choose a digital or an analog form for the signal. It
should be noted, however, that this isn't always the case and that any variations in available signal
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power with signal form will naturally affect the relative merits of the choices.

Noise may be caused by various physical processes, some of which are under our control to some
extent. Here, for simplicity, we will assume that the only significant noise in the channel is due to
unavoidable thermal noise. Under these conditions the noise power will be

N = kTB ...(8.14)

where T'is the physical temperature of the system, and kis Boltzmann's constant.

Thermal noise has a ‘white’ spectrum — i.e. the noise power spectral density is the same at all
frequencies. Many of the other physical processes which generate noise also exhibit white spectra.
As a consequence we can often describe the overall noise level of a real system in terms of a Noise
Temperature, T, which is linked to the observed total noise by expression 8.14. The concept of a
noise temperature is a convenient one and is used in many practical situations. Its important to
remember, however, that a noisy system may have a noise temperature of, say, one million
Kelvins, yet have a physical temperature of no more than 20 °C! The noise temperature isn't the
same thing as the ‘real’ temperature. A very noisy amplifier doesn't have to glow in the dark or
emit X-rays!

Most real signals begin in an analog form so we can start by considering an analog signal which we
wish to transmit. The highest frequency component in this signal is at a frequency, W Hz. The
Sampling Theorem tells us that we would therefore have to take at least 2Wsamples per second to
convert all the signal information into another form. If we choose to transmit the signal in analog
form we can place a low-pass filter in front of the receiver which rejects any frequencies above W.
This filter will not stop any of the wanted signal from being received, but rejects any noise power
at frequencies above W. Under these conditions the effective channel bandwidth will be equal to
W and the received noise power, N, will be equal to k7 W. Using Shannon's equation we can say
that the effective capacity of this analog channel will be

Canalog =W LOgZ{l + kTW} (815)

In order to communicate the same information as a serial string of digital values we have to be
able to transmit two samples of m bits each during the time required for one cycle at the
frequency, W — i.e. we have to transmit 2mW bits per second. The frequencies present in a
digitised version of a signal will depend upon the details of the pattern of ‘I’s and ‘0’s. The
highest frequency will, however, be required when we alternate ‘1's and ‘0's. When this happens
each pair of ‘1's and ‘0's will look like the high and low halves of a signal whose frequency is mW
(not 2mW). Hence the digital signal will require a channel bandwidth of mW to carry information
at the same rate as the analog version.

Various misconceptions have arisen around the question of the bandwidth required to send a
serial digital signal. The most common of these amongst students (and a few of their teachers!)
are:-

i) ‘Since you are sending 2mW bits per second, the required digital bandwidth is 2mW.’

i1) ‘Since digital signals are like squarewaves, you have to provide enough bandwidth to keep the ‘edges
square’ so you can tell they're bits, not sinewaves.’

Neither of the above statements are true. The required signal bandwidth is determined by how
quickly we have to be able to switch level from 'l' to '0' and vice versa. The digital receiver doesn't
have to see ‘square' signals, all it has to do is decide which of the two possible levels is being
presented during the time allotted for any specific bit.
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In order to allow all the digital signal into the receiver whilst rejecting ‘out of band’ noise we must
now employ a noise-rejecting filter in front of the receiver which only rejects frequencies above
mW. The effective capacity of this digital channel will then be

S
Ciigitar = mW Lng{l + m} ...(8.16)
This shows the capacity of the channel at our disposal if we can set the bandwidth to the value

required to send the data in digital serial form. Note that this is not the actual rate at which we
wish to send data! The digital data rate is

I =2mW .. (8.17)
It will only be possible to transmit the data in digital form if we can satisfy two conditions:
i) The channel must actually be able to transmit frequencies up to mW.
ii) The capacity of the channel must be greater or equal to I

The digital form of signal will only communicate information at a higher rate than the analog
form if

I > Coanatog .. (8.18)

so there is no point in digitising the signal for transmission unless this inequality is true. The
number of bits per sample, m, must therefore be such that

m > (%) Log2{1 + kTW} ...(8.19)

Otherwise the precision of the digital samples will be worse than the uncertainty introduced into
an analog version of the signal by the channel noise. As a result, if the digital system is to be better
than the analog one, the number of bits per sample must satisfy 8.19. (Note that this also means
the initial signal has to have a S/N ratio good enough to make it worthwhile taking m bits per
sample!)

Unfortunately, we can't just choose a value for m which is as large as we would always wish. This is
because the data rate, I, cannot exceed the digital channel capacity, C igi/q;- From 8.16 and 8.17
this is equivalent to requiring that

S
2mW < mW Log2{1 + 7} ... (8.20)
RT mW
1.e.
S
m < ..(8.21)
3RTW

We can therefore conclude that a digitised form of signal will convey more information than an
analog form over the available channel if we can choose a value for m which simultaneously
satisfies conditions 8.19 and 8.21, and the available channel can carry a bandwidth, mW. If we
can't satisfy these requirements the digital signalling system will be poorer than the analog one.

8.4 Noise, quantisation, and dither

An unavoidable feature of digital systems is that there must always be a finite number of bits per
sample. This affects the way details of a signal will be transmitted.
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Figure 8.1 The use of ‘dithering’ to overcome quantisation distortion.

Figure 8.1a represents a typical example of an input analog signal. In this case the signal was
obtained from the function Sin {ax} Exp {—bx} — i.e. an exponentially decaying sinewave. Figure
8.1b shows the effect of converting this into a stream of 4-bit digital samples and communicating
these samples to a receiver which restores the signal into an analog form. Clearly, figures 8.1a and
8.1b are not identical! The received signal (figure 8.1b) has obviously been Distorted during
transmission and is no longer a precise representation of the input. This distortion arises because
the communication system only has 2* = 16 available code symbols or levels to represent the
variations of the input signal. The output of the system is said to be Quantised. It can only produce
one of the sixteen available possible levels at any instant. The difference between adjacent levels is
called the Quantisation Interval. Any smooth changes in the input become converted into a
‘staircase’ output whose steps are one quantisation interval high.

This form of distortion is particularly awkward when we are interested in the small details of a
signal. Consider, for example, the low-amplitude fluctuations of the ‘tail’ of the signal shown in
figure 8.1a. These variations are totally absent from the received signal shown in figure 8.1b. This
is because the digitising system uses the same symbol for all of the levels of this small tail. As a
result we can expect that any details of the signal which involve level changes smaller than a
quantisation interval may be entirely lost during transmission.

At first sight these quantisation effects seem unavoidable. We can reduce the severity of the
quantisation distortion by increasing the number of bits per sample. In our 4-bit example the
quantisation interval is 1/2* th of the total range (6-25%). If were to replace this with a Compact
Disc standard system using 16-bit samples the quantisation interval would be reduced to 1/2'°th
(0.0015%). This reduces the staircase effect, but doesn't banish it altogether. As a result, small
signal details will, it seems, always be lost. Fortunately, there is a way of dealing with this problem.
We can add some random noise to the signal before it is sampled. Noise which has been
deliberately added in this way to a signal before sampling is called Dither.

Figure 8.1c shows the kind of received signal we will obtain if some noise is added to the initial
signal before sampling. This noise has the effect of superimposing a random variation onto the
staircase distortion. Figure 8.1d shows the effect of passing the output shown in figure 8.1c
through a filter which smooths away the higher frequencies. This essentially produces a ‘moving
average' of the received signal plus noise. This filtering action can be carried out by passing the
output from the receiver's digital-to-analog convertor through a low-pass analog filter (e.g. a
simple RC time constant). Alternatively, filtering can be carried out by performing some
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equivalent calculations upon the received digital values before reconversion into an analog
output. This ‘numerical’ approach was adopted for the example shown in figure 8.1.

Comparing figures 8.1d and 8.1b we can see that the combination of input dithering and output
filtering can remove the quantisation staircase. We may therefore conclude that Dithering provides
a way to overcome this form of distortion. It can also (as shown) allow the system to communicate
signal details such as the small ‘tail’ of the waveform which are smaller than the quantisation. In
reality any input signal will already contain some random noise, however small. In principle
therefore we don't need to add any extra noise if, instead, we can employ an analog-to-digital
convertor (ADC) which produces enough bits per sample to ensure that the quantisation interval
is less than the pre-existing noise level. All that matters is that the signal presented to the ADC
varies randomly by an amount greater than the quantisation interval. In principle, the amount of
information communicated is not significantly altered by using dithering. However, the form of
information loss changes from a ‘hard’ staircase distortion loss to a ‘gentle’ superimposed
random noise which is often more acceptable — for example, in audio systems, where the human
ear is less annoyed by random noise than periodic distortions. The ability of dithered systems to
respond to tiny signals well below the quantisation level is also useful in many circumstances.
Hence dither is widely used when signals are digitised.

From a practical point of view using random noise in this way is quite useful. Most of the time
engineers and scientists want to reduce the noise level in order to make more accurate
measurements. Noise is usually regarded as an enemy by information engineers. However when
digitising analog signals we want a given amount of noise to avoid quantisation effects. The noise
allows us to detect small signal details by averaging over a number of samples. Without the noise
these details would be lost since small changes in the input signal level would leave the output
unchanged.

In fact, the use of dither noise in this way is a special case of a more general rule. Consider as an
example a situation where you are using a 3-digit Digital VoltMeter (DVM) to measure a d.c.
voltage. In the absence of any noise you get a steady reading, something like 1-29 V, say. No
matter how long you stare at the DVM, the value remains the same. In this situation, if you want a
more accurate measurement you may have to get a more expensive DVM which shows more
digits! However, if there is a large enough amount of random noise superimposed on the d.c.
you'll see the DVM reading vary from time to time. If you now regularly note the DVM reading
you'll get some sequence like, 1-29, 1-28, 1.29, 1-27, 1-26, 1-29, etc... Having collected enough
measurements you can now add up all the readings and take their average. This can provide a
more accurate result than the steady 1-29 V you'd get from a steady level in the absence of any
noise.

We'll be looking at the use of Signal Averaging in more detail in a later chapter. Here we need only
note that, for averaging to work, we must have a random level fluctuation which is at least a little
larger than the quantisation interval. In the case of the 3-digit DVM the quantisation level is the
smallest voltage change which alters the reading — i.e. 0-01 Volts in this example. In the case of
the 4-bit analog to digital/digital to analog system considered earlier itis 1 / 9% of the total range.
Although the details of the two examples differ, the basic usefulness of dither and averaging
remains the same.
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Summary

You should now know that an efficient (i.e. no redundancy or repetition) signal provides
information because its form is unpredictable in advance. This means that its statistical properties
are the same as random noise. You should also now know how to use Shannon's Equation to
determine the information carrying capacity of a channel and decide whether a digital or analog
system makes the best use of a given channel. You should now know how quantisation distortion
arises. It should also be clear that a properly dithered digital information system can provide an
output signal which looks just like an analog ‘signal plus noise’ output without any signs of
quantisation.

Questions

1) Explain what we mean by the Capacity of an information carrying channel. A channel carries a
signal whose maximum possible peak-to-peak voltage is Vg = 1V and has a peak-to-peak noise
voltage, Vy = 0-001 V. The bandwidth of the channel is B = 10 kHz. Derive Shannon's Equation
and use it to calculate the value of the channel's capacity. [199,314 bits/second.]

2) Explain what we mean by the Noise Temperature of a system. A channel has a bandwidth of 100
kHz and is used to carry a serial digital signal. The signal is produced by an 8-bit analog to digital
convertor fed by an analog input. How many samples per second can the system carry? The signal
power level is 1 uW. What is the highest noise temperature value which would still let the system
carry the digital signal successfully? [25,000 samples/second. 2-4x10!! K.]

3) Using the same channel as above, what is the highest noise temperature which would be
acceptable if the channel were used to carry the information in its original analog form? [8-8x107
K.]

4) Explain what we mean by the term Dither and say how it can be used to overcome Quantisation
Distortion effects.
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Chapter 9

The CD player as an information channel
9.1 The CD as an information channel

The next few chapters use the example of the CD audio system to show some of the basic
properties of instruments used to gather and process information. CD has been selected for
various reasons. It provides an excellent example of many digital data processing methods and
allows us to explore the relationship between signals held in equivalent analog and digital forms.
Both the source information gathering (i.e. the recording studio, etc.) and the information replay
system (the CD player) can be used to illustrate a variety of highly effective measurement and
information processing techniques. The CD system can also be simultaneously regarded as:

i) A measurement system, collecting audio information.
ii) A signal processing system.
iii) An information communication channel/storage system.
The decision to choose CD for close examination is also based upon the thought that most

science and engineering students will have a CD player and will be interested in understanding
how it works.

Usually, texts on information theory tend to concentrate on systems where an information source
and a receiver are directly connected by some channel. Information is then communicated
through the channel in Real Time. Arrangements which store information for recovery at a later
time can also be considered as communication systems. In general, the ideas and techniques of
information theory can be applied equally well to both real time and stored or ‘delayed’
messages. The disc recording process then becomes an information transmitter or source. The
CD player is a form of information ‘receiver’, and the disc itself is an information ‘channel’.

When designing or choosing any information transmission system we must start by defining the
properties of the signals we wish it to carry. The Compact Disc has to communicate two channels
of Audio information, recorded in a form which can be used to reconstruct a Stereo soundfield. As
with most human forms of communication the actual requirements would vary from one case to
another. For example, some people can hear sounds at frequencies well above 20 kHz whereas
others cannot hear 14 kHz. As a result there is not an ‘obviously correct’ choice for the required
signal bandwidth. We will not consider whether a ‘better’ specification for the CD system would
have produced an audible improvement. We shall simply examine the system as it has been
implemented.

The CD system has been based upon the assumption that high fidelity sound reproduction
requires a uniform frequency response from below 10 Hz to above 20 kHz and a dynamic range of
more than 90 dB. This led to the decision to sample each of the stereo channels (left and right)
44,100 times per second, and to take 16-bit digital samples.
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Figure 9.1 Compact Disc as a data communications channel.

Using 16-bit words, the ratio of the largest possible signal (which does not go out of range) to the
quantisation interval is 1:2'° = 1:65,536. This voltage ratio is equivalent to a power ratio of
96-3 dB, so we can expect the dynamic range of the CD system to be of this order. The input to a
CD digital recording system is normally dithered in order to suppress quantisation distortion. From

the sampling theorem we can expect that the chosen sampling rate will allow frequencies up to
44.1/2 = 22-05 kHz to be recorded and replayed.

If we could be certain that the input signal would never contain any components at frequencies
above 22-05 kHz we could simply amplify the initial stereo signals to an appropriate level and
present them to a pair of analog to digital convertors (ADCs) to obtain the required stream of
digital samples. Unfortunately human speech and music does occasionally contain components at
nominally inaudible frequencies well above 20 kHz. If these are allowed to reach the ADCs they
will produce a particularly severe form of anharmonic signal distortion called Aliasing. This
problem can be understood by considering the situation illustrated in figure 9.2.

Sampling ' 77T I Hz
Interval e — Sampled points 4 Hz
0-2 Sec.

Figure 9-2 Demonstration that the same set of sampled values
can be produced by different input signals of distinct frequencies.

For the sake of example, the illustration shows the results of sampling an input 4 Hz sinewave
every 0-2 seconds (i.e. the sampling rateis 5 Hz). Looking at the figure we can see that an input 1
Hz sinewave could have produced exactly the same sample values as the 4 Hz wave. When the
samples are presented to a Digital to Analog Convertor (DAC) for reconversion back into an
analog waveform the result will be an output which looks identical to what we would get if the
original input had been at 1 Hz. The 4 Hz input is said to be an alias of a 1 Hz input since it
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produces exactly the same output.

This aliasing effect gives us a serious problem if the input signal is allowed to contain frequency
components at both 1 Hz and 4 Hz. The problem arises because we have not obeyed the sampling
theorem. In order to pass 1 Hz — 4 Hz the input signal bandwidth must be at least 4 — 1 = 3 Hz.
To satisfy the sampling theorem we would therefore have to take at least 6 samples per second —
i.e. use a sampling rate of 6 Hz. The 5 Hz rate being used simply isn't enough to provide all the
information needed to recognise whether the input was at 1 Hz or 4 Hz. Unless we take steps to
avoid it, aliasing can, therefore, produce significant signal Distortions causing the output to be very
different from the input.

In fact the situation is even worse than the above implies. This is because the same set of samples
could have been produced by an input signal at 6 Hz, or 9 Hz, or 11 Hz, or... When using a
sampling rate, f,, a frequency component at any frequency,,
,_ 1y
= Ty *f ..(9.1)
where 7 is any integer will produce a set of sampled values which are indistinguishable from those
which would be produced by the signal frequency, f.

A CD player uses a sampling rate of 44.1 kHz, not 5 Hz, so it isn't likely to have trouble telling the
difference between 1 Hz and 5 Hz! However, it will have problems if it is presented with input
signal frequencies equal to or above 22-05 kHz. In order to avoid this possible source of signal
distortion it is vital to use a pair of low-pass filters and stop frequencies > 22-05 kHz from
reaching the ADCs used to encode the CD audio signals.

9.2 The CD encoding process

For the CD system we can define, m = 16, to be the number of bits per sample and, f, = 44,100, to
be the number of samples per second taken of each of the two stereo signals. The required
information transmission rate, I, is therefore

I =2fm = 1411,200 bits/sec ..(9.2)

where the 2 is required because we wish to send stereo information. We therefore require a
channel whose capacity, C, is at least 1-4112 Mbits/s. To send this information as a serial binary
data stream we need a channel bandwidth, B > [ /2. To minimise the effects of noise without
losing any signal we should employ another low-pass filter to restrict the bandwidth entering the
receiver (the CD's decoder circuits) to

I
B = 7 = 705-6 kHz ..(9.3)
(A bigger bandwidth passes more noise. A smaller one cuts off some signal.)
We can now apply Shannon's equation to say that, for a channel noise level of kT per unit of

bandwidth, the signal power, §, needed for information to be successfully communicated will be
such that

BL 14+ ——=t 21 ..(94
ng{ kTB} -

Combining 9.3 and 9.4 we can say that the required signal power will be
S > 3kTB ...(9.5)

Note that S increases with B. This is because the noise power entering the receiver increases with
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the bandwidth.

Consider now what would happen if we tried to employ the same channel to transmit just one of
the pair of stereo signals in analog form. For the sake of comparison we can assume that the
maximum signal power available for analog transmission is the same as the amount, 3kTB, which
would be just enough for the digital system to work. The receiver filter could be altered to restrict
the received signal bandwidth to a value, W= 22-05 kHz. This would then produce a signal to
noise ratio of

S 3kTB
(—) = — ...(9.6)
N analog kTW
ie.
B
E— - (97)
N analog w

Given B=705.6 kHz and W= 22.05 kHz, the analog system will provide a maximum S/N ratio (i.e.
a dynamic range) of 3B/ W= 96 (19.8dB). The CD system employs 16-bit samples and can provide
a dynamic range of about 95dB — i.e. 75dB better! This comparison shows that an analog signal
can get through a smaller channel bandwidth, but it is much more susceptible to noise than a
digital signal.

On the basis of the figures given above we can expect that a CD lasting 60 minutes will have to
store 1-4112 x 60 x 60 = 5,080 Mbits. In fact, CDs employ a powerful error detection and
correction system — i.e. the codes used include some redundancy. Although the amount of
information on a 60 minute CD remains around 5 Gbits, the number of recorded bits is much
greater. This means that the rate at which data bits are read from the disc (and the receiver's
channel bandwidth, B) must be somewhat higher than we've assumed.

The encoding scheme employed for CD is quite complex. Fortunately we only need to consider its
main elements to appreciate how the basic concepts of information theory have been applied.
The explanation given here is based upon information provided by Philips (who developed the
CD system along with Sony) in a special issue of the Philips Technical Review (Vol. 40(6) 1982).

Figure 9.3 represents the CD encoding/recording system. The input data is initially sampled in
the form of a stream of 16-bit digital words. These words are collected into Frames of 6 consecutive
left/right pairs of digital samples. One frame therefore contains 192 audio bits which are then
treated as a set of 24, 8-bit, Audio Symbols.
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I%Put data stream of 8-bit bytes.
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Figure 9.3 Compact Disc data encoding system.

These audio symbols are rearranged and some extra parity symbols are generated using an
encoding scheme called a Cross Interleaved Reed-Solomon Code or CIRC. For our purposes it is
sufficient to recognise that CIRC is a type of block code which generates a specific pattern of
parity bits. CIRC also Interleaves or ‘rearranges’ the sequence of the data bits. The interleaving
process is designed to minimise the effects of momentary data losses. Some extra Control and Data
bits are also added at this stage. These contain extra information — for example track numbers
and running time — which are of use to the CD player. The result of the CIRC encoding stage is
to convert each frame from 24 audio symbols into 33 data symbols (each 8-bit, as before, giving a
new total of 264 data bits). The parity bits provide some of the required ability to detect and
correct random errors.

In practice, much of the data loss when replaying a CD occurs in brief Bursts when the player
encounters a hole, or a piece of dirt, or when vibration causes the laser to momentarily miss
tracking the data. This causes a series of successive data bits to be lost, sometimes lasting for a
number of symbols. Interleaving or shuffling the symbols before recording (and de-interleaving
them on replay) helps prevent successive audio symbols from being lost. It also ‘spreads out’ the
data and parity bits to reduce the chance that both a given symbol and its associated parity bits
will be lost. This interleaving process covers up to 28 frames and as a result, information from any
pair of adjacent audio samples will usually be spaced some considerable distance apart on the
actual CD. The usefulness of this interleaving process can be understood by considering the
analogy of a piece of paper upon which a message has been typed. In the process of being passed
to the person who wants to read it, the paper is attacked by a dog which tears it and eats a piece.
As a result, when the message is read about 5% of the text is missing — perhaps because the last
few lines have been torn off. It is likely that any information which was contained by the missing
lines is lost (inside the dog!).

If the letters of the text had been typed onto the paper in a ‘scrambled’ order it would be possible
to re-arrange the received text back into a message where occasional words would have a missing
letter. (Of course, in order to do this the scrambling process must not be a random one as the
person receiving the message has to know how to unscramble the text correctly.) The result
would probably be a readable message despite the loss of letters from some words. This is because
of the natural redundancy of the English language which lets us make sense of text even when
there are mistakes. The CIRC encoding process works in a similar way. Parity bits are used to add
some redundancy, and the message is interleaved (scrambled) so that any brief breaks in the data
stream should only cause single-bit losses is some samples. These can then usually be corrected
because of the redundancy.
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Following CIRC encoding each of the 8-bit data symbols is translated into a 14-bit Channel Symbol
and an extra three Merging Bils are tacked onto the end of these 14. For obvious reasons Philips
refer to this process as Eight to Fourteen Modulation (EFM). At the end of the frame of channel
symbols another 27 Synchronisation Bits are added to make a total of 588 channel bits per frame.
The sync bits are a unique pattern which the CD player uses to locate the beginning of each data
frame. The bits are then recorded as a sequence of Pits cut into the disc. Those parts of the disc
surface where no pit has been formed are referred to as the Land. The recording is not made on
the simple basis that ‘1’="pit’ and ‘0’=‘land’ (or vice versa). Instead a ‘1’ represents the transition
or edge between pit and land. A ‘0’ means ‘continue as before’ and ‘1’ means ‘change from pit to
land, or land to pit’.

The specific choice of which 14-bit channel symbol should represent each 8-bit data symbol has
been made so as to try and satisfy a number of requirements. Firstly, a set of 14-bit codes has been
selected whose patterns provide the largest possible Minimum Hamming Distance between adjacent
codes. This helps the CD player recognise and correct occasional random bit-errors in the
recovered data stream. There are 2'* = 16,384 possible choices of 14-bit channel symbols of which
only 2° = 256 are required. We can therefore surround each legal pattern with 64 illegal ones.

Starting with an m-bit symbol, there are m ways of changing one bit to produce a new symbol. Any
one of these new symbols could also be altered in m different ways by a second bit-change.
However, this doesn't mean that we can produce m? different symbols by changing two bits since
the second change will sometimes simply undo the first. Consider a typical initial 8-bit digital
symbol, abcdefgh. For this example, m equals eight, so there are eight ways a one-bit change can
produce a new symbol; @bcdefgh, abcdefgh, abZdefgh, etc. (Here, the ‘~’ above a character
indicates that particular bit has been changed.) Symbols with two changes will be Gbcdefgh,
abZdefgh, @bcdefgh,... abTdefgh, abcdefgh,... etc. If we count up the numbers of symbols,
o {m, q y, which differ from the one we started with by ¢ bits, we find that

m!

Ci{m, ¢} = ——— ..(9.8)
(m = q)tq!
As aresult, if we allow up to Q bits of a symbol to change we can produce
Q
m!
N{m Q} = ) v — . (9.9)
Z;(m - q)' ¢!

new symbols which differ from the starting symbol by no more than Q bits. Now N {14,1} = 14
and N {14,2} = 105, hence, given that we can typically surround each legal 14-bit symbol with 64
illegal ones, we can expect to be able to use EFM to correct any single-bit errors and most double-
bit ones.

The second factor which influenced the choice of 14-bit symbols was the decision to limit the
maximum and minimum number of ‘0’s which can appear between successive ‘l’s of the
recorded bit stream. This sets a maximum and minimum distance between successive pit-land
edges on the disc. (Remember that a ‘1’ is recorded as a pit-land edge.) The codes chosen for CD
recording ensure that there are always at least two ‘0’s, and not more than ten, in between
successive ‘1’s. However, one symbol which finishes with a ‘1’ may still need to be followed with
another which begins with a ‘1’. The pair of symbols would then ‘clash’, violating the requirement
for more than two zeros between any pair of ‘1’s. This problem is overcome by the inclusion of
three extra merging bits in between successive symbols. Now we can simply place three zeros in
between symbols whenever we need to avoid a clash.
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The symbols and merging bit patterns are also chosen to ensure that, on average, the encoded
disc appears to the player as consisting of 50% land and 50% pit. This helps the servo control
system in the CD player to correctly focus the laser spot it uses to read the recorded data.

Finally, the symbols and merging bits are chosen so as to produce a strong component in the
recorded signal spectrum at a predetermined frequency. This provides a clock reference signal for
the CD player. The player can compare a filtered version of the recovered signal with a crystal
oscillator and use this to adjust the disc rotation velocity.

The encoding process converts an initial 192 bit frame into a recorded frame of 588 bits. The
number of channel bits recorded on a 60 minute CD is, therefore, around 15-5 Gbits and the
channel bit rate will be 4-32 Mb/s. This means that the actual channel bandwidth required must
be over 2-16 MHz, not 0-7 MHz.

The ability of the CD system to withstand errors and disc or replay imperfections may be
summarized in terms of four standard measures.

i) Maximum Completely Correctable Burst Length. (MCL)

= 4,000 data bits (2-5 mm of track length on disc.) This means that gaps or holes up to
2-5 mm across in an otherwise perfect disc should not lead to any loss of audio information. This
indicates the power of the combination of the parity bits plus eight-to-fourteen modulation to
correct the loss of a large number of successive channel bits.

ii) Maximum Interpolatable Burst Length. (MIL)

= 12,000 data bits (7-7 mm track length.) Once the MCL has been exceeded some data
will become lost. The interleaving process is, however, designed to ensure that no two adjacent
audio sample values will be lost until over 12,000 successive channel bits have become unreadable.
The player can ‘interpolate’ the lost data samples.

The values for MCL and MIL quoted above assume that there are no other imperfections or
random errors ‘near’ (i.e. within 28 frames) the error burst. A high random Bit Error Rate (BER)
will degrade the above values. The effects of a given random bit error rate can be indicated by

Sample Interpolation Rate.

1 per 10 hours at a BER = 0-0001

1000 per minute at a BER = 0-001

This represents how often random bit errors conspire to overcome the error protection and make
a sample value unrecoverable. When this happens the CD player can respond by interpolating the
lost value from the adjacent samples. The rapid change in the interpolation rate with BER
indicates a general property of digitised data communication. Given a reasonable degree of
redundancy, a low level of random errors has almost no effect upon data reception. However,
above some particular ‘threshold’ level the information loss rises dramatically with bit error rate.

Undetected Error Rate.

Less than 1 per 750 hours at a BER = 0-001

‘Negligible” at a BER = 0-0001
This represents the frequency of undetected sample errors, i.e. the random noise produces a legal
symbol and the required, equivalent, parity, which is not identical to that recorded. When this

happens the CD player can't know that the recovered value is, in fact, wrong and an audible
‘click’ may result.
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Summary

You should now know about the problem of Aliasing and how it can be prevented by using a filter
before a signal is sampled. It should also be clear that — given enough bandwidth — a digital
system can obtain a higher dynamic range than analog from a noisy channel. It should also be
clear that the combination of a block-parity code (e.g. CIRC) and data Interleaving provides good
protection against data loss due to random noise and burst errors due to missing channel data
(soup on the CD!). You should also now know how the pattern of pits on a CD is calculated from
the input signals.

Questions

1) Give an outline explanation of how a CD system encodes musical information into digital form
and records it on a disc. Include an explanation of how the CD system protects information
against random errors.

2) The CD system uses 16 bit samples and a Sampling Rate of 44,100 samples/second. What
Dynamic Range and Bandwidth should this provide? How many bits of audio information will a 1
hour CD contain? [96-3 dB. 5-08 GBits.]

3) Explain what is meant by the term Aliasing and say what we must do to prevent it happening.
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Chapter 10

The CD player as a measurement system

The CD player has to recover information from a spiral track of small pits which have been
formed at a nominal Information Layer inside a compact disc. Unlike the old-fashioned vinyl (or
shellac!) analog recordings, the CD does not have a ‘continuous' groove and the optical sensor
should never touch the disc. Hence the CD player must locate the required information without
any mechanical guidance about where the data is to be found. Figure 10.1 illustrates the form of a
typical CD surface and the optical beam used to read data from the disc.

| o |

! \ ! |
0010000100100000100O0O0 Channel bit stream

| - |

| - |

Disc rotation

Figure 10.1 Replay of CD pit-land pattern.

Information is recorded on the surface of a CD in the form of a spiral track of pits, and is read
using a laser whose wavelength is around 0-7 pum. The spiral pitch (distance between adjacent
turns) is 1-6 pum and the disc is rotated so that the position illuminated by the laser spot moves at
a constant linear velocity of 1-25 m/ss.

Analog disc recordings were normally made at a constant angular velocity. This means that they
can be replayed by rotating them at a steady rate. CDs use a constant linear recording velocity in
order to maximise the amount of information which can be squeezed onto a given disc diameter.
This means that the angular rate of rotation required to play a CD varies as the disc is played.
Unlike most analog discs, CDs are recorded ‘from the middle, outwards’. The optical sensor used
to recover data starts near the middle of the CD with the CD being rotated relatively quickly. As
the music plays the sensor moves outwards and the rotational rate is reduced.

CDs can be manufactured in various ways. Many of the first discs were made using photochemical
techniques. A light sensitive chemical was coated onto the surface of a disc of plastic. The
required pit-land pattern was then ‘photographed’ onto the disc. The details of this pattern were
then etched using appropriate chemicals. More recently, faster, cheaper methods have been
developed. For example, many modern discs are produced by Injection Moulding — forcing plastic
into a metal mould, one wall of which holds a ‘negative’ version of the required pattern of pits
and land. The patterned plastic surface is coated with a thin layer of metal (usually aluminium,
but some expensive CDs use gold instead) to make it highly reflective. This is then covered with a
protective top coating of transparent plastic.
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When using electromagnetic radiation to observe small-scale features, we wouldn't normally
expect to be able to measure anything whose size is significantly smaller than the chosen
wavelength. In the case of a CD the required bit recovery rate is 4-32 Mbits/s and the the disc
velocity is 1-25 m/s. This implies that each bit occupies a track length of just 0-29 um — i.e. less
than half the laser's wavelength! A number of factors help CD players to recover information from
such a closely packed surface pattern.

» Firstly, the laser beam is tightly focused to produce a spot whose nominal diameter is typically
around 1 pm. This requires an optical system of very high quality.

* Secondly, the encoding system is designed to help the laser sense the surface features. Every
stretch of pit or land will be at least 3 bits long. This is a result of the coding requirements
that; i) there must always be at least 2 zeros between adjacent ones; ii) pit-land edges
represent encoded 1's. This means that pit-land edges will always be at least 0-87 wm apart —
i.e. the length of each pit or land feature will always be comparable with the laser wavelength.
This means it is possible to ensure that the laser spot will never illuminate more than a single
edge at a time.

 Thirdly, the optical system employs a highly coherent light source and the pits are made
approximately a quarter-wavelength deep. The readout beam axis is nominally aligned to be
perpendicular to the disc plane. When there are no pit-land edges in the spot, all of the
reflected beam will share the same phase. The phase of the reflected beam will, however,
change by 180 degrees when the spot moves from pit to land, or vice versa.

When the optical spot traverses a pit-land edge the magnitude of the beam reflected back into
the sensor optics will momentarily dip almost to zero. The reason for this can be understood by
considering what happens if half the spot energy falls upon land, and half into a pit. The reflected
beam then consists of two portions, equal in magnitude but opposite in phase. As a consequence
the total energy coupled back into the sensor beam would be zero. Of course, the ‘missing’
energy does not just vanish, instead it is scattered in some other direction, away from the sensor
beam.

Polarising
Prism

Objective Lens Y M
& focus drive

Information layer

Figure 10.2 Typical CD replay optical system.

Although the details vary a great deal from one manufacturer to another, most players use
variations on the system illustrated in figure 10.2. In principle it would be better to employ some
form of Michelson Interferometer with a pair of detectors. This would enable the player to measure
the phase of the reflected signal as well as its amplitude and distinguish pits from land. This
would improve the S/N ratio achievable with a given laser power level. However — as will become
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clear later — the player's optical system is invariably much more complex than implied by figure
10.2. The extra complexity is to allow for the chosen focusing/tracking arrangements. The use of
a full interferometer system would require a further increase in player complexity. Fortunately,
poor signal to noise ratio need not be a problem with CD players as the manufacturer can
generally obtain solid state laser sources which provide ample power levels. Hence the use of a
full phase interferometer system isn't usually regarded as necessary. (Although doubtless some
manufacturer will eventually make it's inclusion a ‘selling point’!)

The system illustrated relies upon detecting the momentary dips in the observed reflected light
level which occur at the pit-land edges. Laser light is focused onto the disc information layer via a
polarisation prism and a quarter-wave plate. Since this isn't a book on optics we don't have to get
into an explanation of just how these items work. For our purposes it's enough to know that a
polarisation prism will transmit light with one plane polarisation and reflect light polarised at 90
degrees to the transmission plane. The quarter-wave plate alters the polarisation state of light
passing through it. As a result, the light reflected back from the disc is directed onto a sensor, not
returned to the laser.

In practice we may find that the reflected energy is not divided exactly 50:50 at the pit edges. The
pit depths may also not be exactly a quarter wavelength. This means that the magnitude of the
sensed reflection may not dip right down to zero. Despite this practical problem, the power of the
replay laser is normally so large that we can obtain a high enough S/N ratio to determine the
locations of pit-land edges with an uncertainty considerably smaller than a wavelength.

When the system is working correctly, the laser spot is focused on the information layer which sits
in the nominal information layer of the disc surface. (This layer can be defined to be mid-way
between the land and pit bottom planes.) Light reflected by the disc will return through the
system and be refocused at the required output plane, just in front of the signal detector (or
detectors).

Any fluctuations in the distance from the objective lens to the information layer will have two
undesirable effects. The beam size at the information plane will become larger, and the output
focal spot will shift along the beam axis away from its required position. The CD player must,
therefore, be able to continuously adjust the objective lens position to maintain its position at the
correct distance from the disc. It must also ensure that the spot tracks the spiral pattern of pits.

Since there is no physical contact, the CD optical sensor system must itself provide signals which
can be used to continuously adjust its position relative to the disc with sub-micron accuracy —
even when playing a disc which is warped or rotating off centre by over a hundred times this
amount. It must also provide a measurement of tracking velocity with enough accuracy to enable
the player to vary the disc rotation rate and collect audio data with a channel bandwidth of over 2
MHz. The CD player must therefore contain a highly accurate and responsive position/velocity
measurement system.
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Figure 10.3 CD spot focus mechanisms.

CD player manufacturers have used a variety of techniques to control the optical recovery of
information and position the sensor correctly. For the sake of illustration we can examine four
techniques:

i) dual-prism focusing ii) knife-edge focusing
iii) three-spot tracking iv) dither tracking

Figure 10.3 shows the focusing methods we are considering. In each case the output light level is
detected by using more than one sensor. The systems are arranged so that any alteration in
objective-disc spacing alters the relative levels seen at the sensors. In the Knife-Edge system, an
opaque edge is placed near the output focal spot. This stops some of the light from reaching a
pair of sensors placed a little further along the beam.

When focused correctly, the output focal spot rests near to the knife-edge and the amounts of
light reaching each sensor of the pair of output sensors, §; and Sy, are reduced by similar
amounts. Any change in the objective-disc spacing will shift the output focal plane along the
beam, producing an imbalance in the amounts of light blockage experienced by each sensor.

The output voltages produced by the pair of sensors can be monitored by the CD player. The sum
of their voltages, 1 + Sy, can be used to provide audio information. Any difference, §; — Sy, in
their voltages can be used to indicate a focusing error. The sign of this difference voltage
indicates the direction of the error. When this difference output is zero the system is ideally
focused

The Dual-Prism system employs a pair of prisms placed in front of three light sensors. The prisms
slightly alter the convergence of the beam, changing the relative levels falling upon three output
sensors. The size of the effect of the prisms depends upon the position of the focal plane of the
incident beam relative to the prism. As with the knife-edge system, we can use the sum of all the
sensor voltages, C + §; + Sy , to obtain audio information. The difference, C — (81 + SQ) ,
between the central sensor and the surrounding ones can be used to indicate any focusing error.
As with the knife-edge system a zero difference output indicates when the system is ideally
focused. When this happens we can expect about half the light power to be falling on the central
detector, C, and the other half on the outer pair. This means that about a quarter of the total
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falls on each of §; and Ss. A focus error in one direction will cause C to rise and S; + Sy to fall.
An error in the other direction has the opposite effect. Hence, as with the knife-edge system, the
sign of the difference output indicates the direction of the error.

However the focusing information is gathered it provides the player with a focus control signal
whose magnitude and sign depend upon the amount (and direction) by which the objective-disc
spacing differs from the required value. This signal is then amplified and used to drive a motor
which changes the objective lens position so as to reduce the error. The overall system acts as a
form of Servo Control Loop to maintain the required focus.

Figure 10.4 shows the Three—Spot method for obtaining tracking measurements. In this system the
laser beam is diffracted so as to produce three spots focused on the information layer of the disc.
The power reflected at each spot is directed onto a separate light sensor. The spots are arranged
to lie in a line at a slight angle to the nominal direction of the information spiral. As a result,
when the centre spot is correctly aligned the front and back spots only partly illuminate the spiral.

o LD O

Center Spot “on track”

O D

Center Spot “off track”

Figure 10.4  Three-spot spiral tracking system.

The CD player monitors the relative levels of light modulation recovered by all three of the spot
sensors. When the system is tracking ideally, the centre spot will give a relatively large modulation
output. When the spots are slightly off-track the output from either the front or back spot will
increase and that from the centre one will fall. The difference in levels between the front and
back spot sensors can therefore be used to obtain a measure of any tracking error. As with
focusing, any difference signal can be amplified and used to adjust the position of the objective
lens so as to maintain good tracking.

A disadvantage of this system is that only about one third of the available laser power will be used
to obtain the required audio information. In principle, the player could recover audio
information from all three spot sensors. A problem with attempting this is that the spots are
looking at different places along the spiral track, and hence at any moment they are recovering
different portions of the recorded data. The spots could, if we wished, be placed ‘side by side’ to
overcome this problem, but they would then be physically overlapping and — as a result — the
sensors would be more likely to see light coming from the ‘wrong’ spots.

The Dither Tracking technique makes a single spot do the work of three by forcing the spot to hunt
back and forth across the spiral track. This can be achieved by vibrating the objective lens from
side to side a very small amount, or by reflecting the laser-sensor beam off a mirror surface whose
angle is vibrated. Typical systems employ a sinusoidal modulation with a frequency of a few
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hundred Hertz. The magnitude of the oscillation is very small and should only move the spot at
the disc information layer by a fraction of a micron.
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Figure 10.5 Using spot 'dither' to obtain tracking information.

The effect of this deliberate modulation is shown in figure 10.5. The output signal mainly consists
of a complex signal with frequency components in the MHz range. When the system is tracking
correctly, the dither produces a slight amplitude modulation of this signal at twice the dither
frequency. Any tracking error will change the shape of this modulation, producing a shape which
contains a component at the dither frequency.

In an earlier chapter we saw that the digital signal recorded on the CD requires a channel
frequency range up to at least 2-15 MHz to cope with the required bit-rate. One of the conditions
used to select the coding system was that there should never be more than ten ‘0’s between any
successive pair of ‘1’s in the data stream. This means that the frequency spectrum of the digital
signal won't contain any significant frequency components below about 2-:15/10 MHz ~ 200 kHz.
The digital audio data is therefore confined to a frequency band from about 200 kHz to 2 MHz.
Since the dither frequency (and twice this frequency) is well below the digital audio frequency
range the CD player has no problem separating the dither tracking output from the digital audio
information. The player can then compare the magnitudes of the amplitude variations at the
dither and 2 x dither frequency, find the phase of these signals relative to the dither modulation
it is applying, and use the result as a measure of any tracking error.

The dither technique is, in principle, a very efficient one. Only one spot and sensor are required,
and the magnitude and frequency of dither can, if we wish, be continuously altered to suit the
difficulty of the task (i.e. less dither on ‘good’ discs and players). Perhaps the main drawback of
this method is that its name makes it easily confused with the (quite different!) dither ‘noise’
signal used to suppress quantisation distortion. Various other methods have been devised by
manufacturers to recover tracking information. However, as with the choice of focusing
technique, what finally matters is the quality of the actual CD player design and manufacture.
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Summary

You should now understand how the pattern on the surface of a CD is formed. You should also
know how a CD player is able to ‘track’ and recover the spiral of pits in the CDs information layer.

In particular, it should be clear how the player can focus and align its laser/sensor system and
adjust the rotation rate to recover the required stream of channel bits.
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Chapter 11

Oversampling, noise shaping, and digital filtering
11.1 The CD player as a digital signal processing system

The stream of bits recovered from the disc is processed through a series of stages which reverse
the encoding process which occurred when the signals were recorded. Minor errors can be
completely corrected using the eight-to-fourteen redundancy and parity checking built into the
system. Major errors may result in the unavoidable loss of information, but most CD players then
use a pre-programmed algorithm to ‘fill in’ or interpolate occasional lost samples. The details of
this algorithm for masking information loss will differ from one player to another. The recovered
stream of digital values can then be passed to two digital to analog convertors (DAGCs) for
conversion into an output pair of analog audio signals.

In principle, we could simply use the CD player to recover 44,100 pairs of digital samples per
second and employ a pair of 16-bit DACs to obtain analog signals. Whilst this approach would
have the advantage of simplicity it may produce an output which exhibits the ‘staircase’
distortions mentioned earlier.

Provided the input signal was dithered before sampling, any staircase distortions can — in theory
— be removed by passing the output from the digital to analog convertors through low-pass filters
which reject frequencies above half the sampling frequency. This is because, in an ideal system, all
the unwanted frequencies produced by the staircase effect will be above 22-05 kHz. Some of the
earliest CD players did employ this approach, but it soon proved unsatisfactory for a variety of
reasons and has largely been superseded by better methods. Generally speaking, simply using
analog filters to ‘clean up’ the output waveforms works poorly for two reasons:

Firstly, the CD player (or the information on the disc!) may be imperfect. For example, any
production problems in manufacturing the digital to analog convertors will alter the form of the
staircase distortion and may produce unwanted components inside the analog signal's frequency
range.

Secondly, in order to realise the full potential of the CD encoding system we would require low-
pass filters which perform amazingly well. Ideally, they should pass any signal frequencies up to
almost 22-05 kHz without altering them in any way, but must reject any distortion components
above 22-05 kHz by at least 95 dB to prevent them from degrading the potential dynamic range.
Analog filters capable of simultaneously meeting both these requirements can be made. However,
they are difficult to produce as they must contain a large number of very accurately toleranced
components. This makes them large and expensive. It is also inevitable that the values of some
components will tend to change with age, temperature, or humidity. This would mean a very
expensive CD player whose performance might deteriorate audibly with use.

To avoid these problems, almost all modern CD players process the digital data in some way
before presenting it to the convertors. The main objects of this processing are:

* To perform a computation equivalent to low-pass filtering. This is intended to reduce the
severity of the staircase distortions, easing the demands imposed upon any analog filters
placed after the convertors.
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* To help prevent any imperfections in the digital circuits, especially the digital to analog
convertors, from producing other signal distortions.

The details of this digital processing vary considerably from one type of player to another. (And,
of course, every manufacturer claims to use the ‘best’ method for their newest models!)
Fortunately, all of these processes are aimed at achieving the same end result so we need only
consider one example. Here we will look at the original system employed by Philips in their ‘first
generation’ CD players using the SAA7030 and TDA1540 integrated circuits. The following
explanation has been simplified to some extent, to make it easier to follow, but contains the
essential features of the process.

This system employed a combination of two techniques, Oversampling, and Noise Shaping to achieve
the desired results. Oversampling means that a set of sampled values is used to calculate the
values we ‘would have obtained’ at intermediate moments if the original input had actually been
sampled more frequently. Provided the sample values we start with satisfy the sampling theorem
these extra values don't contain any new information. This is because there is only one possible
waveshape which can fit the sampled values read from the CD. The first Philips CD players
employed x4 oversampling, converting an input data stream of 44,100 samples/second (per
channel) into 176,400 samples/second. We can regard staircase distortion as being an unwanted
high-frequency variation which has been added onto the signal we wish to communicate via CD.
By x4 oversampling we produce the effect shown in figure 11.1.

Input sinewave

™~

Output from DAC

Sampled values 4 /

5.5 kHz sinewave, sampled 44,100 times/sec.

'Oversamples'
calculated by

CD player ‘

Four times oversampling the reconstructed waveform.

Figure 11.1 Effect of x 4 oversampling.

For the sake of the illustration we can consider an input signal in the form of a 5-5 kHz sinewave
which is sampled by the CD recording process at 44,100 samples/second. The simplest way to
convert these sampled values back into an analog waveform would be to use a digital to analog
convertor (DAC) which produces an output level appropriate for each sample and then ‘holds’
this level until it is time to output the next sampled level. This kind of output is called Sample and
Hold and produces the kind of staircase distortion shown.

The sampling theorem says that, provided a series of samples form a complete record of the
original information, we can use the measured sample values to calculate the actual signal level at
any moment in between the sampled instants. These calculated values can then be given to the
DAC in between the ‘genuine’ samples to produce the improvement showed in the lower
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waveform of figure 11.1. It is important to realise that these calculated samples are not ‘guesses’,
but really do represent the signal level which would have been observed if the input waveform
had been measured at these moments. If the CD recording process had actually recorded these
extra values on the disc the player would not be provided with any extra information since the
original set already contain a complete record of the waveform information. Hence the term
‘oversamples’, which indicates that these extra values — calculated or measured — don't actually
contain any fresh information.

44.1 kHz clock
-

16-bit input
sample

stream L_HS{" + z4t|s{n +23
—N

Weighting
Coefficients
(12-bit)

Transverse
Digital
Filter

Low-Pass|  Analog
—] filter [— Output

176.4 kHz clock _

Figure 11.2  Schematic diagram of Philips SAA7030 + TDA1540.

The use of x4 oversampled digital values reduces the staircase effect in two ways. The basic
frequency of the unwanted staircase distortion is increased by a factor of 4, and its amplitude is
reduced by a factor of 4. As a consequence it becomes much easier to produce analog filters
which, placed after the DAGs, will suppress this distortion without significantly affecting the
wanted signal. Figure 11.2 shows a schematic diagram of (one stereo channel of) the initial
Philips processing system. This used two integrated circuits (ICs), the SAA7030 and TDA1540.
The 16-bit samples read from the disc are clocked through a serial Shift Register which, in this case,
can hold 24 successive sample values. The rate at which the system processes the data samples is
determined by two Clock Frequencies, 44-1 kHz and 176-4 kHz, which are supplied to the ICs. These
two clock signals are Phase Locked so that every fourth cycle of the 176-4 kHz starts at the
beginning of each 44-1 kHz cycle. In figure 11.2, S {n + 24} represents the ‘newest’ sample value
and S {n + 1} represents the ‘oldest’. (It's assumed that n samples have already passed through
the system and have been discarded.)

The 44-1 kHz clock signal is also used to control the rate at which digital samples are recovered
from the CD, hence samples should be presented to the input end of the shift register at the same
rate they are read from the disc. At the beginning of each 44-1 kHz clock cycle all the sample
values stored in the register locations are shifted along one place. A new sample is entered into
the first register location and the ‘oldest’ sample value is thrown away from the last register
location. The registers are linked to an array of multiplier circuits. Each of these has a set of four
coefficient values connected to it. These coefficient values are usually built into the processing IC
when it is manufactured, although some modern CD systems allow the coefficients to be modified
by replacing or reprogramming a ROM (memory) chip.

The 176-4 kHz clock controls the data processing carried out by the circuit. Each Processing Cycle
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takes one 44-1 kHz clock period — i.e. four 176-4 kHz clock periods. To see how the system
operates we can examine what happens during each of the four 176-4 kHz clock periods of a
processing cycle.

At the start of the first period all the samples are shifted along and a fresh sample value is entered
at the ‘newest’ end of the line of registers. This event triggers the start of the processing cycle.
Immediately after the sampled values have been updated they are all multiplied by the first set of
coefficients and the results are added together to produce an output value which is sent forward
to the digital/analog convertor system.

During the second 176-4 kHz clock period the register values are multiplied by the second set of
coefficients, and the results added, to produce a new output value for the convertor. The third
set of coefficients are used during the third 176-4 kHz clock period, and the last set during the
fourth and final period of the processing cycle. As a result, each processing cycle produces four
distinct output values which are sent to the convertor. These have all been obtained from the
same 24 input samples, but used four distinct sets of coefficient values. During the next
processing cycle the input data is shifted along, a new sample is injected, and the process is
repeated to produce four more output values.

In Chapter 7 we saw how it is possible to recover the signal value at instants in between samples.
Here the action of the IC may be seen as carrying out a similar task. We could therefore use a set
of coefficients which correspond to the values of the sinc function indicated by the expressions in
Chapter 7. This would serve to ‘smooth out’ some of the output signal distortion effects. In
practice, however, it can be an advantage to slightly alter the coefficient values to obtain a flatter
frequency response, lower distortion, or whatever we require.

The circuit which carries out this process (an SAA7030 in this case) is called a Transverse Digital
Filter (TDF). By choosing an appropriate set of 4 x 24 = 96 coefficients we can carry out a series
of computations which mimics the effect of a ‘96'th order’ analog filter. The frequency response
of this filter depends upon the values chosen for the coefficients. In theory we could build an
analog filter, using capacitors, inductors, etc, to achieve the same end. This is because, in
principle, identical results can be achieved by either analog or digital processing of the
information. In reality, of course, the analog equivalent would prove far more difficult to make,
and its properties would be relatively unstable. There are, therefore, good practical reasons for
carrying out this filtering process in the digital domain.

One interesting consequence of using a set of samples to compute output values is that the results
have more bits per value than the input samples! The SAA7030 stores its internal coefficients as
12-bit numbers and the output values obtained from the TDF therefore emerge as 16 + 12 = 28-bit
numbers. Note that these additional bits don't contain any ‘new’ information. They are a
consequence of the way information is ‘redistributed’ by the TDF process. In effect, each bit of
real data influences more than one bit of the oversampled results. The oversampled bits aren't all
‘independent’ of one another.

In an ideal world we might choose to employ a pair of 28-bit DACs after the filter. Alas, at the time
the first CD players were launched Philips were doubtful that they could mass produce even 16-bit
convertors of the required precision at a commercial price! They could, however, make good 14-
bit convertors able to run at a clock speed of 176-4 kHz. They therefore decided to use 14-bit
DAGs in the first generation of CD players. At first glance it seems that the use of a 14-bit
convertor will unavoidably cause some audio information to be lost. Fortunately, it is possible to
process the data before conversion in a way which can prevent any information loss by using a
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noise shaping technique. As with oversampling this process may be carried out in various ways. The
original Philips design employed a method which we can understand by looking at figure 11.2.

The 28-bit output values from the TDF are passed through an adder into another register. The
most significant 14-bits are then sent on to the DAC. The unused, least significant, bits are treated
as a ‘remainder’ which is held for one 176-4 kHz clock period and then returned to the adder to
be combined with the next value. This process is repeated with each successive value. This has the
effect of ‘carrying forward’ any error between the converted and presented values. To see how
this works we can forget, for a while, the potential ability of the TDF to generate 28-bit numbers
and consider what would happen if we just present a series of 16-bit values to the noise shaping
system. For simplicity, imagine that four successive values are the same and let F represent the
most significant 13 bits of their value. (We'll also assume that we start with a carry of zero from the
last cycle.) The ‘carry forward’ process continued over four clock cycles then looks like:
16-bit input +Carry 14-bits to DAC Remainder

00
F001 F001 FO 01
FO01 F010 FO 10
F001 FO11 FO 11
F001 F100 F1 00

Note that if we add together the four successive 14-bit output values sent to the DAC we obtain
FOOI once again. A low-pass filter placed after the digital to analog convertor will have the effect
of suppressing any short-term fluctuations in the output level. If this filter attenuates frequencies
above half the basic sampling rate (i.e. 1/8th the oversampled rate) it will tend to produce an
output which is much the same as if we had averaged the four values, producing an output
equivalent to that which would have been produced by a 16-bit convertor.

It is perhaps unfortunate that this process has come to be called noise shaping as the name
implies that the process is somehow ‘random’. In reality the process operates by attempting to
average away the Truncation effects produced by the finite number of bits per digital value. It does
this by storing any truncation errors and using them to adjust later output to produce a more
accurate overall output.

For the sake of the above explanation we ignored the fact that, using 12-bit coefficients, the TDF
is capable of providing 28-bit output values. Some manufacturers of CD players have taken
advantage of this by employing DACs which convert 18, 20, or even more bits per sample in an
attempt to produce more ‘accurate’ analog output signals. It is important to realise that, although
this process can provide a ‘smoother’ output waveform it doesn't magically produce any extra
information which wasn't in the original set of 16-bit samples. In principle, an ‘ideal’ 16-bit DAC
and analog filter would produce the same results as any other ‘ideal’ noise shaped and
oversampled system. Any differences stem from how well the system is designed and built, not
from any inherent theoretical differences.

Summary

You should now know what is meant by the terms Oversampling and Noise Shaping. That these are
digital signal processing techniques which can be used to perform functions similar to filtering an
analog signal. You should also now understand how a Transverse Digital Filter works. It should also
be clear that — in theory — the same results can be achieved using systems which produce
anything from one to umpteen bits per value presented to the output DACs provided that the
digital process is performed correctly.
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Chapter 12

Analog or digital?
12.1 Is the world ‘analog’?

In general, we can imagine representing information in terms of some form of analog or digital
signal. The digital data stored on a CD will normally have been produced using analog to digital
convertors which are fed with amplified signals from microphones. The original microphone
signals are obviously ‘analog’ — or are they?...

Modern physics is largely based upon the concept that the world behaves according to the rules of
Quantum Mechanics. One of the axioms of this is that all forms of energy behave as if quantised.
This gives us the well-known (although not well understood!) ‘wave-particle duality’. Statistically,
the behaviour of physical processes can be described in terms of things like waves and continuous
functions. Yet, when we examine any process in enough detail we can expect to see behaviour
which it is more convenient to describe in terms of distinct particles or ‘packets’ of energy, mass,
etc.

When the Compact Disc system was originally launched some people criticised it on the grounds
that, ‘Sound signals are inherently analog, i.e. sound is a smoothly varying (continuous) pattern
of pressure changes. Converting sound information into digital form “chops it up”, ruining it
forever.” This view is based on the idea that — by its very nature — sound is inherently a wave
phenomenon. These waves satisfy a set of Wave Equations. Hence we should always be able to
represent a given soundfield by a suitable algebraic function whose value varies smoothly from
place to place and from moment to moment. Since the voltage/current patterns emerging from
our microphones vary in proportion to the sound pressure variations falling upon them it seems
fairly natural to think of the sound waves themselves as having all the properties we associate with
‘analog’ signals, i.e. the sound itself is essentially an analog signal, carrying information from the
sound sources to the microphones. But how can sound be ‘analog’ if the theories of quantum
mechanics are correct?

The purpose of this chapter is to show that the real world isn't actually either ‘analog’ or ‘digital’.
Analog and digital signals are no more than mathematical representations of reality, useful when
we want to process information. In fact we could say the same thing about the ‘waves’ and
‘particles’ we use so much in physics. Although it's easy to forget the fact, both waves and particles
are mental models or ‘pictures’ we use to help us grasp how the real world behaves. Although
useful as concepts, they don't necessarily ‘really exist’. To illustrate this point, imagine a situation
where we are given a working electronic circuit board without being told anything about it and
asked, ‘Is this an analog or a digital circuit?” How could we tell? Of course, we could probably
decide by looking to see if the circuit contained any integrated circuits, reading their type
numbers, and looking them up in a book! (We can also guess that if the circuit doesn't contain
any integrated circuits, it's probably not digital...) However for our purposes, this would be
cheating. The real question is, ‘Can we tell just by looking at the kinds of electronic signals being
passed around between components on the board?’

If we connect an oscilloscope we can watch how some of the voltage or current levels in the circuit
vary with time. In most cases, the shapes of the waveforms we'd see on the oscilloscope would
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quickly show whether the signal was digital or analog.

Digital signals will often show ‘square’ shapes. The signal voltages tend to spend most of the time
near one or the other of two particular levels, switching between them relatively quickly. Analog
signals sometimes show no obvious patterns, although in some cases they show a simple
recognisable shape like a sinewave. As a result we can sometimes form an opinion about the type
of signal by seeing if we can recognise the waveforms. But is there a more ‘scientific’ — i.e.
objective — way of deciding? Is their an algorithm or recipe which would always be able to tell us
what form a signal is taking?

At first it might seem as if this problem is an easy one. When we look at them on an oscilloscope,
digital signals can look nice and square, analog ones tend to look like bunches of sinewaves or
noise. Unfortunately, when an information channel is being used to its limits the situation can be
less clear. When a digital signal is transmitted at very high bitrates, the rising and falling edges of
each level change tend to become rounded by the finite channel bandwidth. As a result, the
actual transmitted voltage fluctuations may not display an obviously digital pattern.

In a similar way, some analog waveforms may show fairly square patterns. For example, the output
from a heavy rock band, compressed by studio equipment, can have a ‘clipped’ look similar to a
stream of, slightly rounded, digital bits. Also, if an analog channel is being used efficiently every
possible waveform shape will appear sometimes. As a result, the waveform will sometimes look just
like a digital one.

We can't know with absolute certainty, just by examining a real signal pattern for a while, whether
it carries information in either digital or analog form — although we can be fairly confident in
many cases. We use voltage patterns (or currents, etc) to carry information in various ways, but
the terms ‘digital’ or ‘analog’ really refer to the way we process information, not some inherent
property of the voltage/current itself.

For most purposes this lack of absolute knowledge doesn't matter. But it serves to make the point
that digital and analog signals are idealisations. Any real signal will have both analog and digital
characteristics.

12.2 The ‘digital’ defects of the long-playing record

In the previous section we considered the signals used to communicate information. But what
about the physical processes and sensors we use to create or collect information? In general we
tend to assume that a measurement system operates in an analog manner. An input is sensed by
some form of detector and produces a voltage or current whose magnitude varies in proportion
with the stimulus. This voltage or current is then taken as an analog of the input we wish to
measure.

Despite this assumption we can expect that any physical process must, at some level, be affected by
the quantum mechanical behaviour of the real world. In order to see how this influences a real
measurement we can consider the example of a Long Playing (LP) record. This sound recording
system makes a useful contrast to the Compact Disc which we have already examined. It is also
considered by some Hi-Fi audio enthusiasts opposed to digital audio as a paragon of ‘analog
virtues’.
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Information is stored on an LP in the form of a modulated spiral groove pressed into its surface.
The measurement sensor consists of a stylus which is placed in the groove whilst the LP is rotated
at a constant angular velocity. An output signal is produced which is proportional to the
instantaneous radial velocity of the stylus The signal is recorded in the shape of the groove
surfaces, or ‘walls’. The stylus is connected to some form of electrical generator (usually a coil in
the vicinity of a magnet) which produces an output voltage proportional to the transverse velocity
of the stylus. In general, sensors which convert one form of energy into another are called
Transducers. In this case some of the rotational energy of the LP is converted into electronic
energy. The combination of stylus and generator is usually referred to as a ‘cartridge’. (It can also
be called a ‘pick-up’, but this term is confusing as it's sometimes used for the arm which supports
the cartridge above the LP record.)

Rotation Stylus

Long Playing Record

Groove

Figure 12.1 Conventional view of LP groove and stylus.

For the sake of simplicity we can assume that the LP is Monophonic and that the nominal centre
line of an unmodulated groove would cause the stylus to move inwards at a constant rate, 4. We
can represent the recorded signal as illustrated in figure 12.1 by an offset distance, x {t}, between
the actual position of the stylus at time, ¢, and the position it would have if there were no
modulation. The radial velocity of the stylus, v {t}, of the stylus at any instant will be

i) = dx o dr
at at
In practice the steady spiral velocity, 47, simply causes the pick-up arm to move slowly inwards so
we can say that the output voltage generated by the stylus movements will be
dx {t}
at
where £ is the appropriate conversion coefficient (the cartridge's Sensitivity or responsivity) of the
cartridge. For a real LP system, k is typically in the range 0-1 - 1 mV/cm/s. Ideally, we would like
to obtain an output signal, v {t}, which is a faithful reproduction of the required sound pressure
variations. In any real system, however, some problems must be taken into account. For example,
various processes will restrict the dynamic range of the system. Mechanical problems will place
limits on the maximum possible size of the displacement, x {¢}, and the maximum achievable
acceleration, %. The noise level will also prevent us from observing changes in displacement
smaller than a given size.

L (12.1)

vf{t} = kv{e} = & .. (12.2)

The record industry adopted a standard level of 5 cm/s (peak velocity for a 1 kHz sinewave), as
the nominal 0 dB Reference Level. A reasonably good cartridge would have been able to Track
(maintain its stylus in the groove) modulation levels around 20 dB greater than this reference
level. For a sinewave of frequency, f, amplitude, A, the offset displacement will have the form
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x{t} = ASin{2nft} .. (12.3)
hence the velocity will be
v{t} = 2afA Cos{2nft} . (12.4)
and the acceleration
a{t} = —@afy A Sin{2xnft} .. (12.5)

A 1 kHz sine wave recorded at a +20 dB level will have a displacement of peak value, x,.,;, =~ 80
um, and a peak acceleration, a,.,; =~ 3 km/s/s. (i.e. a peak acceleration around 320 times
bigger than that due to the Earth's gravity!)

No matter how well they have been made, every cartridge will ‘mistrack’ groove modulations
above a given magnitude. This is usually because the accelerations and displacements become too
large and the stylus either loses contact with the groove walls or gouges into them, damaging the
record! In other cases the stylus may remain in contact, but the cartridge's electrical output
saturates. Whatever the exact cause, above a given level the cartridge (sensor) output ceases to be
a faithful representation of the groove modulation. These electro-mechanical problems will limit
both the maximum signal level and the maximum rate of change of the signal level we can obtain
using a given cartridge.

The smallest signal levels we can sense using the cartridge will be partly set by electronic noise
produced in its generator resistance and in the amplifier used to boost its output. There is also a
mechanical limit on the smallest signal level which will be clearly measurable.

A 0dB 1 kHz sinewave corresponds to a peak offset, x,..x, of just 8 um. An LP record is made
from a solid assembly of real atoms and molecules. In practice, LPs are made of an amorphous
polymer, PolyVinyl Chloride (PVC), to which various other materials have been added. The precise
properties of this material are quite complex and were the subject of quite a lot of research and
development by the music industry (tobacco-ash, insects, etc, have also been found in LP
material!). To avoid the complexity of the details of PVC's properties we can imagine an LP made
of crystalline carbon (diamond!). It must be admitted that manufacturing such an LP would be
rather difficult!

The walls of the groove of such an LP would be made from layers of carbon atoms. Each carbon
atom has an effective diameter of around half a nanometre so the thickness of each layer will be
approximately 0-5 nm. The position of the stylus is determined by resting on top of the
uppermost layers of atoms. Hence we can see that the stylus position will be roughly quantised by
the finite thickness of the atomic layers. When playing a sinewave whose peak size is 8 um the
movement of the stylus would take place in 1 nm steps. Instead of smoothly varying, the stylus
offset would therefore always adopt one of the set of available levels,x {t} = m.Ax, where m is an
integer and Ax is the thickness of the atomic layers. The effect is to divide the +8 pm swing of a
0 dB 1 kHz sinewave into 32,000 steps — just as if the signal had passed through an ADC!

If we assume that the largest possible recorded signal level is +20 dB (i.e.x;,,; = 80 um) and

accept that the signal is quantised in 0-5 nm steps then the diamond LP has a dynamic range, D,
of

2X pea
D = 20. Loglo{ peak
Ax

} ~ 110 dB .. (12.6)

This compares very well with the Compact Disc system which employs 16-bit digital samples and
hence has a dynamic range of about 96 dB. Alas, the performance of a real LP and stylus may be
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very different from the imaginary example! The actual dynamic range of a real LP is normally
much less than 100 dB!

PVC is a Polymer. This means its molecules have been grown by joining together lots of smaller
molecules. The results of this polymerization process will depend upon the details of the process.
The average molecular weights of the polymer chains which are formed can range from a few tens
of hydrogen atom masses to hundreds of thousands. As a result, the PVC molecules are much
larger than carbon atoms. This has the effect of producing a material which is ‘lumpy’ with a
typical quantisation size far bigger than a carbon atom. As a result, the value for Ax we should
have used for the above expressions is hundreds of times larger than 0.5 nm, producing a much
smaller dynamic range.

The purpose of the above example was to help us recognise that, since LPs are made from a
collection of real molecules, the signals they hold must be quantised. Fortunately for the LP this
usually isn't obvious. The underlying signal quantisation is usually masked by various effects.

Although the PVC molecules are much larger than carbon atoms they aren't arranged into a
regular crystalline pattern. PVC is usually formed as a sort of Glass. Molecules nearby one another
tend to be approximately aligned, but the alignments tend to alter slowly and randomly from one
place to another in the solid. The material is a bit like a frozen liquid, or a liquid with a very high
viscosity. The result is as if we had started to built a crystal, but kept changing our mind about
where to put the layers of molecules. In any small region the groove wall may be quantised, but
the details of the quantisation vary from place to place along the groove. For a recorded signal
this produces an effect similar to dithering a signal before digital sampling. The randomised
quantisation becomes indistinguishable from random noise. This dithering effect is enhanced by
random thermal movements of the molecules. When playing an LP the effects of this molecular
quantisation therefore appear as noise, not obvious quan-tisation distortions.

Another factor working in the LP's favour is that the stylus does not just touch the groove wall at a
single point. Instead it presses against a finite Contact Area. This means that the force which
positions the stylus is produced by a number of atoms in the groove surface. The contact area of a
good stylus is typically the order of 10 um square. Hence the stylus rests upon hundreds or
thousands of PVC molecules at any time. The pressure of the stylus will tend to squeeze the
groove surface. This makes it deform elastically until the total force exerted by all the displaced
molecules is enough to support the stylus. Adding or removing a few PVC molecules in the
contact area would shift the stylus by an amount which is much less than the size of a single
molecule. The finite contact area of the stylus means that it essentially making a measurement
which is averaged over many molecules. A larger contact area would permit the stylus to resolve
smaller changes in the groove wall by averaging over more atoms. This averaging process, along
with the physical dithering mentioned earlier, can let the stylus recover signal levels equivalent to
changes in the groove wall which are smaller than an individual molecule.

A time-varying output signal is obtained by drawing the stylus along the groove. Hence the
frequency of a recorded signal variation is inversely proportional to its length along the groove.
Since the stylus cannot be expected to respond to surface details which are much smaller than the
width of its contact area, it follows that any improvement in resolution obtained by increasing the
contact area may be purchased at the cost of a reduction in the available signal bandwidth.
Alternately, we could choose a smaller stylus and sacrifice resolution for a wider bandwidth. The
recorded signal is essentially both quantised and sampled by the atomic structure of the LP
material, although in a way which varies from place to place on the disc.
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High performance LP systems usually employ an Elliptical stylus (or some other near-equivalent).
These styli are manufactured to have a specially shaped contact area which is shortened along the
direction of travel and elongated perpendicular to it. The modified shape helps the stylus trace
out higher frequencies (shorter groove wavelengths) without reducing the contact area. This
improves the noise/bandwidth/distortion performance, but it can't entirely overcome the
problems mentioned above. The stylus must have a non-zero contact area, hence the physical
problems we've considered always apply.

It would be possible to go on considering various other factors which alter the detailed
performance of Long Playing records. For example, any serious comparison of ‘LP versus CD’
would have to take into account the relatively high levels of signal distortion which commercial
cartridges produce when recovering signals louder than the 0 dB level. Typically, signals of +
10 dB or above are accompanied by harmonic distortion levels of 10% or more — not a very high
fidelity performance! Even at the 0 dB level, most cartridges produce 1% or more harmonic
distortion. The frequency response of signals recorded on LP are also modified — the high
frequency level boosted and the low frequency level reduced — to obtain better S/N and
distortion performance. This means that an LP replay system must include a De-Emphasis network
to Correct the recovered signal’s frequency response. Here, however, we are only interested in
considering those physical factors which make the LP less than an ideally ‘analog’ way to
communicate information. These extra factors affect the performance of an LP but they don't
change the basic nature of the system.

The above analysis is a simplified one. It leaves out many features of a practical LP system. Despite
that, it does serve to show that even a system which appears essentially ‘analog’ will still have
underlying properties similar to a digital information processing system. In fact a similar situation
arises with all analog signals in the real world since every physical process will be found to behave
in a quantised manner when examined in sufficient detail. Despite this we do not usually observe
any structured quantisation or sampling effects because they tend to be masked by a relatively
high level of thermal noise and the averaging or smoothing effects of processes like the stylus's
finite contact area. In effect, the real world beat us to the idea of using noise dithering to make
quantisation effects invisible.

An argument similar to the one used to analyse the LP can be applied to sound waves themselves.
The air consists of an enormous number of molecules whose sizes/shapes/energies/etc are
quantised. The physical interactions between these molecules — i.e. they way in which they
exchange energy and momentum with one another — follow the rules of quantum mechanics.
Hence if we analyse sound waves in enough detail we should discover quantised behaviour once
again. Just as with the LP groove, however, these effects are on such a small scale that we don't
normally notice them. Usually we can describe sound in terms of the averaged statistical
properties (pressures, mean velocities and displacements) of relatively large numbers of
molecules without noticing this fact. This allows us to use the classical physics which describes
sound in terms of continuous algebraic functions which satisfy a set of wave equations. Despite
this, the individual molecules know nothing about our equations. The overall ‘analog-like’
properties of soundwaves arise because of the dithering/averaging effects of the countless
individual quantised molecule-molecule interactions.
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Summary

You should now understand that the terms ‘analog’ and ‘digital’ are based on idealisations. Real
systems and signals will show a mixture of analog (smooth continuous) and digital (quantised)
properties. Although it's often convenient to assume a signal/system is one thing or the other,
this mixed behaviour is an unavoidable consequence of the way the world works.

Questions

1) A monophonic long-playing (LP) test record is being replayed using a cartridge (i.e. a
transducer) whose Sensitivity k = 0-2 mV/cm/s. The recording is of a continuous 1 kHz sinewave
tone whose level is +26 dB (referenced to a peak velocity of 5 cm/s). What is the rms value of the
output signal voltage generated by the cartridge?

[14-1 mV rms.]

2) The test LP mentioned above is made of a material whose molecules average 10 nm in
diameter. The +26 dB tone represents the highest signal level the transducer can produce without
‘mistracking’. Assume that the LP material is crystalline and work out the system's Dynamic Range
in dBs. How many bits-per-sample would be required for a digital system of the same bandwidth to
provide the same dynamic range? Explain briefly why a non-crystalline material is a better choice
for making LPs. [Dynamic range = 90 dB. 15 bits per sample.]
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Chapter 13

Sensors and amplifiers
13.1 Basic properties of sensors

Sensors take a variety of forms, and perform a vast range of functions. When a scientist or
engineer thinks of a sensor they usually imagine some device like a microphone, designed to
respond to variations in air pressure and produce a corresponding electrical signal. In fact, many
other types of sensor exist. For example, I am typing this text into a computer using an array of
‘keys’. These are a set of pressure or movement sensors which respond to my touch with signals
which trigger a computer into action. The keys respond to the pattern of my typing by producing
a sequence of electronic signals which the computer can recognise. The information is converted
from one form — finger movements — into another — electronic pulses.

Every sensor is a type of transducer, turning energy from one form into another. The microphone
is a good example; it converts some of the input acoustical power falling upon it into electrical
power. In principle, we can measure anything for which we can devise a suitable sensor. In this
chapter we will concentrate on sensors whose output is in the form of an electrical signal which
can be detected and boosted using an amplifier. However, similar results would be discovered if
we examined sensors whose output took some other form such as water pressure variations in a
pipe or changes in the light level passing along an optical fibre.

The basic properties of a sensor and amplifier are illustrated in figure 13.1. This shows an
electronic sensor coupled to the input of an amplifier. Note that, so far as the amplifier is
concerned, the sensor is a signal ‘source’ irrespective of where the signal may initially come from.
The amplifier doesn't know anything about people singing into microphones or fingers bashing
keyboards. It simply responds to a voltage/current presented to its input terminals.

The input to the sensor stimulates it into presenting a varying signal voltage, V, to the amplifier.
The amplifier has an input resistance, R;,. (Both the source/sensor and the amplifier also have
some capacitance, but for now we'll ignore that.) The signal power level entering the amplifier's
input will therefore be

VZ
R;,

P, = ..(13.1)

Vs

Ry
Amplifier
Cs
V

Signal Source.

[T
T,,TH

Figure 13.1  Source — amplifier combination.
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Now P;, must be finite and limited by whatever physical process is driving the sensor. Yet
equation 13.1 seems to imply that we could always get a higher power level from the source by
changing to an amplifier with a lower Input Resistance, R;,. This apparent contradiction can be
resolved by accepting that the voltage, V, seen coming from the source must, itself, depend upon
the choice of R;,. The way in which this occurs should be clear from figure 13.1. The sensor itself
must have a non-zero Source Resistance, R, which its output passes through. As a result the signal
voltage at the amplifier's input will be

ViR
(R, + Ri,)
where V7 is the ‘internal’ voltage or Electromotive Force (emf) the sensor creates from the input
which is driving it. The value of V| only depends on the input the sensor/transducer is

responding to. It is unchanged by the choice of the amplifier, but the voltage seen by the

amplifier depends upon the source and amplifier resistances so the power entering the amplifier
will be

Vs = .. (13.2)

_ VPR

(R + Rin)
In order to maximise the signal power entering the amplifier we should arrange that R;, = R,. A
lower input resistance would load the source too much, causing V, to fall. A higher input
resistance would reduce the current set up by the signal voltage. In effect, making the source and
amplifier resistance values the same means we can get the biggest possible voltage-current
product at the amplifier's input. Since power = voltage x current this ensures the highest possible
input power for a given signal emf, V{. This result is a general one which arises because the
amount of power generated by a source can never be infinite. All signal sources will have a non-
zero source resistance (or Oufput Resistance). In a similar way we can expect all real amplifiers and
signal sources to exhibit a non-zero capacitance. This is called the Source Capacitance for a source/
sensor and the Input Capacitance for an amplifier.

.. (13.3)

in

From figure 13.1 we can see that these two capacitances, C; and C;, , are in parallel. For the
voltage seen at the amplifier's input to be able to change we have to alter the amounts of charge
stored in these capacitances. The current required to do this must come through R, and R;,.
From the point of view of the capacitors these offer two parallel routes for charge to move from
one end of the capacitors to the other — i.e. they appear in parallel. This combination of
capacitance and resistance means that the voltage V, , seen by the amplifier cannot respond
instantly to a swift change in the source voltage, V,’. Changes in V are ‘smoothed out’ with a time
constant, 7 = RC, where R and C are the parallel combinations of the input and amplifier
values.

In some cases these resistances and capacitances are actual components put in the system. In
other cases they are a result of some other physical mechanisms. In each case their effects can be
modelled using the kind of circuit shown in figure 13.1. Irrespective of whether they're deliberate
additions or ‘stray’ effects, these capacitances and resistances are always non-zero. Hence it is
impossible to change a measured signal level infinitely quickly. This is another way of stating the
basic principle of information processing that no signal can have an infinite bandwidth (i.e. reach
infinite frequencies). If it did, it would be able to convey an infinite amount of information in a
limited time. Alas, in the real world this is impossible.

13.2 Amplifier noise

When designing or choosing a measurement system we need to be able to compare the
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performances of various amplifiers to select the ones most appropriate for the job in hand.
Various criteria affect the choice, ranging from price to gain. When making accurate
measurements it is usually preferable to choose amplifiers which generate the lowest noise level.

[ Metal
P-Type Silicon which electrons can't enter. E / @/\

S) Electric Field
< /

View from above
—
)

Gate .
Source Drain

--- Channel

Figure 13.2 PN Junction Field Effect Transistor (J-FET).

A wide range of devices have been used to amplify signals. Although their details differ we can
expect that they will operate at a temperature above absolute zero and, as a result, must produce
some thermal noise. Similarly, for their input and output signals to have non-zero powers, they
must pass some current, hence producing some shot noise. It seems to be one of the basic laws of
Nature (Murphy's Law?) that all gain devices, from MOSFETs to valves, generate Excess noise —
i.e. they all produce more noise than we would predict from adding together the thermal noise
and shot noise. For the sake of example we can consider the behaviour of a Field Effect Transistor
(FET) amplifier of the sort illustrated in Figure 13.2. The device shown is a simple N-channel
junction FET. This is made by forming a channel of N-type semiconductor in a substrate of P-type
semiconductor. The channel-substrate boundary forms a PN junction which behaves like a normal
diode. As a result, provided we avoid forward biassing the gate-channel boundary:

* Almost no current flows between gate and channel

» The charge in the gate (and substrate) repels the free electrons in the channel and prevents
them from coming too close to the walls of the channel. This produces Depletion Zones near the
walls whose size depends upon the applied gate potential.

When we apply a voltage between the Source and Drain contacts, electrons flow through that part
of the channel which has not been depleted. We can think of the channel as a slab of resistive
material of length, L, and cross sectional area, A. For a material of resistivity, p, such a slab would
have an end-to-end resistance, R = pL / A. Varying the gate voltage alters the depletion zones
and hence changes the effective cross sectional area, A, of the channel. As a consequence, when
we vary the gate potential the effective resistance between source and drain changes. The FET
therefore acts as a source-drain resistor whose value depends upon the gate potential. This
description of the operation of an FET is too simple to explain all the detailed behaviour of a real
device but it's OK for many purposes. In practice the drain-source voltage is usually sufficiently
large that the potential difference between the drain and gate is much greater than that between
source and gate. As a result the depletion region inside the channel is much smaller at the source
end than at the drain — i.e. the cross-sectional area of the effective channel is quite thin at one
end.
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From the simple description given above we would expect the channel current to increase in
proportion with the applied drain-source voltage. However there is a tendency for any increase in
drain voltage to enlarge the depleted region near the drain. This reduces the channel area,
limiting any current increase. As a result we find that, for reasonably large drain-source voltages,
the FET behaves more like a device which passes a drain-source current controlled by the gate
potential. Because of this the gain of an FET is usually given in terms of a Transconductance. This
can be defined as the change in drain-source current divided by the change in gate potential
which causes it.

The gate-channel is normally reverse biassed, so almost no gate current is required to maintain a
given gate potential. As a consequence the input resistance of an FET is very high, typically 10 MQ
or more. However, to alter the gate potential we must vary the charge density within the gate. This
means that we have to move some charge into or out of the gate. As a consequence the gate—
channel junction has a small capacitance. For a typical FET the gate-channel capacitance is a few
tens of pF or more.

Noise is generated within the FET by various physical processes. For example:
i) Shot noise fluctuations in the current flowing through the channel
i1) Thermal noise in the channel resistance

iii) Thermal motions of the gate charge carriers, producing random fluctuations in the size
and shape of the depletion region — and hence in the channel resistance.

All of these effects (and others which have been ignored) will vary according to the bias voltages
and currents, details of the semiconductor doping, device geometry, and temperature. Instead of
risking becoming bogged down in a detailed analysis of these effects (which may be futile as some
of the underlying processes are poorly understood!) we can model the behaviour of the FET (or
any other gain device) in terms of a fictitious pair of Noise Generators. This approach is very useful
when we are mainly concerned with comparing one amplifier with another and don't want to
bother with the details of where the noise is actually coming from.

Figure 13.3a represents a simple amplifier using an FET. The noise produced by the real FET and
the other components which make up the amplifier are assumed to come from a mythical Noise
Voltage Generator, e,, and Noise Current Generalor, i,, connected to the amplifier's signal input.
Figure 13.3b represents the way in which this idea can be generalised to apply to any amplifier,
irrespective of its design. The noise performance of any amplifier can now be described by the
appropriate values of ¢, and i,. These are normally specified as an rms voltage and current spectral

density — the units of e, usually being nV/\/Hz, and i, pA/\/Hz. Figure 13.4 illustrates the typical
manner in which they vary with fluctuation frequency.

Amplifier
en gain, G
. O (>
R, [ in $ Rin
° - °
13.3a FET Amplifier - 13.3b General Amplifier

Figure 13.3  Noise models of amplifers.

A noise producing process which has not been mentioned in previous chapters is Generation-
Recombination Noise (GR-noise). A large number of electrons do not normally take part in
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conduction as they do not have enough energy to escape their orbit around a particular atom.
Every now and then, however, one of these Bound electrons may interact with a passing electron
or a lattice vibration (i.e. a phonon) and gain enough energy to escape. This process can be
regarded as ‘lifting’ an electron up into the conduction band and leaving behind it a ‘hole’ in a
lower band.

Sometimes the newly freed electron does not move away swiftly enough to avoid dropping back
into the hole. But if it manages to get away we find that a pair of extra charge carriers have joined
those able to provide current flow through the material. Eventually, an electron will pass close
enough to the hole to fall into it and the total number of available charge carriers will return to
its original value. This process means that the current flowing through the channel as a result of
an applied voltage will tend to fluctuate. (Note that this process is different from shot noise.)

There is a difference in potential between the channel and the gate/substrate. Any new electron-
hole pairs generated near the channel walls will tend to be pulled apart. For an N-channel FET
the field will sweep the ‘new’ electron into the channel and pull the hole back into the substrate.
As a consequence, the random creation of carrier pairs in the region near the gate-channel
junction produces a small, randomly varying, current flowing across the boundary. This in turn
causes random variations in the size and shape of the depletion region which produces an extra
noise current in the channel.

1/ f noise

/ . . GR noise
white noise \
/ pA /yHz |\ ,

frequency ——> frequency —>

Figure 13.4 Typical shapes of noise power density
spectra of noise generators.

From figure 13.4 it can be seen that, at high frequencies, the noise power spectral density tends to
increase with frequency. This is due to GR-noise produced by quantum mechanical effects.
Although energy must be conserved overall, quantum mechanics permits the energy of a system
to fluctuate by an amount AE provided the fluctuation only lasts a time At = h /AE (h being
Planck's constant). In a semiconductor whose energy gap is AE this means that electron-hole
pairs may be created without the required specific energy input, AE, provided they vanish again in
atime At =~ h/AE. As aresult, when we consider periods of time which are less than this time
the density of carriers in the material appears to fluctuate randomly.

These shortlived random variations in the number of free charges mean that the current which
flows in response to an electric field also varies. If we consider shorter periods we are allowed to
consider larger energy fluctuations and an increasing number of electrons, tied more strongly to
their atoms, can briefly join in this process. Hence this effect produces a noise level which
increases with frequency (i.e. with decreasing fluctuation period). This effect does not create
noise power out of nothing. The initial AE is a sort of ‘loan’ which must be repaid since, if we
want to observe a change in the current, we must apply an electric field to drag the electron-hole
pair apart. This field hence does some work in producing the extra current.

All gain devices exhibit some amounts of voltage noise, ¢,, and current noise, i,. The precise
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levels they produce — and their frequency spectrum — depends upon the type of device, how it is
made and operated. When comparing bipolar transistors with FETs we generally find that bipolar
devices have higher current noise levels and FETs have higher voltage noise.

13.3 Specifying amplifier noise

In practice we are often not told how e, and i, vary with frequency for a particular amplifier.
Instead we are presented with a single value which indicates the overall amount of noise the
amplifier produces. This value may be specified in various ways. The most common measures are
the Noise Resistance, R,, the Noise Temperature, T,, the Noise Factor, F, and the Noise Figure, M. Whilst
any one of these values can be useful for encapsulating the behaviour of an amplifier it should be
clear that a single number cannot contain all the information offered by a detailed knowledge of
the e, and i, spectra. They should therefore be used with care.

Figure 13.5 illustrates a system which amplifies the signal voltage, v;, generated by a source whose
output resistance is Rg. The amplifier is assumed to have a voltage gain, Ay, input impedance,
R ;,, and produces a noise level equivalent to a combination of a noise voltage generator, ¢,, and
noise current generator, i,, located as shown at the amplifier's input. A signal source at a
temperature, 7, will itself produce thermal noise equivalent to a voltage generator whose rms

magnitude is
e, = J4kT BR, .. (13.4)

placed in series with the source.

Voltage Gain
Ay
R, €n
O >
“ in Ry 4
Vs Ey,
Signal source Amplifier

Figure 13.5 Source-amplifier coupling.

For the sake of simplicity we can assume a unit bandwidth (B =1 Hz) and that the source does not
produce any other form of noise. This means that the source is as ‘noise-free’ as we can expect in
practice. Taking into account all of the noise generators shown in figure 13.5, the total rms noise
voltage, E,, which is output by the amplifier will be such that

2 2 : 2
. . RR
B = |AV|2.[ el T eB | f LR } ..(13.5)
Ry + Riy R, + Riy R, + Riy
and the source signal, v;, will produce a voltage
AVI{invs
= "= ..(13.6
"= R+ R, (13.6)

at the amplifier's output. We can now define the system gain, I, (as distinct from the amplifier
gain, Ay) as

E — AVI{zn
vS RS + Rtn
Note that this value takes into account both the amplifier's voltage gain and the voltage

attenuation produced by R, and R;, acting as a potential divider (attenuator) arrangement.
Hence this gain will always be smaller than A,.

H = .. (13.7)
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We can now regard the total noise at the output of the system as being due to a single voltage
generator, ¢, which replaces e,. From the above definition of the system gain we can expect that

E
e, = EO ..(13.8)
which, combining the above expressions, leads to the result
e, = e + e, + iR .. (13.9)

The noise in the system has now been gathered into a single number, ¢,, whose value indicates
the total noise present in the system. From this we can define each of the noise measures
mentioned earlier.
The Noise Factor, F, is defined as

F = (total noise power) / (source resistance noise power)
ie.
G et iR ...(13.10)

e? e?

F =

The Noise Figure, M is defined to be the noise figure quoted in decibels
M = 10. Log{F} .. (13.11)

For a perfectly noise-free amplifier e, and i, would both be zero. Such an amplifier would have a
noise factor of unity and a noise figure of 0 dB.

The Noise Resistance, R,, can be defined by equating the amplifier's contribution to the total noise
to a thermal noise level

AkTR, = ¢> + i2R? .. (13.12)

where T'is taken as the physical temperature of the amplifier (normally assumed to be around 300
K).

Because of the possibility of confusing the amplifier's noise resistance with its input resistance it is
prudent to avoid the use of noise resistance values.

The Noise Temperature, T,, defined by
ART,R, = ¢ + i2 R’ ..(13.13)

is a more acceptable alternative since it avoids this confusion. Note, however, that this
temperature value is not the physical temperature of the amplifier!

When comparing amplifiers and gain devices listed in manufacturer's catalogues we're frequently
only given one of the above measures as an indication of the noise level. When examining these
figures it is important to compare like with like. All of the above measures explicitly depend upon
the chosen source resistance, R,. Furthermore, the frequency dependence of ¢, and i, will vary
from one gain device to another. As a result two values of a noise measure are not directly
comparable if they are given for different frequencies.

To measure the voltage and current noise levels of a particular amplifier we can observe the
effects of short-circuiting and open-circuiting the amplifier input terminals (i.e. setting R, to zero
and to infinity). When R; = 0 the current noise present cannot produce any observable voltage.
The output noise from an amplifier whose input is shorted is therefore due only to its input
voltage noise generator, e,.
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When we open-circuit the amplifier input we produce an effective source resistance of R, = . The
noise current generator now produces an rms voltage ¢, R;, across the amplifier's input resistance.
The noise fluctuations this produces are uncorrelated with those produced by the noise voltage
generator. Hence they combine to produce a total rms noise voltage at the amplifiers input of
\Je2 + 12R?, when the amplifier input is open-circuit. By measuring the amplifier's output noise
level in both situations we can therefore determine values for both ¢, and i,,.

Summary

You should now know that all signal sources must have a non-zero Source (or Output) Resistance
and a non-zero Source Capacitance. That all the noise mechanisms in a system can be simplified
into a an equivalent pair of mythical Noise Generators at the input to the system. A ‘new’ noise
mechanism, Generation-Recombination has been introduced and it's power spectral density has been
seen to increase with fluctuation frequency.

You should also now know that the total system noise can be simplified into a single generator
value and the result may be specified in terms of various figures — Noise Temperature, Resistance,
Figure, or Factor. It should also be clear that a single figure of this kind can only be used to
compare one amplifier to another when the source resistances are the same. You should also now
know that the current and voltage noise levels of an amplifier can be measured by recording the
output noise level when the amplifier's input is open- and short-circuited.

Questions

1) Explain why we can transfer the maximum possible signal power from source to load when
the source and load resistances have the same value.

2) An amplifier has an input resistance of R;, = 50 k€2, and its noise behaviour can be defined in
terms of voltage generator and current generator Noise Spectral Densities of e, = 5x107 V/ Hz
and i, = 107'* A/+/Hz respectively. A sensor whose source resistance is 22 kQ is connected to the
amplifier's input. The sensor is at 300 K and only generates thermal noise. What is the value of
the system's Noise Factor. What is the value of the system's Noise Temperature? [F = 2-39. T, = 419
K.]

3) Explain how you can measure the values of an amplifier's effective noise voltage and current
generators.
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Chapter 14

Power coupling and optimum S/N
14.1 Optimising signal to noise ratio

Sometimes we can alter the physical details of a signal source or use a transformer to change the
source's apparent resistance whilst maintaining the available signal power. In earlier chapters we
found that the amount of noise and signal power we see coming from a system depends upon the
source resistance. This raises the question — is there a value for the source resistance which
produces an optimum (i.e. maximum) signal to noise ratio? If so, what is this value?

Voltage Gain
Rx 1: ﬁ €n Av
()
O
eS
in Riy
US
® ®
Signal source Transformer Amplifier
Voltage Gain
ﬁz R e, Ay
()
O >
Bes _
In Ri n
Bvs
L X L
Transformed source Amplifier

Figure 14.1  Source—-Amplifier coupling and power transformation.

Figure 14.1 illustrates the use of an idealised transformer which has a turns ratio of 1:8. This steps
up/down the output signal and noise voltages produced by the source to fv, and fe,, respectively.
The transformer cannot output any more power than it receives. For an ideal (loss—free)
transformer the input and output powers will be the same. As the output voltage is a factor j
times that generated by the source it follows that the output current must be 1/ times that
flowing through the source. Consequently, the combination of the source and transformer
appears to any following circuit to have an effective source resistance of R, = S°R,.

Using the same argument as in the previous chapter we can say that the total noise level for the
system is equivalent to an rms voltage, ¢, such that

2
e; = (Be,)’ + en + (i,f°R) (141
A signal voltage, v,, generated by the source will produce a signal/noise ratio
2
sN = o) .(142)

e?

Clearly, this depends upon the choice of B. Whenever possible it would be preferable to select the
value of B which maximises S/N. This is equivalent to the value which minimises ¢? / (Bu,)?. The
optimum choice of 8 can therefore be found from

d 2
d_ﬁ{—(ﬁv )2} =0 ... (14.3)
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1.e.
2Bi2R:  2¢?
2 - B2 =0 ..(14.4)
which is satisfied when
2 €n
= ...(14.5
b 1 n R ( )

Since the transformed source resistance, R,’, presented to the amplifier is 2R, it follows that the
optimum value for this resistance will be

R/ = . (14.6)
ln

For the above argument it was assumed that the source resistance presented to the amplifier
could be altered using a transformer. In some other situations we can modify the signal source or
replace it with another and alter the source resistance without altering the available signal power.
Irrespective of how this is done the above result tells us that — for an amplifier whose noise is
represented by a voltage generator, e,, and current generator, i, — the maximum possible
signal/noise ratio will be obtained when the source resistance equals ¢, / 7,,.

In the last chapter we saw that the optimum signal power transfer will occur when we choose a
source resistance which equals the amplifier's input resistance. In general, ¢, /i, does not equal
the input resistance of the amplifier. As a result, the source resistance which provides the best
signal power transfer usually isn't usually the value which gives the best possible S/N ratio.

Books on electronics tend to recommend that, whenever possible, we arrange that the source's
output resistance and the amplifier's input resistance should be matched — i.e. have the same
value. (The same approach is recommended when the signal is carried using a transmission line.)
This gives the most efficient transfer of signal power, but may result in a S/N ratio below the
highest possible value. As a result there is often a conflict and we have to choose either a source
resistance which provides the highest possible signal/noise ratio or a source resistance which
maximises the signal power transferred.

In practice we are often presented with a source whose properties are fixed, but we can select
which amplifier to use from an available range. Each amplifier has a particular input resistance,
R;,, and a noise level equivalent to specific ¢, and i, values. Because of the conflict between
optimum signal transfer and signal/noise ratio there won't usually be a ‘perfect’ choice of
amplifier — unless we're lucky enough to find one where R, = R;, = ¢,/ 1,. Instead, we must
usually make a choice based upon an assessment of the relative importance of these factors for
the job in hand.

14.2 Bebhaviour of cascaded amplifiers and transmission lines

Figure 14.2 illustrates the use of a pair of amplifiers to increase the signal from a source. Each
amplifier has an input resistance, Z,, and an output resistance, Z .
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Figure 14.2 Cascaded amplifiers and connection.

The signal power input into the first amplifier will be

. vin
(Rs + Z;)*

For a given signal voltage this power will be maximised if Ry = Z;. As a result we should usually

try to equate (match) these impedances whenever it is convenient to do so. A similar result arises

when we connect amplifiers together. Each amplifier views the preceding one as a source having a

particular resistance. Whenever possible we should arrange that the input impedance of an

amplifier should equal the output impedance of the preceding one. This ensures that signal
power is not wasted.

Py .. (14.7)

In the arrangement shown in figure 14.2 the amplifiers are connected by a length of transmission
line of Characteristic Impedance, Z.. Co-axial cables, pairs of wires, microwave waveguides, light
fibres, etc, are all examples of transmission lines. Each can be used to carry signals over long
distances. To understand the concept of characteristic impedance, imagine a signal source
transmitting a signal into an infinitely long transmission line. To transmit power along a line it
has to send both a non-zero voltage (or electric field) and a non-zero current (or magnetic field)
out along the line. This power then moves away from the source, along the infinitely long cable,
never to return.

The amount of current the source has to put into the cable to ‘drive’ a given voltage will depend
upon the type of transmission line. However, so far as the source is concerned, the power
transmitted into the cable is ‘lost’ just as if the cable were a resistor. The value of the resistor
which would require the same voltage/current ratio is said to be the characteristic impedance of
the line. If we end a finite length of line with a load whose resistance equals the line's
characteristic impedance the current/voltage ratio of the signal perfectly matches that required
by the load. Hence all the signal power flows into the load.

In figure 14.2 the load at the output end of the line is the input impedance, Z;y, of the second
amplifier. By arranging that Z;y = Z we ensure that all the signal power passing along the line
is coupled into the second amplifier (this assumes, of course, that the transmission line doesn't
lose any of the power on the way!). So far as the first amplifier is concerned, it then sees an output
load resistance, Z., since none of the power it transmits comes back to it. As a result, to
efficiently transmit signal power along the transmission line we should try to arrange that
Zin = Zc = Zour-

We'll assume the impedances throughout the system have been matched — although from the
previous section it should be noted that this may not give the highest possible signal/noise ratio.
The first amplifier has, when matched, a noise factor, F;, and a power gain, G;. The second has,
when matched, a noise factor, F,, and power gain, Go.

Thermal noise in the source will produce a noise power spectral density at the input of the first
amplifier of
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&

" 4R
From the definition of noise factor, it follows that this amplifier supplies the following one with a
noise power spectral density of

N,

= kT ..(14.8)

N01 = FlleT (149)
If we were to connect the second amplifier's input directly to a matched source resistance instead

of linking it to the output from the first amplifier it would supply an output noise power per
Hertz bandwidth

N02 = FszkT (1410)

Since the source resistance would itself be generating a noise power spectral density, k7, an
amount GykT of what we see coming out of the amplifier would originate in the source, not the
amplifier. The noise power per hertz bandwidth which is generated inside the second amplifier is
therefore FoGokT — GokT.

The total output noise power spectral density for the arrangement in figure 14.2 will therefore be
Ny = G,(FLGkT) + G,(F, — 1)kT .. (14.11)

We can consider the combination of amplifiers as a single ‘multi-stage’ amplifier whose power
gain is G; G,. This combination can then be defined to have an overall noise factor, I/, such that

NT = FTGlekT (1412)

Amplifiers connected in this way are said to be Cascaded or chained together. Combining the
above expressions we find that the noise factor of the two cascaded amplifiers will be

-1
Fr = F + = .. (14.13)
Gy
When using an initial amplifier whose gain, G, is moderately high this result implies that —
unless Fy is very large compared with F; — the cascaded pair has a noise factor, I'; =~ F.

Consider, as an example, a case where I; = 1.5, Fy, = 2, and G, = 100. Using expression 14.13
we can calculate that the cascaded amplifiers will have an overall noise factor of Fr = 1-501, i.e.
even though the second amplifier is relatively noisy the overall system's noise factor is almost
entirely due to the first amplifier.

This result arises because the signal level presented to the second amplifier is much larger than
that presented to the first. Hence the second amplifier would have to generate a considerable
amount of noise to significantly degrade the overall signal/noise ratio. For this reason we usually
only need to ensure that the first amplifier in a chain has a low noise factor. However, it should be
noted that this may not be true if the transmission line which connects the two amplifiers is
imperfect.

Any real transmission line will lose some of the signal power it is given to convey. For example, a
co-axial cable will dissipate some power due to the resistance of its metal conductors. The
transmission line will change (attenuate) the signal power by a factor, a, i.e. an output power, P,
supplied by the first amplifier will provide a power, aP (where a < 1), to the second.

In many cases a will be close to unity. Under these circumstances the combination of the first
amplifier and transmission line have an overall power gain, a G, and we need only worry about
the first noise factor, F;. However, if the transmission line is long enough and « is low enough for
a G to become comparable with (or less than!) unity, we find that the signal power reaching the
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second amplifier is not significantly larger than that reaching the first. Under these circumstances
the noise factors of both amplifiers become important.

The above argument for two cascaded amplifiers can be extended to situations where three or
more are chained together. For example, for three amplifiers in a chain the overall noise factor
(neglecting transmission line losses) would be

FE-1 F-1
Fr = F + = + = .. (14.14)
G GG,

Summary

You should now know how the S/N ratio we can obtain from a signal source depends upon the
choice of source resistance. It should also be clear that — in general — the best possible S/N
ratio requires a different source/amplifier resistance than the Matched values which maximise the
power transfer. You should now know how the noise performance of a Cascade of amplifiers and
connections depends upon their gain and noise performance. In most practical cases it is sensible
to use a ‘low noise preamp’ to boost a signal being fed to later amps whose noise performance is
less important.

Questions

1) A source of resistance, R;, is connected to an amplifier whose input resistance is R;, via a
transformer which has a Turns Ratio of 1:5. The amplifier's noise is specified in terms of a pair of
noise voltage and current generators, ¢, and i,. Derive an expression for the value of § which
provides the highest possible signal-to-noise ratio.

2) An amplifier has an R;, = 100 kQ, e, = 4x107° V/\/E, i, = 1071 A/\,/’E. It is connected to
a 10 kQ source via a transformer. What transformer's turns ratio value would provide the highest
signal to noise ratio? What would ratio would provide the greatest signal power transfer? [Best S/
N from 1:2. Best signal power 1:3-16.]

3) The amplifier described in question 2) has a voltage gain, A, = 1000. It is connected to the
source via a transformer which provides the optimum signal to noise ratio. Assuming that the
source noise is purely thermal and its temperature is 300 K, what is the value of the noise power
spectral density (in microvolts per root Hertz) at the amplifier's output? (Hint, look at section

13.3 again.) [18 uV/\/E 1

4) A signal is amplified by a cascade of two amplifiers. The impedances throughout the system are
Matched. The first amplifier has a power gain of G; = 10 and a noise factor, F; = 1-1. The second
has a power gain Gy = 1000 and a noise factor F; = 2-5. What is the value of the cascade's total
noise factor? [1-25]
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Chapter 15

Signal averaging
15.1 Measuring signals in the presence of noise

When measuring a small but steady signal in the presence of random noise we can often improve
the accuracy of the result by making a number of measurements and taking their average. This
approach has the great advantage that it is easy to do — given enough time — but it cannot
overcome all of the practical problems which arise when making real measurements. In
particular, there are two sorts of problem which simple averaging copes with rather poorly: 1/
noise, and the presence of Background effects.

When considering the merits of various signal processing systems we're primarily interested in
comparing the signal/noise ratios they can offer. It's this ratio which largely determines how
precise a measurement can be. A low signal level can always be enlarged if we can afford a suitable
amplifier. However, this won't lead to a more accurate result if the measurement was already
noise limited because we'll boost the noise level along with the signal.

Note that the following arguments assume the power gain, G, of an amplifier (or filter) is simply
equal to |A]* where A is the voltage gain. This is only really true when the amplifier's input
resistance is equal to the output load resistance it drives. Similarly, it is assumed that the power, P,
at any point is simply equal to |V|?, where Vis the rms signal voltage. This is only correct for a load
resistance of unity (one Ohm). These assumptions make some of the mathematical expressions a
bit simpler and don't change any of the conclusions. In practice, when working out the properties
of a real system these factors have to be taken into account.

15.2 Problems of simple averaging

To illustrate these problems, consider the system shown in figure 15.1. A source, S, produces a
response from a detector which is then amplified, and passed through an analog Integrator to a
voltmeter. The integrator is made using an operational amplifier, resistor, and capacitor.

A normal operational amplifier has two signal input terminals, generally called the Inverting and
Non-Inverting inputs (shown by the ‘-’ and ‘+’ signs on the diagram). The output voltage the op-
amp produces is proportional to the difference between these two input levels. This arrangement
allows the op-amp to be used as the heart of a Feedback arrangement. The voltage gain of a typical
op-amp is very large (usually over 100,000) so a reasonable output voltage only arises when the
voltages at the inverting (-) and non-inverting (+) inputs are almost identical. For example, if the
output voltage is 1 V and the gain is 100,000 then the two inputs will only differ by 10 uV.
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Figure 15.1  Analog integrator used to collect detected signal level.

In the circuit shown in figure 15.1 the non-inverting (+) input is connected directly to 0 Volts.
The inverting input (-) is connected via a capacitor to the amplifier's output. The simplest
possible state of this arrangement is when both input voltages, and the output voltage, are all at 0
V. We can therefore imagine the system starting off in this state.

When we apply an input voltage, V;,, to the resistor a current, I = V;,/ R, will begin to flow
through it as the other end of the resistor is initially at 0 V. This current starts flowing into the
amplifier, stimulating a change in its output voltage. Because the signal is being presented to the
inverting input the output voltage this produces will have the opposite sign to the input.

Any change in the output voltage will have to alter the amount of charge in the capacitor, C—i.e.
a current will be drawn through the capacitor. As a result we find that most of the current flowing
through the resistor passes on through the capacitor as the output voltage changes. Since the op-
amp's gain is very large only a relatively tiny amount of the input current needs to actually enter
the op-amp to generate the output voltage this process requires.

The small current, i, flowing into the op-amp's input will be the difference between the input and
capacitor currents
;= Vin L C aVvo
R at
As the amplifier gain is large we can expect that i < ‘;Q" so we can reasonably assume that it is
virtually zero and re-arrange 15.1 as

.. (15.1)

dVo  —=Vin

dt  RC
Having begin with an output voltage, Vo = 0, at a time, { = 0, we can therefore say that the
output voltage at some later time, ¢ = T, will be

T
Vo{T} = J'O _V%dt .. (15.3)

where 7 = RC has the units of time and is called the Time Constant of the integrator. In effect, the
system behaves as if all of the input current, 7, is collected into the capacitor and the arrangement
functions as an integrator, the output voltage being proportional to the time-integral of the input.

.. (15.2)

In practice the capacitor can be initially shorted by closing the switch connected across it. This
sets the output voltage to zero. When a measurement commences the switch is opened and
integration begins. For a steady input signal voltage, v, the output voltage after a time, 7, will
simply be proportional to vT. Hence the integrator performs the useful function of ‘adding up’
the signal voltage, v, over a period of time. As a result we need not actually take a series of voltage
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readings and calculate their average. Instead we can use an integrator, read V after a time, 7,
and define the average input signal voltage, (v), during this period to be

(v) = _‘;OT .. (15.4)

Any real integrator will be built using an op-amp powered from voltage rails which supply some
specific fixed voltages. As a result, we cannot allow the circuit to go on integrating a signal voltage
for an indefinite time as, eventually, V will reach the rail voltage and integration must then stop.
To overcome this problem we may repeatedly read the output voltage, V), after a moderate time
interval, ¢, and 7eset the integrator output to zero by briefly closing the shorting switch before
allowing another integration over another period, ¢ The resulting set of readings for V can then
be added together to obtain the voltage which would have been reached if the circuit had been
able to integrate successfully over the whole period. Many practical systems combine the use of an
analog integrator with this method of repeated reading and resetting.

The effect of noise on an integrated result can be understood in terms of the integrator's effective
Power Gain at any frequency, f. At any frequency the noise can be represented by a ‘typical’ input
of the form

Vy = Ac¢ Cos{2xnft} + As Sin{27ft} ..(15.5)

For real noise the values of A and Ag will vary randomly from moment to moment. This is
because the phase of the signal is unpredictable. Their values at any instant are therefore
independent, i.e. we can't predict one from knowing the other. However, on average, we can
expect their magnitudes to be the same. We can therefore say that the time averaged power of
this ‘noise like” input will be

P = (Ac)y N (As)y’

2 2

where expression 15.6 essentially defines A to be the mean amplitude of each individual
component. The factors of 1/2 appear because we are averaging sin? quantities over a number of
cycles.

= A ... (15.6)

Since the actual amplitudes of the sine and cosine components of the noise are statistically
independent we can expect their contributions to the noise level at the integrator's output to also
be independent. Their combined effect at the output will therefore equal the sum of the powers
they individually produce. Integrating the effects of the two contributions over a period, 7, we
obtain two voltages. These must then be squared separately and then added to obtain the total
output noise level

T 2 T 2
P, = [% jo A Cos{2nft} dt} + [% jo A Sin {2nft} dt}

_ A’ Sin*{nfT}

- (afrp
We may define the integrator's power gain to be the ratio, G = P,,,/P;,. Comparing
expressions 15.6 and 15.7 we can therefore say that

Sin? {nfT}
GUt = — 5
(7/7)
Having discovered the integrator's power gain we can now say that the total output power
produced, after integration, by an input white noise power density, S, will be

.. (15.7)

... (15.8)
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B =S8 Sin* {nfT ST
N :J‘ sG{r}ar = I LGN ..(15.9)
0 0 (/) 272
The output signal power produced by integrating a steady input level, v, over a period, 7, will be
v T?
P = V5 = — .. (15.10)
T

Combining this with the result for noise we can therefore say that, when accompanied by an input
‘white’ noise power spectral density, S, we obtain a final signal to noise ratio of

P, 20°T

N S
This result is a very important one. It tells us that the signal to noise ratio of a measurement
obtained using an integration method can increase linearly with the integration time, 7. In
practice this means we can often expect to improve the accuracy of a measurement by integrating
for longer. The integration process is mathematically equivalent to making a series of
measurements and adding them together. We can therefore generalise this result. If we make ¢
measurement, each integrated over a period, ¢, and add them we obtain a result whose signal to
noise ratio will be

.. (15.11)

P, 2v*pt
N S
What matters here is the Total Measurement Time, pt, not the choice of each individual period, &
Note also that the choice of the integrator's time constant value, 7, does not affect the signal to
noise ratio. In a real measurement situation we should simply choose a 7 value which provides a
convenient output level after each sample integration period, ¢ Provided that we avoid voltages
which are too large or too small to measure reliably with the voltmeters, etc, we're using the value

of 7 has no effect on the signal to noise ratio — and hence the accuracy — of the final result.

.. (15.12)

In practice we're often interested in obtaining a value proportional to the signal voltage (or
current) level instead of the power. The integrated output signal voltage increases linearly with pt.
However it is the output noise power which increases linearly with time — i.e. the typical output
noise voltage increases as 1/pi. Hence the accuracy of a measured voltage will increase in
proportion with the square root of the measurement time.

White noise plus a small d.c. level

Integrated signal
plus noise

Integrated version of the above = \ .
T Integrated signal
- without noise

Figure 15.2 Integrating a steady signal with some superimposed noise.

Figure 15.2 illustrates the effect of integrating an input which consists of a combination of a
steady ‘d.c.” level plus some white noise. In this case the magnitude of the input d.c. voltage is a
quarter of the rms noise voltage. It can be seen that the integrated result allows the steady level to
‘grow’ linearly with time whilst the effects of noise only change relatively slowly.
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The analog integrator is a convenient way to obtain a result averaged over a period of time. In
principle we could use a simpler method. For example, we could regularly note down the reading
on a voltmeter, then add up all the readings. The result would be a ‘piecemeal’ value for the level
summed or integrated over the period of the readings. Provided that the readings were taken
often enough to form a complete record we'd get the same information as if we'd used an analog
integrator. No matter what method we use for ‘adding up’ measurements over the time period
the result would be the same. When measuring a signal in the presence of white noise we get a
final S/N power ratio which improves linearly with the measurement time (i.e. the signal/noise
voltage ratio increases with the square root of the time taken for the measurement).

Although we won't attempt to prove it here, a similar result arises when we look for other signal
patterns in the presence of white noise. From an information theory viewpoint a steady (d.c.)
level is just one example of a specific signal pattern. Any other pattern can be searched for in the
presence of noise. Although we would have to process the signal+noise patterns differently we will
discover the same basic result. When the noise is white the final accuracy of a measurement
improves with time just as the above example.

The above conclusion applies for a white noise spectrum. A different result arises when 1/fnoise
is present. Consider, for example, a case similar to the above but where the noise has a NPSD

s{r} = ¢ ..(15.13
{r} 7 (15.13)

The effective noise power observed at the output of the integrator will be
” * e\ Sin* {7fT}
¥ = [ stc i - (22

0 o \f] (#f7)

To see what this integral implies it simplifies things to make a change of variable to z = nfT. We
can then write that

af .. (15.14)

N = z = x I ... (15.15)

eT? J‘wSinz{z} i eT?
0 Z3 TZ

72
where I represents the integral in z. Taking the same signal as before the integrated measurement
therefore has an effective signal/noise ratio of

P v?
S = (—) ..(15.16)
N el

Note that the integration time does not appear in this expression. This means that we cannot
obtain a more accurate result in the presence of 1/f noise simply by integrating over a longer

period. Worse still, the value of the integral, I, turns out to be infinite!

The integral ‘blows up’ in this way because we have assumed that the noise power spectral density
—> o as [ — 0. In reality we wouldn't notice the noise components at frequencies / < 1/27T as
fluctuations. They would look like a fairly steady level during the particular observation time we've
used and become indistinguishable from the signal. This simply confirms that we can't get rid of
the effects of 1/ fnoise by integrating or adding together lots of measurements.

In practice the noise present in a measurement system will have both white and 1/fcomponents.
The total noise spectrum can then be represented as a NPSD, §,, equal to

e

S, =8 + - .. (15.17)
f
Provided the total measurement time, pt < S we won't observe any significant effect from the 1/f

e
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noise as the measurement would be dominated by the white noise. Under these circumstances we

can expect to obtain an improvement in measurement accuracy by increasing pt. However, once
pt = 3, the effect of the 1/fnoise becomes significant and any further increase in p¢ will produce
little or no improvement of the measurement accuracy.

A similar analysis can be carried out for other forms of signal filter and signal summing or
integration systems. Although the details will depend upon the choice of system the consequence
is much the same. There is a practical limitation — set by the existence of 1// noise — to the
improvement in measurement accuracy we can obtain simply by averaging or summing over ever
longer periods of time. In order to obtain any further increase in accuracy we must, instead,
devise some measurement technique which avoids the effect of 1// noise.

Another serious problem which can arise when making simple, direct measurements is due to the
presence of any unwanted background signals. Consider as an example the case illustrated in figure
15.1 where we are using a sensor to detect the output from a faint source of light. If we place the
source and detector in an ordinary room we find that some of the light striking the detector does
not come from the source we wish to measure. Instead it comes from the room lights, or in
through the windows of the room. Hence the output we observe from the detector is partly
produced by an unwanted ‘background’.

One way to deal with this problem is to try and reduce the background level, ideally to nothing.
We can, for example, switch off the room lights and place opaque covers over the windows to
produce a dark room. Although this means we tend to fall over the furniture it will reduce the
unwanted background level. Unfortunately, some background light will remain. This is because
the room will be at a temperature above absolute zero. To avoid freezing its inhabitants the room
temperature will probably be somewhere around 280 K to 300 K. Hence all of the surfaces in the
room will emit some thermal radiation. Unless we totally enclose the detector in a box cooled to
absolute zero there will always be some background radiation falling upon it. (And, of course, if
we totally enclose it in a box, we can't get the signal onto it!)

Since all sensors and detectors respond to energy or power in one form or another a similar result
occurs in every measurement system. We may therefore expect that there will be always be an
unwanted background level falling upon any detector. In many cases we can reduce this
background until it's low enough to be ignored, however it is impossible to really reduce it to
zero.

As an alternative to trying to get rid of the background we can set out to measure it in the absence
of the actual signal and then subtract its effect from the final measurement of interest. This
approach, called Background Subtraction, is widely used to deal with the problems of measuring
very small quantities in the presence of an unwanted background.

Summary

You should now know how an Integrator works, and how it can be used to improve the S/N ratio of
a measurement of a steady signal in the presence of noise. It should be clear that — when the
random noise is ‘white’ — the S/N ratio we can obtain is proportional to the total time devoted to
the measurement. That the precise choice of the Time Constant of an analog integrator doesn't
normally affect the final result. Remember that, since the S/N power ratio improves in
proportion with the time, the accuracy of a voltage measurement increases with the square root of
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the measurement time. You should also now realise that integration doesn't always provide an
improvement in the measurement's S/N. In particular, integration does not help us overcome the
effects of 1/f noise.

Questions

1) Draw a diagram of an Analog Integrator and explain how it works. Define the integrator's Time
Constant in terms of the component values.

2) An analog integrator is constructed using an op-amp, a 100 kQ resistor, and a 10 uF capacitor.
What is the value of the integrator's time constant? What is the value of the integrator's Power Gain
at 5-25 Hz when used for a 10 second integration? [ 1 second. G = 0-003676 or —24-4 dB.]

3) The integrator described in question 2 is used to determine a steady d.c. level. The input noise
spectrum is white and has a NPSD of 10 nV/+/Hz. What input d.c. level would be detectable with a
1:1 signal/noise ratio by averaging together 20 measurements, each lasting 5 seconds?
(Remember that the expressions in this chapter were simplified by assuming that the effective
impedances everywhere all equalled 1 Ohm.) [0-7 nV.]
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Chapter 16

Phase sensitive detection

The Phase Sensitive Detection (PSD) technique is widely used to deal with the problems caused by 1/
Jfmnoise and unwanted background levels. Figure 16.1 represents a typical PSD system, designed to
provide a measurement of the signal level produced by a faint light source, §;. The technique
works by arranging for the signal level to be ‘switched on and off’ in a controlled way. This helps
the measurement system distinguish the (now varying) signal from any steady background level.

Rotating chopper ‘wheel’

g
'l

Phase reference —>
VOIU

Bandpass
a.c. amp. filtor
%%sl_%j /o :m
: ' Detector
b—> -

Figure 16.1 Phase sensitive detection system.

Sometimes we can manage to switch a signal source on and off directly by, for example,
controlling its power supply. More generally, however, this is not possible. In some cases the
source will behave poorly (or fail!) if we keep turning it on and off. Sometimes the source we are
interested is a natural one (e.g. a star) which we find rather difficult to control! Therefore most
PSD systems employ some form of signal Modulator or Switch which periodically stops the signal
from reaching the detector. When making an optical measurement this modulator can take the
form of a Beam Chopper which alternately blocks and unblocks the light path between source and
detector. Figure 16.1 illustrates one common type of modulator called a Chopper Wheel. This is a
disc which has a series of Blades cut around its periphery. (Sometimes a series of holes are cut
around the edge of the wheel to produce a similar effect.) The wheel is placed so that its edge
covers the beam and is rotated during the measurement. As the chopper wheel turns, its blades
pass between source and detector, alternately blocking and clearing the signal path. If we use a
symmetric wheel with n blades, rotating x times per second the source signal reaching the
detector will be appear as a fluctuating level, varying periodically with a Chopping Frequency,

f = nx.

The chopper acts as a form of Frequency Conversion system. A light power level which was steady or
slowly varying, now produces a chopped signal at some higher frequency. The signal power has
been converted from one frequency (about d.c. or 0 Hz) to another, /. For the sake of example we
can imagine rotating a 16-bladed chopper 20 times a second to produce a chopping frequency of
16 x 20 = 320 Hz. This can be amplified using an a.c. amp and passed through a filter arranged to
reject signal fluctuations at frequencies below, say, 200 Hz.
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Any 1/f noise produced in the detector and amplifiers will usually be at frequencies around
100 Hz or less. The filter will stop this low frequency noise from passing through the system. Note
we are talking about the frequencies of fluctuations of the signal not the optical frequency of the
light itself. The signal we're talking about here corresponds to the voltage/current levels
produced by the light power falling upon the detector. To avoid confusion it is customary to refer
to the fluctuation frequency produced by modulation as the Modulation or Chopping frequency.
We could now determine the brightness of the light by measuring the size of the signal
fluctuations at the chopping frequency emerging from the filter. In this way we can use the PSD
system to make a measurement largely unaffected by the 1/fnoise.

Some further advantages can be obtained by recognising that a periodic alternation has a specific
phase as well as a frequency. The PSD technique makes use of this fact to obtain some further
improvements over simple direct measurements. The best way to understand the behaviour of
the PSD system is to begin by considering what the detector observes when the chopper is
blocking the signal path. It's important to realise that the ‘source blocked’ level is rarely zero. In
the simplest optical systems the chopper is painted black or is made of a material which absorbs
light. As a result, when a chopper blade blocks the detector's view it sees thermal radiation
emitted by the chopper surface. The amount of radiation produced will depend upon the
material and its temperature.

Figure 16.1 illustrates the use of a reflecting chopper made of a shiny material. When its blades
block the signal beam the detector will see light reflected by the surface of the chopper. In the
system shown another mirror is used to direct light from a second source, Sy, onto the detector
via reflection from the chopper surface. The system is arranged so that both sources are seen
against the common background level, b.

time —>

AN N N N

Vre i
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Figure 16.2 Signals in correctly phased PSD system.

If we define §;, S, and b to be the power levels produced by the two sources and the background,
a detector whose responsivity is a V/W will produce an output voltage

Vi = al(S; + b) ..(16.1)
when the signal path to §; is clear, and a voltage
Vo, = a(S, + b) ..(16.2)

when one of the reflecting blades fills the detector's field of view. The magnitude of the
alternating signal, V, output by the detector will therefore be
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V =a(S, -8, ..(16.3)
These voltages, and the others in the PSD, are illustrated in figure 16.2.

Provided that the background level remains the same no matter which source the detector sees,
the magnitude of the alternating voltage, V, is unaffected by the background. The system hence
suppresses the effects of any common background level as well as producing an alternating signal.
In principle we need not actually employ a second source. If it is omitted ( Sy = 0) the
magnitude of the output voltage will simply be V' = aS;. As will become clear later, however, it
can often be a good idea to employ a second source.

In practice the background levels against which the two sources are seen may not be identical.
Even when the process producing the background is physically the same in both cases, its level
may change with time, making it different during the times when §; and S, are being observed.
Hence we cannot expect to completely suppress any effects due to the background. We can,
however, usually arrange to dramatically reduce the influence of background power upon the
measurement — provided the system is carefully designed and operated.

In figure 16.1 the output signal from the detector is passed through an a.c. amplifier whose
voltage gain is A, and a bandpass filter which only passes a range of frequencies around the
modulation frequency, f The filtered signal, V;,, then passes through an arrangement whose
voltage gain can be switched to be either +A, or —A,. The setting of the switch which selects the
sign of this gain is controlled by a reference signal, taken from the chopper, which indicates
whether the detector can see §; or Sy at any moment. Ideally, the system will be set up so that the
signal modulation and the reference signal are in phase. This means that the gain will be switched
to +A, while the detector can see S; and to —A, while it can see S9 and the output switch operates
as the chopper blades move in/out of the detector's field of view.

Provided the chopper's teeth and gaps cover an area much larger than the detector's field of view
we can assume that the modulated output from the detector will be a square-wave of frequency, f,
and peak-to-peak amplitude, V. Now a square-wave of frequency, f, and peak-to-peak amplitude,
Vip» can be regarded as being the sum of a series of sinewaves of the form

V = (%).(Sin@nﬂ} + % Sin {27 (3f) ¢} + % Sin{Zn(Sf)t}...)

.. (16.4)

Hence, if we assume that the filter passes signals at a frequency, f, without loss but totally rejects
signals at frequencies of 3fand above, the signal, V;,, which emerges from the filter will just be

V., = (2(1Av

The reference signal will also vary periodically at the modulation frequency, f. Since both this
reference signal and the modulation of the input are produced by the movement of the same
device — the chopper — these two signals will have a fixed phase relationship, i.e. the signal and
reference are coherently related or phase locked to one another. In the example illustrated in figure
16.2 we have assumed that the signal and reference are in phase. In this situation the effect of the
switched-gain section is just as if the input were full-wave rectified and amplified by A,, to produce
an output

)(S1 — S,) Sin {27/} ..(16.5)

v, {t} = (2(1A”Ai”)(s1 — S,) Sin {271t} ..(16.6)

In the illustrated system this voltage is passed through an RC time constant. Provided RC > } this
time constant circuit will smooth out the half-cycle fluctuations in V, to produce an output
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voltage, V,,,, which will settle at a mean voltage

T
Vouw = iJ‘ v, {t} dt ..(16.7)
T/

where T = }17 (This integral gives the right value because each cycle of V, is the same as all the

others. As a result, the average voltage over many cycles is identical with the average voltage over
just one cycle.) Putting 16.6 into 16.7 we get the result

) 2
Vour = (—) (81 — S1)ad,A, ..(16.8)
JT

V,u: represents the mean (i.e. time-averaged) voltage level of the output produced by the PSD.
The time constant performs the task of allowing this mean level through to the output meter
whilst rejecting any voltage fluctuations at frequencies around the modulation frequency, f, or
above. When viewed overall, the PSD system converts a steady (or slowly varying) input to an
alternating signal at a modulation frequency, f. It then amplifies and filters the signal before
reconverting it back into a steady voltage for measurement. The manner in which this is done
allows us to largely suppress unwanted background effects and avoid 1//noise generated in the
detector and amplifiers.

Provided we know «, A,, A,, and Sy, we can determine the light power level, S, by measuring V,,,
with a d.c. voltmeter. However, any errors in these quantities will produce a corresponding error
in our measurement of §;. For this reason a better approach is use what is known as a Nulling
measurement technique. To do this we need to choose a controllable source for Ss. The PSD system
illustrated in figure 16.1 compares the light power levels §; and Sy and provides an output signal
voltage which varies in proportion with the difference between the two levels. Given a comparison
source, S9, whose output may be varied in a well defined manner we can adjust its output until
Vour = 0. From expression 16.8 this can only arise when §; — Sy = 0, no matter what the values
of a, A, and A, (assuming, of course, none of them are zero!). Hence, if V,,, = 0 and we know
Sy, we can simply say that §; = Sy without needing to know any of the amplifier gains or the
detector responsivity.

Nulling techniques are very useful when we need to make accurate measurements. They permit us
to avoid many of the systematic errors which arise when the behaviour of the amplifiers and
sensors are not well known. The technique does of course require us to have a well defined,
controllable, reference against which to measure. However in principle all measurements are
comparisons — direct or indirect. The nulling measurement simply brings as much as possible of
the chain of comparisons within a single system.

Thus far we have assumed that the chopped signal and the reference output share the same
phase. This may not always be the case. Consider the situation when, for some reason, the signal
and reference waveforms differ in phase by an amount ¢. If we define the time, ¢, such that¢ = 0
corresponds to a moment when the chopper moves out of the detector's field of view then we can
show that the output from the switched gain circuit, V,, will be

20A,A
Vp{t } = ( :

2a0A,A
oo [

)(s1 ~ S,) Sin{® — ¢} when Sin{®} > 0

)(81 — S,) Sin{® — ¢} when Sin{®} < 0

...(16.9)
where © = 2xft.
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Figure 16.3  Effect of various phase errors on PSD signals.

Using expression 16.7 we can therefore expect that the smoothed voltage, V,,,, this presents to
the voltmeter will be

2
Vour = (%) ad,A, (S — S,) Cos{g} ...(16.10)

i.e. we find that the magnitude of the smoothed output voltage will vary in proportion with the
cosine of the phase error, ¢. The effects of various phase error values are illustrated in figure 16.3.
This result has two implications. Firstly, it is clearly important to ensure that the PSD is ‘phased
up’ correctly — i.e. we should adjust the system to ensure that the wanted signal and the
reference share the same phase — otherwise the magnitude of the signal output will be reduced
by Cos {gb} The second implication concerns the system's ability to reject noise or any other
signals at frequencies which differ from f.

The noise produced in the detector, amplifiers, etc, can be regarded as a spectrum of
components at various frequencies. If we were to observe the noise voltage generated during
some specific period of time it could then (from the sampling theorem arguments) be described
as a spectrum of the general form

N

V. = ) AV; Cos{2aft + @} (16.11)

i=1

where the AV; and ®; values vary unpredictably from one noise observation period to another.
From the statistical properties of noise we can expect the average value of AV? to depend upon
the mean noise power level. The phases can take any values. Since there is a bandpass filter in the
system we need only worry about noise components at frequencies similar to the signal chopping
frequency, . We can therefore consider two situations. Firstly, consider the noise component at
the chopping frequency. The above description of the observed noise can be re-written as

N
V. = ) A Cos{2afit} + B; Sin{2nf,1} ..(16.12)
i=1
where
A; = AV; Cos{®;} ; B; = AV, Sin{®;} ..(16.13)
i.e
Vi = Al + B: ..(16.14)

when considering noise at the signal frequency f = f;. From the behaviour of phase sensitive
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detection only the in-phase portion of the noise, A; Cos{2xf;t}, will have any effect upon the
output. The quadrature portion, B; Sin {27f;¢}, will produce no output. Since the noise phase
varies at random we find that, on average, A? ~ B?. This means that, on average, A? = AV?/2;
i.e. only half the input noise power has an effect upon the output. As a result, the PSD has the
effect of rejecting that half of the input noise at the signal frequency which is In Quadrature with
the signal. This means that the system gives a better signal/noise ratio than we would've obtained
if we'd simply measured the size of the chopped a.c. signal with an a.c. voltmeter.

Consider now a noise component whose frequency, f;, differs from the chopping frequency by an
amount, 0f — i.e. the noise component can be written as

AV; Cos{27(f + of)t + ®;} ..(16.15)
Looking up trig identities in a suitable maths book we can find this is equivalent to
AV;[Cos{2xft} Cos{270ft + ®;} + Sin{2xft} Sin {27/t + ®;}]

...(16.16)

Because of the action of the PSD only the Cos part of this has an influence upon the output. In
effect, it is equivalent to an input

AV Cos{2xft} ..(16.17)

where
AV = AV, Cos {270/t + ®@;} ..(16.18)
i.e. the noise component produces an output which varies sinusoidally at the Beat Frequency or
Difference Frequency, Of = E’ — f|- This effect is illustrated in figure 16.4. Here the signal/
reference and the noise component ‘beat in and out of phase’ with each other and produce a
smoothed output level which varies roughly sinusoidally. For example, if we are using a chopping
frequency of f= 1000 Hz, noise at f; = 1001 Hz will cause the output to vary sinusoidally at 1 Hz.

Note that noise at 999 Hz will also produce output at 1 Hz when the chopping frequency is 1000
Hz.
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Figure 16.4  Effect of signal and reference frequencies not being the same.

Now the output resistor-capacitor time constant acts as a low-pass filter. It will only pass signal or
noise fluctuations in the frequency range from d.c. (0 Hz) up to 5-. Hz, where 7 = RC is the
time constant value of the filter. For example, a 1 second time constant (perhaps made with a
10,000 Q resistor and a 100 pF capacitor) will only pass unattenuated frequencies below 0.159 Hz.
This means that the output level will only be affected by signal noise in the frequency range 0.159
Hz either side of the chosen chopping frequency. In effect, the output time constant acts just like
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a very narrow bandpass filter to block noise at frequencies which differ from the signal we're
interested in. In theory the same result could be obtained using a very narrow-band filter. In
practice using the output time constant has two advantages. Firstly, it is possible to build time
constants (or inlegrators which produce a similar result) with time constants of many seconds. To
achieve the same results when using a 1 kHz chopping frequency we would have to build a
bandpass filter with a bandwidth of much less than 1 Hz at 1 kHz. Although not impossible, this
would be much harder to make.

Secondly, the output time constant does not mind if the chopping frequency should alter slightly
for any reason. The speed of the chopper might slowly drift as its motor warms up. If we used a
narrow bandpass filter we'd have to ensure that the chopping frequency doesn't drift so far as to
shift the signal frequency outside the filter's passband. Otherwise the signal will be lost! Since the
PSD switch is controlled by the chopper, any change in chopping frequency will be cause the
switching action to alter so as to take the change into account. For these reasons, plus the PSD's
ability to reject quadrature noise, the majority of the noise filtering action of a PSD is performed
by the output time constant or integrator.

This being the case it's sensible to wonder why we should bother to include a bandpass filter at all.
There are two reasons for including it. Firstly, sometimes the total input broadband noise power
may be much larger than the signal power. Unless we filter away some of this noise it will limit the
amount of amplifier gain we can use because, otherwise, it will saturate or clip the amplifiers.
Secondly, if we go through the same analysis as above but with a frequency which is an odd
harmonic (3f, 5/, etc) of the chopping frequency, we find that the switching action causes these to
produce output at frequencies low enough to pass through the output time constant. Hence noise
at these frequencies won't be blocked by the output filter. The bandpass filter stops detector and
amplifier noise at these frequencies from reaching the output.

PSDs are used in many forms for measurement and information processing tasks. They are an
example of a Heterodyne system. Similar techniques are used in radios, TVs, and radars.
Radioastronomers use a technique called Dicke Switching and optical astronomers use Sky Chopping
or Telescope Nodding to achieve the same results. The method is useful whenever we wish to alter
the signal frequency to avoid noise, make the information more easily handleable, or suppress
background effects. The special technique of Nulling is also one of the most reliable ways to make
Very accurate measurements.

Summary

You should now know how Phase Sensitive Detection (PSD) systems work. That they can be used to
avoid 1/f noise in detectors and amplifiers and can be used to subtract the effects of a steady
background level. You should also now understand that the PSD is an example of a Heterodyne
technique which uses Frequency Conversion. You should also know that a Nulling measurement
technique is useful because it means we don't have to know exactly the sensitivity or gain of our
detectors and amplifiers when making accurate measurements.
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Chapter 17

Synchronous integration
17.1 ‘Boxcar’ detection systems

Phase sensitive detection systems are ideally suited to dealing with signals which have a steady, or
relatively slowly varying, level. In many situations, however, we need to measure the details of a
signal which varies quite swiftly in a complex manner. The signal may also not last very long. In
order to measure brief, rapidly changing signals a different approach is required. Synchronous
Integration is a technique which allows measurements to be made on complex signal patterns
which have powers well below the general detector or amplifier noise level. The technique can be
employed in various ways provided two basic requirements are obeyed. Firstly, the signal must be
repeatable so we can produce a series of nominally identical pulses or Signal Cycles. Secondly, we
must obtain an extra Trigger signal — similar to the phase reference signal required for a PSD —
which can be used to tell the measurement system when each signal cycle begins. Although it's
usually convenient to arrange for signal cycles to occur with a steady repetition rate, this isn't
absolutely necessary provided we know when each cycle starts.

Clock

l N
Delay Widh ¢

1 R
Light N
Source |>_O/
Switch

Detector Amplifier

Integrator

Figure 17.1 Analog synchronous integration (boxcar) system.

These requirements are often satisfied by using some form of clock which regularly initiates the
signal and provides the trigger information. Alternatively, the signal generating process may, in
itself, provide some information telling us when each signal cycle begins. For the sake of
illustration we can concentrate upon a situation where we wish to measure how the output light
intensity of a pulsed laser varies with time during each output signal pulse. The techniques
described in this chapter can, however, be applied to measure the shape of any repetitive signal
pattern.

Some electrical gas discharge lasers can be arranged to produce a series of light pulses when
connected, via a suitable circuit, to a steady power supply. Each burst of light output is
accompanied by an abrupt drop in the voltage across the gas tube. Under these circumstances we
could use the sudden fall in voltage to trigger the measurement process. More generally, however,
we will have to provide some kind of clock signal to initiate light output. Figure 17.1 illustrates a
typical system designed to measure how the output intensity of a pulsed laser varies with time. In
this case we have arranged for the system to be controlled by a clock which both ‘fires’ the laser
and triggers the measurements.
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Figure 17.2  Control and data waveforms in ‘boxcar’ integrator.
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For the sake of simplicity we can assume that the clock which starts each cycle of light output has
a period, 7. This means that the resulting signal cycles will occur at the rate, 1/7. Each clock
pulse immediately starts a signal cycle. The clock also controls the operation of a switch which can
connect the amplified signal to an analog integrator. The switch is only closed for a brief Sampling
Interval, 0t, which begins after a time delay, A, following the appearance of each clock pulse.

Synchronous integration works on the basis that all the signal cycles are similar to one another.
We can then define the shape of each individual pulse in terms of the same function, v {t}, where
trepresents the time from the beginning of each signal cycle. Figure 17.2 illustrates a typical set of
pulse and signal patterns we might see in a working system of this kind. The output voltage from
the detector is amplified to produce a signal voltage, V {t}, which is presented to the switch.
Since the switch is only connected for a brief period, d¢, after a delay, A, following the start of each
clock pulse, the signal presented to the integrator looks like the waveform, Vg{t}, shown in
figure 17.2. This can be defined as

Vit} = V{¢} when A <t <A+t
otherwise Vg{t} =0 .. (17.1)

We can now start with the integrator (capacitor) voltage set to zero and allow the system to
operate for n signal cycles. In the absence of any noise this will produce an output voltage

T A+ 0t
vV, {A ot} = an V it} dt = nK_[ v{t} a: ..(17.2)
0 A
where
-1
K = — ..(17.3
RC (17.3)

and Rand Care the values of the resistor and capacitor used in the analog integrator. The minus
sign is present because an analog integrator normally reverses the sign of the signal (see Chapter
15). Provided ot is sufficiently small, the signal level will not change a great deal between the
times, A and A+d¢, and we can approximate the above integral to say that

V. {A} = nKV {1} ¢ .. (17.4)

i.e., V,{A}, is proportional to the signal voltage, V {¢}, which arises at a time, ¢t = A, following
the start of each pulse. The output is also proportional to nKod¢, hence we may increase the
magnitude of V, {t} by operating the system for more clock cycles, increasing the value of n. In
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effect the system adds up the contributions from a series of pulses to magnify the output signal
level.

In practice, the required signal will always be accompanied by some unwanted noise voltage, ¢ {t},
which — being random — will differ from one pulse to another. This will contribute an
unpredictable amount

A+ 0t

E, = K Zj e{iT + 1t} di .. (17.5)
i=1 "4
to the integrated output voltage, where ¢ {iT + t} represents the noise voltage during the i th
pulse at a time, ¢, from its start.

Unlike the signal, these noise voltages which occur during each cycle are not all identical. As the
noise is random in nature we can't say what value this error voltage will have when we make a
particular measurement. As with all random quantities we can only predict the average, typical, or
likely properties of the noise. Taking the simplest example of a ‘white’ noise input spectrum
whose noise power spectral density is §. We can use the arguments presented in section 15.2 to
say that the mean noise power added to a single integration will be N; = K?Sd¢ /2. (This result
comes from considering expression 15.9 and recognising that, in this case, the integration
constant K° = 1 /7%) This means that the voltage produced by each individual sample
integration will typically differ from the next by a rms amount

)
e = N, = K Tt ..(17.6)

The noise power spectrum of a real white noise source can never extend over an infinite
frequency range. (If it did, its total power would be infinite!) For a practical noise source we can
therefore say that the input total noise power will be N;, = SB,, where B, represents the Noise
Equivalent Bandwidth of the input noise spectrum. Here we can assume that this means that the
noise covers the frequency range from around d.c. (0 Hz) up to a maximum frequency equal to

B,. The input will therefore exhibit an input noise voltage level equivalent to an rms voltage of
il
€n = \/SBn.

Combining these expressions we can therefore say that the input and output rms noise voltage

levels will be such that
ot
e, = Ke\|— . (17.7)
2B,

This expression links the rms noise level, ¢,, at the integrator's output to the input level, e¢,. We
can now use this expression to determine the accuracy of a measurement using the synchronous
integrator, although it is worth remembering that, in general, the precise relationship between
¢, and e, depends upon the details of the input noise spectrum. A more detailed analysis would
show that expression 17.7 is only strictly true for a noise spectrum which has a uniform noise
power spectral density over a frequency range, f iy tO f 4. Where f,;, < % and 4, > ﬁ.

As the actual noise level varies randomly from one measurement to another we can say that typical
measured levels after n signal cycles will be

v, {A} = nKV{A}ot = e,\/n .. (17.8)
The unpredictability of the noise means we can't predict a precise value for V. Instead, expression
17.8 indicates the most probably result, plus or minus the probable range of uncertainty. Here
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the prime indicates a typical measured value which may not exactly equal the result we might
predict using expression 17.4. Combining expressions 17.4, 17.7 and 17.8 we can obtain

not
VA — V1A = 2 Key | — ...(17.9
{a} {a} e szn (17.9)

In effect this shows the probable difference between the values we would measure with and
without random noise.

From expression 17.4 we could expect — in the absence of any random noise — to find the input
signal voltage level, V {¢} ata time ¢ = A from the expression

V,{A
v{t} = ﬁ ..(17.10)

unfortunately, the inevitable presence of some noise means that a typical measurement leads to
the actual result

v, {A}
nKot
Combining expressions 17.9-17.11 we can say that our measurement of the input voltage at any

time will be
1
v’ =V T e ——— .. (17.12
th = vith 2 en5 0, (17.12)

From 17.12 we see that the accuracy of measurements of the input signal level will tend to
improve as we increase the number of signal cycles we integrate over. Two points about this result
are worth noting. Firstly, both the total input noise level and the frequency range it covers affect
the accuracy of the measurement. This can be understood by imagining a situation where a given
fixed total input noise power is ‘stretched out’ to cover a wider frequency range. The effect of
such a change would be to move some of the noise power up to higher frequencies which find it
more difficult to pass through an integrator. Hence the fraction of the noise which influences the
output will fall if B, is increased while e, is kept constant. Secondly, the above result indicates the
relative sizes of the measured signal and noise voltages. When considering the performance of a
signal processing system in terms of S/N ratios we normally consider a power ratio. Since the
voltage accuracy obtained above varies as \/otn we can expect the output S/N (power) ratio
provided by a synchronous integration system to improve with d¢tn — i.e. in proportion with the
number of signal cycles integrated.

v{t} = .. (17.11)

In order to measure the overall shape of the signal waveform — and hence the way the laser
intensity varies with time — we can now proceed as follows:

Firstly, set A to a particular value, zero the integrator voltage, and perform an integration over n
clock cycles. Note the integrator output level, increment A by an amount, 0¢, and rezero the
integrator. Integrate again for n cycles, and note the new output level. Repeat this process until a
series of V,’ {A} values have been gathered which cover the whole of the signal cycle. Then use
expression 17.11 for a set of times, ¢ = A, to determine the shape of the input signal with an
accuracy which can be estimated using expression 17.12.

This form of measurement system is called a synchronous integrator because we perform
integrations on samples which are synchronised with the signal cycles. Many of the earliest system
employed an output time-constant instead of an integrator. The time delay, A, was then slowly
swept continuously over the range 0 to 7" and the smoothed output displayed on an oscilloscope
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or drawn on a plotter. These systems came to be called ‘boxcar’ integrators because the switch
control pulse looked on an oscilloscope like an American railroad waggon running along a track.

Synchronous integration systems are very effective at recovering information about weak pulses
when the noise level is quite high. As usual, however, there is a price to be paid for this
improvement in the measured S/N ratio. The total measurement for any particular delay, A, takes
a time n7T since we have to add up the effects of n clock cycles. Hence when we improve the S/N
ratio by increasing n, the measurement takes longer. A drawback of the method considered so far
is that most of the time the output integrator is disconnected from the input! Only that fraction,
0t/T, of the pulses which occur while the switch is closed contributes to the measurement result.
As a consequence, to measure all the details of the pulse shape we have to repeat the
measurement process up to 7/t times for each A value. Hence the time required to measure the
whole signal shape will be n T2/ t. If n is large and &¢ small, this can turn out to be quite a long
while!

To improve the S/N ratio without increasing the total measurement time we could chose to
increase, 0f, the duration of each sample. Unfortunately we can't expect to observe any signal
fluctuations which take place in a time-scale less than 6t because they will be smoothed away by
the integrator. When using a synchronous integrator we can only clearly observe details of the
pulse shape which persist for a time > 6¢. We can therefore reduce the total measurement time
by increasing ¢, but this may mean that we can no longer see all of the fine details of the signal.
Any real signal will only contain frequency components up to some finite maximum frequency,
[ max- From the arguments outlined in chapter 2 (section 4) we can expect that we will only be
able to see all the details of the signal when

1
2fmax

In practice, therefore, Qfﬁ usually represents the optimum choice for o4 A smaller value

ot < .. (17.13)

increases the required measurement time, a larger value prevents us from observing all the details
of the signal.

17.2 Multiplexed and digital systems

The system we have considered so far isn't a very efficient one since, in general, most of the signal
power was ignored because it arrived when the switch was open. This problem can be dealt with
by employing a Multiplexed arrangement.
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Figure 17.3 Multiplexed array of synchronous integrators.

Figure 17.3 illustrates a multiplexed analog synchronous integration system. This works in a
similar way to the one we have already considered, but it contains a ‘bank’ of similar switches and
integrators. In this system the first switch, SO, is closed during the periods when 0 < ¢ < d¢t, St
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when 0t < ¢t < 20¢, S2 when 20t < ¢ < 30t, etc. By using an array of M such switches and
integrators, where M = T /Jt, we can arrange that at any time during each pulse one or another
of the switches will be closed and the signal is being integrated somewhere. At a time, ¢, during
each pulse the jth switch will be closed, where j can be defined as the integer value (i.e. the
‘switch number’) such that jot < ¢ < (j + 1)0t. Each switch/integrator provides a separate
sampling and integration channel.

The simple system we considered earlier had just one channel and could only look at a small part
of the signal pulse at a time. The fully multiplexed version has T /¢ channels and covers the
whole signal cycle. The system essentially produces a series of integrated output voltages, V, {0},
V,{ot}, etc, and gathers information about all the pulse features ‘in parallel’. The advantage of
this arrangement is that all of the information from each signal cycle is recorded by the bank of
integrators. No signal information is wasted. As a result, the multiplexed system is much more
efficient at collecting information than the single-channel version. Using this arrangement we
don't have to keep repeating the integration process as A is varied.

Although multiplexing means that measurements can be made more quickly and efficiently,
wholly analog systems of this type are now rarely used. This is partly because it can be difficult
(and expensive) to arrange for a large number of nominally identical switches and analog
integrators, but it is also because digital information processing techniques have advanced rapidly
over the last few decades. Modern synchronous integration systems often use digital techniques to
obtain, relatively cheaply, a level of usefulness it would be difficult to match using analog
methods. As usual in information processing we can build various types of digital and analog
systems to perform a given function. The system shown in figure 17.4 makes use of a circuit
known as a wvoltage to frequency convertor (VFC) to implement a digital synchronous integration
system. This is a device which produces an output square wave (or stream of pulses) whose
frequency or ‘pulse rate’ is proportional to the input voltage. At any time, ¢, we can therefore
expect the VFC to be producing pulses at a rate

S = kv (o) .. (17.14)
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Figure 17.4 Example of a digital system for performing multiplexed
synchronous integration of a repetitive waveform.

where £/ is a coefficient whose value depends upon the details of the VFC circuit being used. The
operation of this system depends upon how we have programmed the computer. At the start of a
measurement the computer should ‘clear’ (i.e. set to zero) the numbers stored in the parts of its
memory which it will use for data collection. The computer then waits until it receives a trigger
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from the clock which is initiating the pulses to be measured (this can, if we wish, be the
computer's own internal clock). The computer then proceeds as follows:

Firstly, the counter reading is zeroed. It is then allowed to count pulses coming from the VFC for
a time, 0¢, and the resulting number, r, is added into a memory location at some address, Ay. The
counter is then re-zeroed, allowed to count for another period, d¢, and the new result, r,, added
into a memory location, A;. This process is repeated over and over again until the whole signal
cycle time, T, has elapsed. After one signal cycle the system will have stored a set of binary
numbers, Iy, I';, etc, in its memory. Each number will be approximately equal to

(j+ 1ot
ri = kfj v{e} dt ..(17.15)
jot
i.e. each number is proportional to the input voltage integrated over a short period of time. We
can now repeat this process n times to obtain a stored set of numbers, Ry, R, ..., which, in the
absence of any noise, will approximate to
G+ 1ot
R, = Nr; = nkff vA{t} dt ..(17.16)
jot
In effect, these stored numbers are proportional to the integrated signal voltages at various times
from the start of each signal cycle. They contain the same information about the signal pattern as
we could have collected with an analog synchronous integration system. As with the analog
system, if we arrange for 0¢ to be small enough we can approximate the above integral to

R; = nkotV {¢;} - (17.17)

where ¢; = jot. We can therefore use the collected R; values to determine the signal voltage at
various times during each signal cycle.

The counted values are a digital equivalent of the voltages collected at the output of a bank of
analog integrators. Equation 17.17 is the ‘digital equivalent’ of expression 17.4 for an analog
system. Each count is proportional to the input at the appropriate moment, V { t j}.

This digital approach has a number of advantages over the analog technique. One particular
advantage of the digital approach is that it is relatively easy to buy and use a large amount of
computer memory. For example, we can imagine buying and using a single digital memory chip
capable of holding 128 kilobytes of information. If we allocate 16 bits (i.e. two 8-bit bytes) to hold
each R; we can store a set of values which represent integrated level measurements of the input
signal shape at 64 x 1024 = 65,536 moments during each pulse. As a result, one cheap digital
memory chip can replace over 65 thousand separate analog integrators!

Summary

You should now understand how Synchronous Integration allows us to recover the details of a weak,
transient phenomenon by adding together the information from a synchronised sequence of
similar transient events. That a Multiplexed system allows us to avoid the signal information losses
we get with a ‘single integrator’ system which tends to ignore most of the signal most of the time.
That we can build either analog or digital systems to perform synchronous integration. You
should now also see that the combination of a Voltage to Frequency Convertor and a Counler act as a
form of integrator.
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Chapter 18

Data compression

Up until now we've considered systems which always try to preserve all the information content of
a message. For example, the CD digital system attempts to digitally encode information in a way
which accurately represents all the nuances of any input audio waveforms that fits within a 20 kHz
passband and a 95 dB dynamic range. To do this for two channels (stereo) we record and replay 2
x 16 x 44,100 = 1,411,200 bits per second. However, as we discovered in an earlier chapter, some
messages aren't very surprising (or interesting) and therefore don't contain much ‘real’
information. This raises two questions:

i) Can we re-code a signal into a form which can be sent or stored
using fewer bits or bytes without losing any real information?

ii) Do we have to carry all the details of a signal — or can we
discard details which are trivial, or ‘uninformative’?

The answers to these questions are important because, if we can reduce the amount of bits
required, we can send or store useful messages with equipment which has a lower capacity (i.e.
cheaper!). The term Data Compression has come into use to indicate techniques which attempt to
‘Stuff a quart into a pint pot’. Unfortunately, this term is used for a variety of methods which
actually divide into two distinct classes. Genuine data compression methods attempt to cut down
the amount of bits required without losing any actual information. Other techniques, which I'll
call Data Reduction or Data Thinning, seek out and discard information which they judge
‘unimportant’. Data thinning does throw away some real information, but if it works well the lost
information isn't missed! In this chapter we'll look at Lossless data compression. We'll consider
data thinning in the next chapter.

18.1 Run-length encoding

If you use a computer very often you'll eventually encounter the problem of running out of
‘space’ on the discs you're using to store files of information. Given the cash, this can be solved by
buying another box of floppies or getting a larger hard disc. A popular alternative is to use some
kind of ‘file compression’ technique. These often let you squeeze about twice as much onto a disc
before it fills up. Various techniques are used for this and some work better than others. Here
we'll look at a simple example based on the way computers often store pictures and use it to see
the features all true data compression techniques share.

Broadly speaking, computers can store information about images (pictures) either as a set of
Objects or as a Pixel Map. Although object-based techniques tend to give better results we'll look at
pixel methods since they provide a clearer example of how data compression can work. Pixel
mapping divides the image up into an array of rectangular or square ‘picture elements’. The
colour of each pixel is stored as a number in the computer's memory. The amount of information
(details, range of colours) the picture can contain is then determined by the number of pixels in
the image and the range of numbers we can store to indicate the colour of each pixel.
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Figure 18.1 Example of a ‘bit-mapped’ image.

Figure 18.1 shows an example of a bitmapped image. For the sake of simplicity, we've limited the
range of possible colours to just 16 and chosen an image which is only 32 x 32 pixels in size. (Note
that, for computers, ‘colours’ include black, white, and shades of grey.) In fact, modern
computers can usually cope with ‘24-bit’ pixel maps. These represent the colour of each pixel as 3
x 8-bit numbers — one 8-bit byte each for the red, blue, and green levels. However, here we're
just using four bits per pixel and only using the values to indicate the ‘greyscale level’ (i.e. how
dark the pixel is). This makes the explanation easier, but the following arguments also apply to
full-colour pixel-map systems.

In the image shown, the darkness of each black/grey/white pixel is stored as a number in the
range 0 - 15 or %0000 to %1111 in binary. 0 means white, 15 black, and 7 a middling grey. (Note
we're using a leading ‘%’ to indicate a binary number.) We only need half an 8-bit byte to store
the information about each pixel. Since there are 32 x 32 pixels, each requiring 4 bits, we need a
total of 32 x 32 x 4 = 4096 bits or 512 bytes to specify all the details of the image as a bit-map.
There are various ways we could record this information on a floppy disc or transmit is over a
digital signal link. For example, we can start in the top-left corner and group the pixel values
together in pairs to get a string of 8-bit bytes.

The first pair (furthest top-left) of pixel colour numbers are 7 and 7 (%0111 and %0111).
Grouping these bits together we get %01110111 = 119. Moving to the left, the next pair of colour
numbers are 0 and 0 (%0000 and %0000) which group to produce 0. The next left pair are 0 and
15 (%0000 and %1111) which group to %00001111 = 15. The next pair are 15 and 15 (%1111
and %1111) which group to %11111111 = 255. And so on... having finished the top line we can
repeat the left-to-right grouping process line by line down the image. We can therefore store,
record or transmit information about the picture's pattern as the series of bytes; 119, 0, 15, 255,
etc... The number of bits or bytes required is determined by the ‘size’ of the picture. To
represent any 32 x 32 pixel, 16 colour pattern we use 512 x 8-bit bytes. This sort of coding is called
Fixed Length because the number of bits/bytes required is fixed by the number of pixels and
doesn't depend upon the actual picture pattern. A blank (boring) screen — all ‘0’s or all ‘15’s —
requires as many bytes as a pretty (interesting) picture.

So, can we store or send all the picture information using fewer bits/bytes? The answer is, yes,
sometimes we can by using a different way to code or represent the information. The technique
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we'll use here is called Run-Length Encoding. This is based upon only storing information about
where in the picture the colour (darkess/brighness in this case) level changes. To illustrate this
process let's assume that the small array of numbers in figure 18.1 is the whole image we want to
store or communicate. As shown, this pattern is just 16 pixels wide and 3 pixels high. So we would
require 16 x 3 x 4 = 192 bits (24 bytes) to store or send it using the fixed length method described
above.

Looking at the example in 18.1 the 16 x 3 bitmap corresponds to the series of byte values: (first
line)119, 0, 15, 255, 255, 255, 255, 255; (second line) 119, 0, 15, 0, 0, 0, 0, 0; (third line) 0, 0, 15,
0, 0, 0, 0, 0. To run-length encode this information we proceed as follows: Begin with the ‘first’
value (the top-left byte). We note its value — 119 — and then note how many successive bytes
have this same value — in this case just 1. We then note the next byte value — 0 — and note how
many times it appears in succession — again 1 in this case. We keep repeating this process and
generate the values: 119, 1 time; followed 0, 1 time; 255, 5 times; 119, 1 time; 0, 1 time; 15, 1 time;
0, 7 times; 15, 1 time; and 0, 5 times. (Note that we ignored the locations of the line ends/starts
and just treated the numbers as one long sequence of bytes.)

This process has produced the series of byte values: 119, 1, 0, 1, 255, 5, 119, 1, 0, 1, 15, 1, 0, 7, 15,
1, 0, 5. Note that this list is only 18 bytes long, yet — provided we know the details of the run-
length encoding process — we can use it to reconstruct all of the original 24 bytes of picture
information. We have managed to squeeze 24 bytes of information into just 18. At first sight this
process seems suspiciously like magic. But it works! We often find that this type of encoding can
reduce the number of bits or bytes required to store all the details of a picture. Similar (but more
complex) methods can be used to reduce the number of bytes needed to store various sets of
information.

The reason this magic trick is possible can be understood by considering two ‘extreme’ examples
of pictures. First consider an image which just consisted of a single black pixel in the middle of a
32 x 32 16-colour bitmap. Recorded as a series of pixel-pair bytes this would be something like: 0,
0, 0, ... (about 255 times), 15, then 0, 0, 0, (about 255 times), i.e. 512 bytes consisting of a string
of zeros with just one 15 somewhere in the middle. Run-length encoded the same picture
information would be something like: 0, 254 times; 15, 1 time; 0, 255 times — just six bytes!

Now consider a picture where every pixel is a different colour to its neighbours. As a plain fixed
length series this might be 512 bytes with a pattern something like; 127, 203, 96, 229, etc... Run-
length encoded it becomes; 127, 1 time; 203, 1 time; 96, 1 time; 229, 1 time; etc. The run-length
sequence now contains 1024 bytes — twice as many as the plain set of values! This is because we
had to dutifully include an extra byte after every pixel value to confirm that the value only
appears once before a different one occurs. We can make two general points from these
examples:

* The encoding ‘doesn't always work’ — i.e. it sometimes produces an output series of values which is longer
than the fixed length original.

* The degree of compression (or unwanted extension!) depends upon the details of the picture.

Before run-length encoding any 32 x 32 pixel x 16 colour image would be 512 bytes long. After
encoding, some images are shorter, some are longer. We've turned a fixed length input string of
symbols or bytes to a variable length output string. In fact, if we were to repeat the encoding
process for every possible, randomly chosen, picture pattern we would discover that on average
the compression technique produces an output which is about the same length as the fixed
length input. For a randomly chosen message the process shuffles the values but leaves us with the
same number of bits to store or communicate. However, most real picture patterns aren't
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random! Provided we only use the run-length method for pictures which contain many regions
where the colour is the same from pixel to pixel the result will be a reduction in the number of
bytes. The image shown in 18.1 has a number of large areas of white, so it compresses reasonably
well using the run-length method.

18.2 Huffman coding

Although I won't attempt to prove it here, data compression methods all exhibit the feature that
they successfully compress some types of patterns but expand others. On average, they don't
(unless they're badly designed!) make randomly chosen ‘typical’ patterns either smaller or bigger.
However, most pictures, text files, etc, aren't really ‘random’. There are patterns which aren't of
any value. For example, the text character sequence, ‘qgsdxf ftfngt zdplsdesd xotr’ isn't very likely
to occur in written English. An information storage system which devotes as much storage space
to it as to, ‘Old Fettercairn tastes great’, is being wasteful. Similarly, some characters or symbols
occur more often than others or convey less information.

The usefulness of compression techniques comes from matching the technique to the types of
pattern you actually want to compress. It essentially removes the redundancy required to encode
‘daft’ or uninformative patterns. (The daft patterns are then the ones that would come out longer
than the original when encoded.) For this reason a variety of compression techniques have been
developed, each having its own good points. Here we'll consider a system called Huffman Coding
after it's inventor. For the sake of illustration we'll use the ancient written language of ‘Yargish’.
Although it's now rarely used it was once popular amongst the Yargs — a tribe who lived in the
hills of Dundee and worked in the tablet mines. (OK, I'm making this up!) The language
consisted of just 8 characters — six letters, a ‘space’, and a punctuation mark. Here I'll represent
these characters as, X;, Xy, ... X;, ... Xg. By examining lots of Yargish books we find that the
relative frequencies or probabilities with which each of these characters occurred were, P;, Ps, ...
P;, ... Pg. From chapter 5 we can say that the average amount of information (in bits) in a typical
Yargish message N characters long will be

8
(H) = -N ZPZ- log, {P;} .(18.1)
i=1
where the angle brackets () are used to indicate that we're talking about an average or typical
value. The actual amount of information in a specific message which contains A; of the X;
character, Ay of the X, character, etc, will be

8
H = - ZAi log, {P;} .. (18.2)
i=1
An analysis of Yargish reveals that the relative probabilities of the character occurrences are:
P, = 0125, P, = 0-5, P = 0-05, P, = 0-06, P5 = 0-055, P; = 0-01, P; = 0-17,and P; = 0-03. A
typical 16-character (i.e. N = 16) message would therefore contain 38-48 bits worth of
information. However, to be able to indicate 8 distinct symbols we would expect to have to
allocate 3 binary bits per symbol to give us the require range of possibilities (2°= 8). This means
that, using a simple fixed-length code like, X; = %000, X, = %001, X5 = %010,
Xg = %111, we have to send 3 x 16 = 48 bits to communicate a 16-character/symbol message.
We've already encountered this basic problem. The fixed length coding scheme is inefficient. It
contains redundancy which could be used to help detect and correct errors, but slows down the
communication process.

This arises because the symbols/characters used aren't all equally probable. From the above
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values we can say that the amount of information provided by each individual character's
appearance is typically:

hy = —logs {Pl} = 3 bits worth for each occurrence of an X,

hy = —logs {PQ} = 1 bit for each Xo,
and similarly, hs = 4-32, hy = 4-06, hs = 4-18, hg = 6-64, hy = 2:26, and hg = 5-05.
From this result you can see that characters which appear more often only convey a relatively
small amount of actual information per occurrence. For example, X,'s which, typically, make up
half the symbols in a message only provide 1 bit's worth of information per appearance despite
using 3 bits to code. You can also see that rare symbols provide a relatively large amount of
information. X¢'s typically only occur about once in a hundred symbols, but when they appear
they provide 6-64 bits worth of information. This result is interesting because it shows that the fact
that a symbol or character might be coded using three binary bits doesn't mean that it always
carries just three bits worth of actual information. (However, if all the symbols were equally
probable they would each have a Pvalue of 0-125 and an A value of 3. Then the actual number of
bits used to represent each symbol would equal the amount of actual information per
appearance.)

It is this difference between the actual information content (in bits) and the number of bits
required for fixed-length representation — where every symbol is represented by the same
number of bits (3 in this example) — which allows us to compress data using the Huffman
method. Huffman coding represents each character or symbol by a string of bits whose length
varies from character to character. Highly probably characters (like Xy) are represented by short
strings. Rare characters (like Xg) are represented by long strings.

The way Huffman codes are produced is shown in fig 18.2. First we list all the codes, X, to Xj,
along with their relative probabilities. We identify the two symbols which have the lowest
probabilities and bring them together, adding their probabilities together. We then treat the
gathered pair as a fresh symbol and repeat this process over and over again. In this way we reduce
the number of ‘branches’ by one as we move ‘down’ from each level to the next. Eventually we
will have brought all the symbols or characters together and reached the base of the tree where
there's one combination with an accumulated probability of 1. (Assuming, of course, that we
haven't missed anything!) The resulting tree will then have as many levels as we have different
characters or symbols — 8 in this case.

In principle we may find that three or more candidates at a given level share the lowest
accumulated probability values. If this happens we just pick two of them at random and go on.
The branch pairs which link a pair of locations on one level with a single location on the one
below can be called Decision Pairs. We label the two branches of each decision pair with a ‘1’ and a

‘0.
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Figure 18.2  Example of the use of a Huffman Tree.

To work out the Huf