
 J. C. G. Lesurf � 1 � RO Sound System V0.95 Feb 2016

The RISC OS Sound System.

Introduction

RISC OS (RO) first appeared on ARM-based hardware with the OS and its hardware designed
with each other in mind. In those early days the main interest in audio was in terms of 8-bit
�trackers�, �VoiceGenerators�, etc, for purposes like games or simple interactive sounds. Over the
following decades the RO Sound System (ROSS) evolved and expanded. During 2013 it took
another step forward when RO was ported onto hardware like the PandaBoards. This has much
better sound hardware than the early bespoke machines. It is quite capable of playing even 96k/
24bit �high resolution� audio. And as the decades have passed, computer users have come to
expect steadily higher audio quality.

The ROSS has continued to develop, and now forms a basis for being able to use the new RO
hardware to play 16-bit audio with superb quality. However one of the consequences of the
decades of development is that the system has become more complex and harder to understand �
both for programmers and users. This document is written to try and bring together a clearer
description of how the ROSS operates.

The existing Programmer�s Reference Manuals (PRMs) provide many details of the ROSS. But
they omit modern developments. And they don�t always explain clearly how all the details fit
together. They also spend much time and effort on dealing with 8-bit �Voice Generators� � an
approach based on a now-ancient era. Alas, this also makes some of what the PRM says confusing
to a modern reader. e.g. the use of the term �channel� to mean a Voice Generator (i.e. waveform
synthesiser in software) �channel�. Whereas today we tend to think of audio channels in terms like
stereo having two channels � left and right.

Hence one of the purposes of this document is to change the focus, pay particular attention to 16-
bit audio and more recent developments, and describe behaviour in terms appropriate for modern
audio. The aim being to provide up-to-date documentation for those interested in high audio
quality applications. In doing so I will largely ignore the �legacy� side of 8-bit and voice generators
that make beeps and twangs! If you wish to know more about those I�d recommend reading the
PRMs and older documentation as they cover them in gory detail. I shall avoid duplicating that
effort!

Overview

If you open a TaskWindow on a modern RO machine, type in the command *mod. and press
return you will get a list of all the modules present. This will include mentions of the following
modules

 SoundDMA
 SoundControl
 SoundChannels
 SoundScheduler
 SharedSound

etc.

These provide the main user and program interface with the ROSS.

 J. C. G. Lesurf � 2 � RO Sound System V0.95 Feb 2016

SoundChannelsSharedSound

SoundDMASoundControl

8-bit VoiceGenerators

HAL + Hardware

Player App2

Driver2

Player App1

Driver1

Source2 Source1

Input Files or streams of audio data
16 bit

Old 8 bit

Fig 1 Simplified overview of audio playback pathways

Figure 1 gives a very simplified overview of the sound replay system. As you might expect for any
system which many programmers have kept �improving� over decades the reality is more complex.
There are various other things which may be going on that I�ve omitted or ignored above for the
sake of making the basic approach clearer at this point. Also some functions can be provided in
more than one way.

Note that in this document the terms �Driver� and �Handler� will often be used. These are
sometimes used with inconsistent meanings when you compare various audio documents on
aspects of the ROSS. Here I will use �Driver� to mean some item of software that is �transmitting�
a sequence of audio sample values and �Handler� to mean an item that is �receiving� the sequence.
Usually the Handler (receiver) decides when a fresh batch of sample values is required, etc.

The early Acorn RO systems essentially had 8-bit VoiceGenerators that were combined using the
SoundChannels module and the data then passed to the playback hardware via SoundDMA.
Since I won�t say much more about VoiceGenerators or 8-bit I�ve placed them to one side of the
diagram. The SharedSound and SoundControl modules are relatively recent additions.
SoundControl provides an interface to read and adjust the audio hardware settings. As such,
the details of its operation depend on the hardware you may be using. SharedSound allows
more than one sound source (e.g. from a file or internet stream) to be played simultaneously.
Prior to the addition of SharedSound it was assumed that only one 16-bit source would be
played at a time.

One real complication for understanding the ROSS is that various functions can be performed in
more than one way, and indeed, can sometimes be applied at more than one stage in the �chain�
from source to output! This makes any initial explanations more difficult as it is easy to get
befogged by a series of �on the other hand...� digressions to explain alternatives and their
relationship. The most common confusion that arises for this reason is the issue of �volume�

 J. C. G. Lesurf � 3 � RO Sound System V0.95 Feb 2016

controls. But there are other less obvious issues. To try and make an initial understanding easier,
in the next few sections I�ll use some specific examples of how audio can be played, and explain
some of the main features of each section of the ROSS.

SharedSound

The SoundDMA module is essentially a �doorway� between user software + modules and the audio
hardware. When you play audio the other desktop applications, modules, etc, are working to
deliver the data samples you wish to hear to this doorway and making the arrangements that
allow them to be understood and played as you wish. However in practice it is now usual for
audio players to drive SharedSound and leave that with the task of passing the series of audio
samples on to SoundDMA.

Using SharedSound provides various features. In particular the ability to �mix� sound streams so
you can hear more than one sound source simultaneously. Software that wishes to play audio can
still bypass SharedSound if this is what is required. But the SoundDMA 16-bit linear handler
can only accept one input stream at a time. As a result, most software will now choose to drive
SharedSound and leave it with the task of driving SoundDMA. For that reason I�ll start a
detailed examination of the ROSS with SharedSound.

There is an excellent �player� demo program written by Jeffrey Lee which includes the source code
in �C�. This provides a clear example of how to use SharedSound.1 So I�ll base the following
explanation on that example. It can play 16-bit stereo LPCM wave files which have the common
44-byte header. The following description gives the main steps in the process. For clarity I�ve
ignored various error checking processes, etc, and only describe the main steps required to
actually play though the audio file.

• Firstly, the program finds the input Wave file and loads the series of sample values it
contains into a �buffer� store in memory. The samples are loaded as Right-Left pairs, using
16-bits per value. i.e. each stereo sample pair occupies a 32-bit word in memory.

• The program then calls the SWI SharedSound_InstallHandler giving it the address
of the part of the program that will supply it with the required series of samples. This also
tells SharedSound the locations of some other values which the module and main program
can then use to exchange control information. The SWI call returns with a
sound_handler_id which can then be used by the program to identify which handler it
is using in any communications with the SharedSound module. This is necessary as
SharedSound may be playing more than one series of sound samples provided by different
client programs. The returned value will be 0 if no handler was provided. So a non-zero
value confirms that a driver-handler connection has been made successfully.

• The program then calls SharedSound_SampleRate quoting the sound_handler_id
value it was given. This is so SharedSound can tell the program the sample rate which will
be used.

• The audio is then played by SharedSound calling the part of the program it has been told
to use, and that feeds the sample values to SharedSound. This part of the process acts as a
loop. As the playing process continues one of the locations provided by the program is
regularly updated by SharedSound to report how many of the provided sample pairs have
been played.

• The main program runs its own loop, monitoring this value until it sees that
SharedSound has now played all the sound samples that were provided. It then calls
SharedSound_RemoveHandler quoting the sound_handler_id value. This

1 http://www.iconbar.com/Building_the_Dream_2_-
_The_RISC_OS_Sound_System/news1209.html

http://www.iconbar.com/Building_the_Dream_2_-_The_RISC_OS_Sound_System/news1209.html
http://www.iconbar.com/Building_the_Dream_2_-_The_RISC_OS_Sound_System/news1209.html

 J. C. G. Lesurf � 4 � RO Sound System V0.95 Feb 2016

terminates the audio playing process and allows SharedSound to remove the connection
and forget the handler.

• The player program now quits.

To understand in more detail I�d recommend examining the source code which Jeffrey Lee
provided because the program is intended as a tutorial demonstration of how audio can be played
using SharedSound. More generally, a longer file (or something like a stream) may be too large
to load as a complete item into memory. In such cases there will need to be added complications
to keep supplying new blocks of sample values to be played as a continuous sequence by
SharedSound. Note also that SharedSound leaves it to the driver/program providing the
samples to do so at the required sample rate.

SharedSound allows you � if you wish � to have more than one audio file or stream playing
simultaneously. So, for example, you can have one player (!PlaySound + PlayIt) play one sound
file whilst another (e.g. !DigitalCD + DiskSample) plays another. Even if the two files being
played are of different formats and sample rates, they will be combined and both play out at the
correct speed and pitch. SharedSound simply sums the values from each input stream. Note
that this means that there is a risk that the result will be too loud and clip the available 16-bit
range.

SharedSound provides a SWI SharedSound_SampleRate which allows you to change the
ROSS sample rate. So for example, on an ARMiniX which can support a sample rate of 88,200
samples/sec, a BASIC program:

 SYS"SharedSound_SampleRate",0,88200*1024

 END

will set the machine�s sample rate to 88.2 ksamples/sec. Sample rate values are given in 1024th�s
of a Hz and assumes stereo. i.e. it is the rate for each individual stereo channel (L and R). Any
change in rate made in this way will be forgotten over a shutdown and reboot. Note that various
documents use the term �frequency� in this context to mean a sample rate. However the correct
term in audio engineering is �rate�, so I have adopted that word here.

SoundControl

Jeffrey Lee�s �player� demonstration program has no user controls or interface. However most user
software � like !PlaySound and Playit � does provide various interactive controls which allow the
user to make adjustments � e.g. to the volume (gain) at which the output is played. They also
usually report or display some relevant details. e.g. The duration of a file and how much has been
played.

In addition to these there are a number of control settings and adjustments provided by the
ROSS. A relatively new addition providing some of these arrangements is the SoundControl

module. This essentially provides a series of settings which allow the user to alter some of the
audio hardware behaviour. For early RO hardware this may not do a great deal. But more
modern hardware may have a a number of different audio inputs and outputs, and provide
greater flexibility. The aim of SoundControl is to give a standard ROSS interface for audio
hardware control.

The *command MixVolume can be used to adjust the operation of the hardware. It treats the
hardware as if it were a �mixer desk� with a set of inputs and outputs whose gains (volumes) may

 J. C. G. Lesurf � 5 � RO Sound System V0.95 Feb 2016

be altered, or which can be muted, etc.

You can examine the main sound settings of your RO machine by using a small !SoundCheck
application which is available from http://www.audiomisc.co.uk/software/SoundCheck.zip.
When this application is run it will list a series of settings whose details will depend on the
machine hardware, OS version, and if you are playing any audio at the time or not. These results
appear in a TaskWindow. When I ran !SoundCheck on an ARMiniX running RO5.19, part of
what it reports showed the MixVolume settings as listed below.

 adj stereo on [-2] Headphones gain = 0.00 Min -30.00 Max 0.00 Step 2.00 [dB]

 fix stereo mute [-1] Speaker gain = 0.00 Min -24.00 Max 6.00 Step 2.00 [dB]

 fix stereo mute [-3] Line out gain = 0.00 Min -52.00 Max 6.00 Step 2.00 [dB]

 fix stereo mute [-4] Aux out gain = 0.00 Min -52.00 Max 6.00 Step 2.00 [dB]

 adj stereo on [0] System gain = 0.00 Min -18.00 Max 24.00 Step 6.00 [dB]

 fix mono mute [1] Microphone gain = 0.00 Min 6.00 Max 30.00 Step 6.00 [dB]

 adj stereo mute [2] Line in gain = 6.00 Min 6.00 Max 30.00 Step 6.00 [dB]

 fix mono mute [3] Aux in or CD gain = 0.00 Min 6.00 Max 30.00 Step 6.00 [dB]

Eight hardware �devices� are shown. But in practice only one audio output �port� (Headphones)
was actually connected and working at the time, using the version of RO5.19 on an ARMiniX.
The Headphones output is the hardware device which in this case provides the audible output
from a socket on the back of the ARMiniX. The purpose of the MixVolume command can now
be understood from its syntax.

*MixVolume <mixer> <category> <index> <mute> [<gain>]

• <mixer> specifies which item of hardware is providing the inputs and outputs. For the
ARMiniX (based on the PandaBoardES) these are all provided by a TWL6040 chip. As the
machine�s main audio hardware this is treated as mixer 0.
• <category> is the number representing the individual device/port. The relevant values are
shown by !SoundCheck as the number in square braces. So the Headphones are category -2.
• <index> is a value representing the channel and defaults to 0 meaning both.
• <mute> indicates if the device/port is muted or not: 1 = muted / 0 = will pass audio.
• [<gain>] sets the nominal gain (volume) for the device/port.

Each line for a device/port listed by !SoundCheck gives various details. This starts with:

• adj/fix = indicates if the gain can be changed by MixVolume or not.
• stereo/mono = indicates if the device is stereo or mono. (surprise!)
• on/mute = indicates if the device is muted or working.
• [<category>] = device/port number. (Note an output has a negative category number.)

followed by the name assigned to the device/port. then followed by gain setting details.

By default the Headphones details above are listed as:

 gain = 0.00 Min -30.00 Max 0.00 Step 2.00 [dB]

This means that the current gain (volume) setting for the Headphones output is 0dB. And that
this can be changed in steps of 2dB over a range from 0dB down to -30dB.
When using the MixVolume command, gain values are specified in 16th�s of a decibel. So if I use
the command *MixVolume 0 -2 0 0 -64 I can hear the level of music played out of the

http://www.audiomisc.co.uk/software/SoundCheck.zip

 J. C. G. Lesurf � 6 � RO Sound System V0.95 Feb 2016

Headphones output reduce. And when I use !SoundCheck again the relevant line in its report
changes to

adj stereo on [-2] Headphones gain = -4.00 Min -30.00 Max 0.00 Step 2.00 [dB]

which shows that the command has changed the Headphones gain to -64/16 = -4 dB. Any change
made in this way will be lost over a shutdown and reboot as !Boot will then re-impose the default
settings.

SoundDMA and the main OS Sound Settings

From quite early versions, the ROSS has included the SoundDMA module and a set of commands
and SWIs. Note that some of the *command/swi names which were originally provided for 8-bit
VoiceGenerators now have names which may be confusing in a modern context. e.g. the SWI
Sound_Stereo which sets the stereo position between Left and Right of the output from a
specified 8-bit VoiceGenerator! Here I will largely neglect the commands and SWIs which are
really relevant only for such situations, and will focus on the 16-bit arrangements.

Volume control.
The command *Volume is described in various documents as if primarily provided for 8-bit
audio. Indeed, is sometimes assumed that it �should� have no effect on 16-bit audio. However in
practice it generally does! The reason for this seems sensible enough. i.e. long before the addition
of modules like SharedSound and SoundControl people would be wanting to play 16-bit
audio alongside 8-bit and wished/expected to have a �system� volume control that let them adjust
the overall output level regardless of their choice of audio replay software, etc.

As a result it has become the norm for replay applications and drivers like !PlaySound + PlayIt or
!DigitalCD + DiskSample to allow the user to control the sound replay level using the *Volume
command. Hence amongst its preferences !PlaySound has a PlayIt Configuration option �Scaled
volume�. Ticking this causes the *Volume system setting to affect the output sound level.
Similarly, !DigitalCD offers an �Ignore system volume� option.

By default a ROSS setup will begin with a *Volume value of �127�. This nominally represents a
unity gain � i.e. amplitude factor of x 1.00 (0dB). You can issue the command
 *Volume <N>
where <N> is a value in the range 1 to 127 to specify the system volume you require. The amount
by which a value affects the actual output level is rooted in ye ancient lore of the 8-bit semi-log-
law samples era. Over most of the range a change in <N> of 16 causes a change in the amplitude
scaling of the output of a factor of a half. e.g. *Volume 111 will give an amplitude scaling factor
of x 0.5 (-6dB), and *Volume 95 gives an amplitude scaling of x 0.25 (-12dB). The result is
that the setting behaves a bit like a �log law� volume control.

This �system� volume/gain can also be adjusted using a SWI, Sound_Volume. Calling this with a
value in the range 1 - 127 in r[0] sets the system volume level as above. Calling it with �0� in
r[0] causes the SWI to return the current system volume setting value in r[0].

Turning sound output on or off
The command *Audio can be use to enable or disable the entire ROSS sound replay operation.
*Audio ON enables output, and *Audio OFF disables it. Calling the equivalent SWI
Sound_Enable with r[0]=1 enables sound output, r[0]=0 disables output. If the sound
output has been disabled by this command you may find that you get no output regardless of
what other settings you may make!

 J. C. G. Lesurf � 7 � RO Sound System V0.95 Feb 2016

The command *Speaker may be used to switch on or off the connection to any internal
loudspeaker(s). i.e. *Speaker ON connects the speaker(s) and *Speaker OFF disconnects
them. There is an equivalent SWI Sound_Speaker which can also read the current state of the
speaker connection. Note that on some hardware there may be no physical speaker or speaker
connection, so this command may do nothing. In such cases any output may come via a different
route � e.g. via a �Headphones� output on an ARMiniX.

There is also a *Configure setting
*Configure SoundDefault <speaker> <volume> <voice_number>

which will alter the defaults.

• <speaker> = On or Off and acts as the *Speaker command.

• <volume> = Value in the range 0 (quietest) to 7 (loudest).

• <voice_number> = Number of the VoiceGenerator used as the ‘system beep’.

These values will persist over a shutdown-restart cycle as they store the relevant values in CMOS
memory for re-loading at bootup. Note that here the <volume> value has a much more limited
range than *Volume and gives fewer steps.

The command *Voices will list the installed VoiceGenerators and their numbers. By default,
the first of these (WaveSynth-Beep) will have an extra �1� at the start of its line in the list. This
indicates that it is the currently default system beep.

In general I would recommend using the !Boot Sound interface to adjust settings rather than use
the above configuration command.

!Boot Sound settings

!Boot provides an interface for controlling the basic sound defaults. To access this double-click on
!Boot and then select the �Sound� option. You should then see a window similar to the one in the
illustration below.

The window displays a series of �thermometer bars� for
various possible input and output devices. Note that the
presence of a named device does not always mean one is
present and accessible!

The sliders allow you to adjust the gains (volumes) of
each useable device. Devices that are not usable have
their slider greyed out. You can drag a usable slider to
choose a new default gain (volume) setting for each
accessible device.

Each device also has a �mute� icon which can be used to
disable its input or output.

The window also allows you to select your preferred VoiceGenerator as the �system beep�. You can
then test (�Try�) the results of any changes you have made and either set them as the new default,
or cancel any changes. Alternatively you can revert to the standard default settings.

 J. C. G. Lesurf � 8 � RO Sound System V0.95 Feb 2016

An example � PlayIt

An examination of PlayIt serves two useful purposes

• It shows how the ROSS can be used to play a variety of types of audio input and how the
ROSS may be controlled and employed in practice.
• PlayIt also provides a convenient access point to the ROSS for more purposes than simply
being used by applications like !PlaySound or !DigitalCD. In effect it provides a convenient
and flexible interface as well as being a neat example.

SharedSound

SoundDMASoundControl

HAL + Hardware

Fig 2 Using !PlaySound + PlayIt to play a Wave file

Wave File

PlayIt

16 bit LPCM audio

Control exchanges

!PlaySound

For the sake of example I�ll assume initially that PlayIt is being controlled via !PlaySound, but this
could be replaced by !DigitalCD or some other program.

Figure 2 shows an overview of what happens when !PlaySound + PlayIt are used to play the
content of an LPCM Wave (�wav�) file. The application, !PlaySound, provides the user with a
convenient desktop interface for the process, providing controls for stopping and starting the
replay, etc. But the actual process of playing is done by the PlayIt module. In effect, The user tells
!PlaySound what to play, and it gets PlayIt to do the work, monitoring the process and giving
new instructions when required. !PlaySound also passes on details like changes in the required
Volume (gain) setting and if the system *Volume value is be applied or not.

Note that the above diagram shows the audio path in a slightly different way to Figure 1. This is
because the desktop application doesn�t need to process the actual audio data in this example.
More generally, though, the data may be passed though an application if it requires processing or
monitoring in some way. But if this isn�t required then the arrangement shown in Figure 2 is
more direct and efficient, so is preferred.

In fact if you have the PlayIt module loaded you don�t actually need a specific desktop application
to be able to play an audio file. The PlayIt module also provides a set of *commands which can be
used to control playing audio files. Although it tends to be more convenient for desktop users to
have PlayIt controlled using an application like !PlaySound.

In machines using an up-to-date ROSS the PlayIt module reads the data from the source file and,

 J. C. G. Lesurf � 9 � RO Sound System V0.95 Feb 2016

by default, sends it to the SharedSound module. These two modules exchange control data as
this process takes place. In effect, PlayIt gives SharedSound a new chunk of data when
SharedSound says it wants the next chunk of samples from the source file to have them played.
SharedSound then processes the data given to it (e.g. combining it with any other inputs it has
to �mix� and have played) and passes the result on to SoundDMA which puts them into DMA
(Direct Memory Access) buffers. These are areas of memory from which the sound hardware will
take the values and play them out. The details of how the hardware then deals with the audio data
samples depends on the SoundControl module and its settings.

On older systems that lack SharedSound, PlayIt will send the data direct to SoundDMA.
Indeed, if you wish, you can alter !PlaySound and !PlayIt so they bypass SharedSound and use
SoundDMA directly if you wish. Such a change is generally deprecated. But it can be done by
removing the �SSound� file from !PlayIt.Modules. It then uses the �Acorn 16-bit� interface. (On
ancient systems which lacks 16-bit support it will use the old 8-bit interface via
SoundChannels.)

SoundChannelsSharedSound

SoundDMASoundControl

HAL + Hardware

Fig 3 More detailed PlayIt overview

SharedSound
Driver

Acorn 16-bit Standard
Driver Driver

PlayIt player module

16 bit

Old 8 bit

!PlaySound

If you experiment with Jeffrey Lee�s demonstration �player� program you can see that it works, but
it doesn�t operate as a multitasking GUI Desktop application. In general, the process that plays
audio and feeds SharedSound (or SoundDMA) has to run in a way that allows it to bypass the
usual WIMP polling, etc, in order that it can respond promptly when required by
SharedSound. This means that being able to play audio is more conveniently handled at the
module or single-tasking level.

PlayIt is an audio player module that works well and is widely used. It can be used in a number of
ways. It provides both a *command interface and a set of SWIs which virtually make it into a
higher layer of the ROSS. To illustrate this I will outline how it can be used as a player via its *
command interface. For clarity I will make some simplifying assumptions which allow me to omit
some steps. e.g. I�ll assume that we can start when nothing is already being played, no audio
player application is running, and that the PlayIt module isn�t already loaded. The following steps
would usually be amongst the actions carried out for you by a playing application like
!PlaySound. Here I will describe them so you can follow the process.
You can load the PlayIt module in the usual ways. e.g. by opening up the !PlayIt.Modules

 J. C. G. Lesurf � 10 � RO Sound System V0.95 Feb 2016

application directory and double-clicking on the PlayIt module file. Before it can play a file
you need to tell PlayIt which route to use to play audio. Usually you will use SharedSound. The
command *PlayIt_Driver PlayIt:SSound tells PlayIt to load its SharedSound driver.

You can then play a wave file by using the *PlayIt_Play command followed by the file�s full
name. e.g. if you have a file called �music/wav� on your ramdisc you can commence playing by
using the command *PlayIt_Play ram:music/wav . If your ROSS is set up appropriately
you should then hear the file�s content being played. You can then use a set of commands which
include

• PlayIt_Pause = pause the replay (then use PlayIt_Play to resume playing)
• PlayIt_Volume <vol> = changes PlayIt�s replay gain to alter the volume
• PlayIt_Stop = stop playing the file.

The PlayIt_Volume <vol> value works in a similar way to the system *Volume. but in this
case it is applied by PlayIt rather than the ROSS. So PlayIt_Volume 127 means 100%
volume, which is the default. However unlike *Volume the PlayIt value can be up to 256, and
values larger than 127 will amplify the audio.

Note that this means that you may have at least three volume controls along the way between the
source and the output: PlayIt�s volume control, the system volume, and SharedSound’s

MixVolume. Also note that PlayIt can be told to apply the system volume setting or ignore it.

While using PlayIt, the command PlayIt_Status will list some information about the current
situation. By default, when SharedSound is present PlayIt will normally be expected to use it.
However you can choose to bypass SharedSound if you wish by using *PlayIt_Driver

PlayIt:Acorn16bit or the equivalent SWI to have PlayIt drive SoundDMA directly. There is
also a :Standard driver module compatible for use with 8-bit material on older machines.
However in general modern playing applications will tend to have PlayIt use SharedSound.

There are a number of PlayIt commands, and their equivalent SWIs, which can be used. The
result is that PlayIt provides a convenient interface for the user to be able to control audio replay,
either by typing in commands, or via Obey files. or by writing their own desktop application as a
front-end for the process. In effect, !PlaySound is just one example of such a desktop front-end
that allows the user to play files via drag-and-drop and control the process via a GUI. Similarly,
other applications � e.g. !DigitalCD � also use PlayIt to play some types of files. So for many
purposes the user or programmer can choose to regard a player/driver module like PlayIt as their
interface with the ROSS if they wish to avoid diving into the details of SharedSound, etc.

However a point to bear in mind is that PlayIt can only play a specific set of audio formats.
Hence if you have some other format you wish to play, you either need to have the data converted
before sending it to PlayIt, or use an alternative to PlayIt.

A bigger picture

A number of applications and programs have been ported from other platforms (mainly Linux) to
RO. These generally make use of a common �UnixLib� which makes implementation easier. In
addition a specific module DigitalRenderer (DR) has also been developed to handle the
output from media players and other Linux programs that output audio. The DR module has
therefore primarily been of interest to those wanting to port, and the programs that require them.
The diagram below shows how DR fits into the ROSS at present. Note that as things stand DR

 J. C. G. Lesurf � 11 � RO Sound System V0.95 Feb 2016

sends 16bit audio to SoundDMA. i.e. it uses the �Acorn16bit� route. This may change at some
future point to allow DR to send its audio output via SharedSound.

Linux and other similar unix-like operating systems adopt a common �everything is a file�
philosophy. In effect, when audio is played on a Linux system the operating system regards the
hardware that plays the stream of values as a �file� into which the samples are written. Conforming
to this and supporting it for Linux programs leads to an interesting consequential side-benefit
provided by DR. The DigitalRenderer module provides a set of swis that can also be used by
programs which have not been ported from another platform. It also provides a new �filing
system� �DRender:�. This makes it possible to play 16-bit audio by using a RO program or
command to �write the samples to a file�. As such it provides quite a simple-to-use route as a basis
for simple playback! I will therefore use this approach to illustrate how DR works and can be used
to play audio using the ROSS.

SoundChannelsSharedSound

SoundDMASoundControl

HAL + Hardware

Player App1

Driver1

Source1

16 bit

Old 8 bit

Fig 4 DigitalRender and crossplatform audio input

UnixLib
/dev/dsp emulation

Cross-platform
media player

DigitalRenderer
stream player module

FileSystem "DRender:"
RO SWIs, etc.

The above diagram shows how DR links into the ROSS. To illustrate the operation of DR I�ll
start by assuming you have already loaded the DigitalRender module. This provides three
commands: *DRenderStatus, *DRenderDefaults, and *DRenderOff.

The *DrenderOff command does what it says. It switches off the module�s activity and closes
the DRender: filing system if it was open.

If DR is not being used then *DRenderStatus will simply return the statement Inactive.

*DRenderDefaults will summarise the default values the module will use unless they are
changed by the user or a program. If no changes have been made these defaults will typically be:

Channels: 1. Format: 16bit signed linear (little-endian, right-left order). Period:
45. Frequency: 22050. Buffer size: 512. Num buffers: 43

You can change these settings by using *DRenderDefaults follows by one or more specific
parameter values as specified below:

 J. C. G. Lesurf � 12 � RO Sound System V0.95 Feb 2016

-c #: set number of channels (1,2,4,8)

-f #: set sample format,

 1 for 8 bit ulaw

 2 for 16 bit signed linear little-endian right-left

 3 for 16 bit signed linear little-endian left-right

-p #: set sample period in usecs, i.e. 1e6 / frequency

-q #: set sample frequency in Hz. Specifying a positive value

 automatically tries 16bit sound first, otherwise the old 8bit sound

 is used.

-s #: set buffer size per channel (keep it small)

-n #: set number of buffers to use in streaming interface. You should

 make this large enough to buffer enough data to keep playback

 stable (default is 43).

There is also an equivalent SWI DigitalRenderer_SetDefaults which allows you to read
or change the default playback parameters. Note that the currently set defaults will be used to
play out any audio samples written to any �file� in the DRender: filing system.

 The module having been loaded the first step in the process of playing audio via DRender: is
therefore to use either *DRenderDefaults or DigitalRenderer_SetDefaults to check
the defaults and then change them if necessary, telling the module what number of channels,
sample rate, etc, to employ when playing sample values written to DRender:. Having done this I
can use two simple examples using programs in �C�.

Example 1 - Mono 44.1k
Here the process starts by using the DigitalRenderer_SetDefaults SWI to set the sample
rate for DR to 44100. When giving a sample rate we also have to set the sample period (interval)
in microseconds, rounded by integer calculation. So we require something like:

nch = 1; /* number of channels (1 means mono) */

fin = 44100; /* sample rate */

pin = 1000000/fin; /* sample period (interval between samples) */

rin.r[0]=nch;

 rin.r[1]=0;

 rin.r[2]=pin;

 rin.r[3]=0;

 rin.r[4]=0;

 rin.r[5]=fin;

 _kernel_swi(0x4F70E,&rin,&rout);

The zeros for other inputs mean that their existing defaults are not changed. One of these defaults
is 16-bit little endian right-left order which is fine for these test purposes. Note that in general
DR will expect 16-bit input and will normally drive it into the �Acorn16bit� handler of
SoundDMA. However DR can also drive the older �Standard� 8bit handler and will use this on
older systems which lack the 16bit capability.

Having setup DR to know how input is to be played we can generate a test waveform. Since the
input is a series of 16-bit integers the test program defines an array, short wave[44100];, to
hold the test waveform. This can then be filled by a calculation like

i=0;

fw=300.0; /* test frequency in Hz */

dp=2.0*3.1415927*fw/44100.0; /* step in phase between samples */

phase=0.0;

do

 J. C. G. Lesurf � 13 � RO Sound System V0.95 Feb 2016

{

 wave[i]=(int)(5000.0*sin(phase));

 phase+=dp;

 i++;

} while (i<44100);

When played correctly this should produce an output sinewave with a frequency of 300 Hz and
an amplitude of 5000/32768 = 0.152 of max volume. i.e. a �beep� of moderate volume.

The result could be played in various ways using DR. For the sake of example here this can be
done by defining a char pointer, char* bpoint; and the result can then be played using

FILE* outfile;

outfile=fopen("DRender:test\0","wd");

bpoint=(char*)wave;

i=0;

do

{

 fprintf(outfile,"%c",bpoint[i]);

 i++;

} while (i<88200);

fclose(outfile);

This reads through the bytes in the wave[] array and �saves� them to a file we have opened in the
DRender: filing system. Note that since there are two 8-bit bytes (�chars�) per 16bit short value
this loop has to output 88200 bytes, in sequence. Here I�ve called the file �test� but in fact the
name is irrelevant. Any stream written to the Drender: filing system will be treated as a series of
values to be played according to the current DR settings.

Once finished we can close the �file� and the program can be ended. A simple program of this
kind is most safely run in a TaskWindow. This is because a TaskWindow allows the DR module
to prevent its buffers being over-filled by using an UpCall to pause the writing process if and
when necessary. When you run the program you should hear a 1-second duration 300Hz beep
from the sound output of the ROSS.

Example 2 - Stereo 88.2k
This example is generally similar to the previous one, but the changes can be used to bring out a
few points which affect stereo replay or the use of more modern hardware � e.g. the PandaBoards,
etc. Some modern hardware can support higher sample rates than the old machines. So for
example the ARMiniX (PandaBoardES) hardware can actually handle 88.2k and 96k, and indeed,
24 bit sample values. Indeed, the use of these higher rates may lead to improved performance for
various reasons even when playing 44.1k material! So it is worth giving an example of how these
can be used for stereo.

As before we can use either the *DRenderDefaults command or the relevant SWI to set DR
to treat input as 16-bit stereo to be played at 88200 samples/sec (per channel). However the
ordering of the data now has to alternate right and left channels rather than give a mono series
that will be played out of both channel simultaneously.

A beep one second long now requires 88200 samples per channel. For test purposes the example
only plays a beep out of one of the two channels, and the other is kept silent. Given this, the array
whose values define the beep should now be short wave[88200]. This is filled much as
before, but with half the previous step in phase between samples. i.e. we now have

 J. C. G. Lesurf � 14 � RO Sound System V0.95 Feb 2016

i=0;

fw=300.0; /* test frequency in Hz */

dp=2.0*3.1415927*fw/88200.0; /* step in phase between samples */

phase=0.0;

do

{

 wave[i]=(int)(5000.0*sin(phase));

 phase+=dp;

 i++;

} while (i<88200);

to fill the array we wish to play out.

Since for test purposes we want the output to only appear on one of the stereo channels we can
write the output using

czero=(char)0;

FILE* outfile;

outfile=fopen("DRender:test\0","wd");

bpoint=(char*)wave;

i=0;

do

{

 fprintf(outfile,"%c%c",czero,czero)

 fprintf(outfile,"%c",bpoint[i]);

 i++;

} while (i<176400);

fclose(outfile);

Each loop sends two 16-bit sample values and DR sends the first value to one channel and the
second to the other. Hence each pass round the loop sends a left-right pair to be played. One
channel will be silent, and the other plays the test sinewave. By default DR will assume right-left
order, but this can be reversed if you change the DR setting that controls the ordering. Note,
though, that some hardware may have its left-right connections swapped over!

In the above examples I simply generated a 1-second block of values to play a test tone. And then
used an elementary �one byte at a time� method to play the results. However various other
approaches can be employed. So it is possible to read in chunks of data from a file, manipulate it,
and play out the results. But more complex playing arrangements will need to take extra steps to
be able to play safely and reliable. For example, you should regularly check how many DR buffers
are available. If this isn�t done problems may arise either because you are trying to write data too
quickly and overrun the buffers, or too slowly, and the buffers empty, causing gaps in the replay.
Hence it is generally advisable to regularly monitor the state of DR and its buffers whilst using it
to play audio. Similarly you�d normally need to check when starting that DR was loaded and, if
not, to either load it or quit with a suitable error of it wasn�t available.
The above said, DR does have a useful feature which makes audio replay easier when running a
program in a TaskWindow. In such a situation DR will use the UpCall6 signal to pause or
�sleep� the playing program�s TaskWindow process when DR�s buffers are full. Hence in such
cases, DR will avoid the program trying to give it audio data faster than it can be played. You may
still need to take care to ensure your playing program can keep up, though!

 J. C. G. Lesurf � 15 � RO Sound System V0.95 Feb 2016

Audio CD

The above sections consider audio outputs. However a RO system may also have various types of
audio input device. One of the most common is an optical drive than can read Audio CDs. As a
result the CDFS module provides a set of commands and SWIs for reading Audio CDs. CDFS also
provides ways to access �data� discs, but I will ignore the non-audio side.

Many of the SWIs that are provided by CDFS pass values in a CD Data Block (CDDB) that
essentially allocates a block of five 32-bit ints (i.e. 20 bytes) as a block for data transfers during
SWI calls. This has the format:

• +0 : device number (0 - 7)
• +4 : card number (0 - 3)
• +8 : LUN or Logical Unit number (0 - 7)
• +12 : driver handle
• +16 : currently unusued (?)

This is based on each CD (or other optical drive that provided CD functionality) being identified
by CDFS in terms of this set of values. To illustrate their use we can use a simple �C� example
program that employs two SWIs � CD_Inquiry and CD_Identify.

CD_Identify tells us if a CD drive is connected with a given set of device, card, and lun values.
So we can use this as follows

int identify(void)

{

 int answer;

 handle=0;

 cb[0]=device;

 cb[1]=card;

 cb[2]=lun;

 cb[3]=handle;

 rin.r[7]=(int)cb; /* Note that cb is a CDDB of 5 (or 4) ints */

 _kernel_swi(CD_Identify,&rin,&rout);

 answer=rout.r[2];

 handle=answer;

 return answer;

}

If a CD drive is connected with given device, card, and lun values the swi will return with the
drive�s handle value in rout.r[2]. Otherwise rout.r[2] will return -1. We can therefore
scan a RO machine for the presence of drives by calling the CD_Identify swi with device values
in the range 0 to 7, card values 0 - 3, and lun values 0 - 7 using something like

result=identify();

if(result!=(-1))

{

 printf(" %d %d %d = %d is ",device,card,lun,result);

 inquire();

 printf("\n");

}

to show the results. Here the inquire() proceedure uses CD_Inquiry as follows

 J. C. G. Lesurf � 16 � RO Sound System V0.95 Feb 2016

int inquire(void)

{

 int answer,iq;

 rin.r[0]=(int)inquire_buffer;

 rin.r[7]=(int)cb;

 _kernel_swi(CD_Inquiry,&rin,&rout);

 iq=8;

 do

 {

 printf("%c",(char)inquire_buffer[iq]);

 iq++;

 } while (iq<36);

 return answer;

}

where the CDDB cb contains the relevant values for the drive, and inquire_buffer is a 36-
byte (i.e. char) buffer which the SWI will use to return its response. This will print any
identifying string provided by the drive. On my ARMiniX machine as an example, this gives me

 1 0 0 = 0 is Optiarc DVD RW AD-7740H 1.00

i.e. it tells me that device = 1, card = 0, lun = 0 finds my CDFS drive number 0 which identifies
itself as an Optiarc DVD RW of a specified model and firmware revision. By default if you only
have one CD / optical drive it will usually be device 1 and assigned CDFS 0. The card = 0 value
indicates that it is connected via the motherboard. Other card values are nominally associated
with additional expansion cards, etc.

Having established what drive(s) are present you can then find out if a CD is loaded by using the
CD_DiscUsed SWI.

char ubuffer[8];

ubuffer[0]=0; ubuffer[1]=0; ubuffer[2]=0;

rin.r[0]=1;

rin.r[1]=(int)ubuffer;

rin.r[7]=(int)cb;

_kernel_swi(CD_DiscUsed,&rin,&rout);

frames=(int)ubuffer[0];

secs=(int)ubuffer[1];

mins=(int)ubuffer[2];

total_frames=frames+75*(secs+60*mins)-151;

If no Audio CD is present in the drive specified by the CDDB cb then the returned values in the
three integer int array ubuffer will all be zero. If an Audio CD is present the results returned
tell you the total duration of the Audio Tracks in terms of the time in mins/secs/frames and the
complete number of accessible frames of audio data. Note that there are 151 �inaccessible� frames
of nominal audio data. (The details of these frames are explained below.)

You can obtain information on Audio Tracks using the CD_EnquireTrack SWI. To use this
you require some extra buffer arrays for values to be passed.

char tb[8];

int tintbuffer[2];

If you then call the SWI with zero in rin.r[0] it will return the numbers of the first and last

 J. C. G. Lesurf � 17 � RO Sound System V0.95 Feb 2016

track on the Audio CD. e.g.

rin.r[0]=0;

rin.r[1]=(int)tb;

rin.r[7]=(int)cb;

_kernel_swi(CD_EnquireTrack,&rin,&rout);

printf("First track = %d\n",(int)tb[0]);

printf("Last track = %d\n",(int)tb[1]);

ntracks=(int)tb[1];

Once you know the number of tracks you can re-use the same SWI to determine the start-point
(in CD Audio frames) of a track by calling the SWI with the track number in rin.r[0] as
follows

rin.r[0]=tin /* track number */

rin.r[1]=(int)tintbuffer;

rin.r[7]=(int)cb;

_kernel_swi(CD_EnquireTrack,&rin,&rout);

printf(" Track %3d starts at %6d \n",tin,tintbuffer[0]);

Note that in practice you could use the same buffer for both the above calls because in each case
the output is written to the 8 bytes that follow the address pointer given to rin.r[1].

From the above you can see that Audio CD uses a sequential �frame� method to store audio.
Audio discs have no �filing system� in the normal sense the term is applied in computing. Instead
they have a Table Of Contents (TOC) in a dedicated area at the start of the disc, all �times� and
�track numbers� are then provided as being look-up values for the relevant frame count into the
stream of audio sample frames on the CD.

Having determined the presence of a disc and the details of the tracks it contains we can proceed
to read audio data from the disc. Each CD Digital Audio or Philips/Sony CDDA �Red Book�
format disc �frame� contains the stereo sample pairs for an interval lasting 1/75th of a second. i.e.
for 44100 ÷ 75 = 588 16-bit sample pairs, equivalent to 2352 bytes.

To read a specified number of sequential frames of Audio data you can use the CD_ReadAudio
SWI as shown in the following example which reads a block of 5 seconds duration

char dbuffer[883200]; /* 5 second’s worth of bytes */

printf("Type in start time [mm ss ff] => ");

 scanf("%d %d %d",&mins,&secs,&frames);

 seek_frame=frames+75*(secs+60*mins);

 printf("Seek frame %d\n",seek_frame);

rin.r[0]=0;

 rin.r[1]=seek_frame;

 rin.r[2]=375; /* five second’s worth of CDDA frames */

 rin.r[3]=(int)dbuffer;

 rin.r[4]=883200;

 rin.r[7]=(int)cb;

 _kernel_swi(CD_ReadAudio,&rin,&rout);

where as before cb is a CDDB that specifies the drive, card, etc, for the drive containing the disc

 J. C. G. Lesurf � 18 � RO Sound System V0.95 Feb 2016

being read. You can also see from this example how to convert between the number of frames
from the disc start to a time in mins/secs/frames.

The result is a block of values in dbuffer in Stereo 16-bit (�short int�) little-endian format to be
played at 44100 samples/sec. This can be saved to a file and played using applications and players
like !PlaySound or !DigitalCD.

In practice if you wish to read long sequences of audio to �rip� tracks it makes more sense to grab
smaller portions during each grabbed �block�, and then loop around, reading successive blocks
and saving them to a file or playing them with appropriate buffering, etc. But the principle of
how to read the data from the disc is as illustrated above.

It is worth bearing in mind that the CD Audio format and players/readers don�t guarantee to read
frames with precise alignment. Hence when reading an Audio CD there is always a chance your
drive may read the correct number of successive sample values in sequence, but that the actual
start and end points don�t perfectly align with the frame boundaries! This will depend on the
details of your drive and the disc. It is one of the reasons that programs like CDparanoia do
repeated overlapping reads, compare the results to check for any misalignments, and then try to
correct for them. The Audio CD format was not designed to work with the sample-perfect
precision we have come to expect from Data/Computer discs with their filing arrangements. This
is also the reason for two properties of CD Audio that can lead to confusion.

The disc is assumed to begin with 151 (or 150) �inaccessible� frames. This is a consequence of the
Philips/Sony �Red Book� specifications that allocate a 2-second �lead in� to each track. The
assumption is that when you ask a CD Audio player to play a disc it may not be able to start
exactly with the first sample pair of the start-frame of the track. So the playing hardware is
allowed a �lead in�. This is analogous as the old �lead in spirals� between tracks and at the start of a
Vinyl LP. A good player may be able fairly accurately start from near the first samples of the
track. But it should tend to err on the side of starting �early�. The �inaccessible� frames are meant
as a space for this to occur when you start playing track 1. For the same reasons, discs or players
may assume there is a 2-second (i.e. 151 or 150 frame) allowance at the start of each track. Hence
you sometimes see statements that tracks must be seperated by at least 2 seconds �gap�. When
writing code to read an Audio CD you should therefore allow for such read misalignments when
testing your code. Having given these warnings, in practice a decent drive and commercial Audio
CD should usually be readable without such problems. But this can�t be guaranteed.

USB Audio

Modern home computer systems have in recent years made increasing use of USB Audio devices.
�Hi Fi� enthusiasts are most familiar with this in the form of �USB DACs�. Those interested in
home or small recordings studios encounter them as boxes to connect to their computer via USB
and which allow recording as well as play output. There are now established sets of standard USB
protocols and transfer methods for such devices. This means that for many Linux and MacOS
users many such devices �just work� although Windows users may require a �driver�. However the
standardisation now allows many USB Audio devices to now become usable with RO hardware.
This is due to work by Colin Granville and Dave Higton. Colin has added the required support
for the transfer methods, to the RO USB modules. Dave has produced a new, USBAudio,
module that provides a convenient API and set of SWI calls to make writing programs easier.

Note that as I write this the new modules are not, yet, a part of the standard ROSS or included in
the standard ROOL ROM releases. It is expected that they will be included soon, but initially the
relevant modules have to be softloaded. However I am documenting and explaining their use to

 J. C. G. Lesurf � 19 � RO Sound System V0.95 Feb 2016

help programmers and others make use of the new abilities the modules provide.

The USBAudio module essentially provides an API that is similar to other RO program interfaces
for �streaming� audio via a buffer. As usual. the basic approach is to �open� the device, then
transfer data, then �close� the device. To illustrate this I will use some examples in Acorn/ROOL
�C�.

A great practical advantage of USB Audio is that it seperates the audio hardware from the main
computer hardware. This means you have a wider choice of audio devices and performance and
can bypass some of the mainboard hardware problems and limitations that have affected some
types of machine. However the drawback is that you need to have a suitable device connected,
and the RO USB Audio system has to be able to identify it and establish some details needed for
transfers to be possible. As a result, the USBAudio module provides a set of swis which can be
used to find what USB Audio devices have been conncted, and their relevant details. I�ll give
details of their use in the Reference section near the end of this document. For the sake of
simplicity I�ll assume here that you only have one USB Audio device connected, and that you
wish to use it to play the contents of an LPCM file (Wave format). Many devices can accept the
audio data payloads from such files without any conversions. You then just need to transfer data
from file to device. However some other files may need prior processing. Here I will assume that
the file�s data can be played without any alterations. The complications which arise when you
have multiple devices, etc. are discussed in the Reference section.

The first task facing the program is to find the USB device number of the Audio device. This can
be done using the swi USBAudio_EnumerateDevices. e.g.

 rin.r[0]=(int)device_list; /* buffer start in memory */
 rin.r[1]=256; /* length of buffer in bytes */
 _kernel_swi(USBAudio_EnumerateDevices,&rin,&rout);
 printf("List of devices by ID = %s\n",device_list);

where device_list is the address of the start of a buffer 256 bytes long. The swi will zero-
terminated text string into this buffer listing the USB numbers for any Audio devices it finds. In
the above example I just have the code print out the string which is returned.

The buffer doesn�t have to be 256 bytes long, but you need to ensure it is long enough for the
returned string. The USB device numbers are what the underpinning USB system will use to
identify the device. However you should bear in mind that the number assigned to a device may
change. For example, if you unplug a device and plug it in again. So you should normally use the
above at the start of any USB Audio program to ensure you find the current USB number for the
device you wish to use.

If you only have one device connected the result will be a string like USB12 but if there more
than USB Audio device is present their numbers will be given as a comma-separated list like
USB15,USB17,USB16,USB12 and you would then have to use other USBAudio swis to
determine which USB device number refers to the specific device you may wish to use.

You can now open the USB Audio connection using the USBAudio_OpenOut swi, e.g.

 char sblock[32];
 int* iblock;
 int playhandle;

 J. C. G. Lesurf � 20 � RO Sound System V0.95 Feb 2016

 iblock=(int*)sblock;

 iblock[0]=48000; /* sample rate */
 sblock[4]=16; /* audio resolution (bits per sample) */
 sblock[5]=2; /* bytes per channel for transfer */
 sblock[6]=2; /* number of channels */
 sblock[7]=1; /* 1 for LPCM */
 sblock[8]=0;

 iblock[3]=osize_b; /* audio data buffer size (bytes) */

 rin.r[0]=(int)dev_chosen; /* pointer to USB device number string */
 rin.r[1]=(int)sblock;

 _kernel_swi(USBAudio_OpenOut,&rin,&rout);

 playhandle=rout.r[0];

In this example I�m using char as an equivalent to byte and using two offset pointers so I can put
values into the input buffer as either bytes or integers as relevant. For the sake of example I�m
giving the for a file whose data has a sample rate of 48000 samples/sec, each sample has 16 bits,
and there are two channels (i.e. stereo). The value for osize_b specifies the size of the buffer in
memory into which data will be placed to be fed via USBAudio to the device. In practice it is
suggested you choose a data buffer size adequate for holding a chunk of audio data that will take
around 0·2 sec to play. But other durations/sizes may be fine. This data buffer has to contain both
channels. So for the above example the buffer size would need to be 48000 × 2 × 2 × 0·2 bytes for
0·2 sec per full buffer transfer.

Note that dev_chosen is the address of the start of a string of characters that specify the device�s
USB device number. it represents a char array not an integer. So - for example - having obtained a
result USB12 from using USB_AudioEnumerateDevices the above would require a char
array like char dev_chosen[32] which contains a zero terminated USB12. Note also that for many
class 1 USB Audio devices we can expect the required number of bytes per channel for transfers to
equal the number of bytes by sample for the input file. However this isn�t always the case,
particularly for class 2 devices. So it may be necessary to use other USBAudio swis to check what
value is required for sblock[5]. See the Reference section for more details.

The abive SWI call will return a value for playhandle. If this value is zero it tells us that the
attempt to open a connection for transfer has failed for some reason. A non-zero value tells us the
buffer handler address we can use to transfer data. We can then start data transfers and play out
the audio using the chosen device.

When playing a wave file should have already read in its metadata header and checked the values
given there for the required sample rate, etc. Then used those in the above USBAudio_OpenOut
call. Having successfully opened the transfer connection we can now read a chunk of the file�s
data payload into the data buffer we be using. We then have the program perform the usual
repeat looping process of reading in successive chunks of data and sending them to the device
until all the file has been played. The following gives an example of this process. It assumes you
have already opened the Wave file for data reads with the file handle infile, and placed the
position for the next read at the start of the data payload. (i.e. 44 bytes from the start of the file
for most simple Wave files.)

 J. C. G. Lesurf � 21 � RO Sound System V0.95 Feb 2016

 playstop=0;
 do
 {
 sizeread=(int)fread(outblock,sizeof(char),osize_b,infile);
 if(sizeread!=osize_b)
 {
 playstop=1;
 }
 rin.r[0]=2; /* send data to device */
 rin.r[1]=(int)playhandle;
 rin.r[2]=(int)outblock; /* address of data block start */
 rin.r[3]=sizeread; /* data block size in bytes */
 do
 {
 _kernel_swi(OS_GBPB,&rin,&rout);
 rin.r[2] = rout.r[2];
 rin.r[3] = rout.r[3];
 } while (rout.r[3] != 0); /* repeat until block done */
 } while (playstop==0); /* repeats until file done */

Each loop uses fread to read a block of audio date from the Wave file and place the result into
outblock. It then calls the general purpose SWI OS_GBPG with reason code 2 for the transfers
from this buffer to the USB device. The inner loop then calls this SWI until the returned values
confirm all the data has been read and the process can be repeated for the next block of audio data
from the file. The program monitors the value returned by fread and when this differs from the
size of the block which was requested it tells us that all the file has now been read, so once this
final block has been read the process can end. We can then close the connection using

 rin.r[0]=(int)playhandle;
 _kernel_swi(USBAudio_Close,&rin,&rout);

Capturing audio from a suitable device uses essentially the same approach, but to read in audio
data from the USB Device we use USBAudio_OpenIn to initiate a recording/capture process.
The registers are used exactly as for USBAudio_OpenOut to specify the required sample rate.
resolution, etc. In this case a recordhandle value is then returned in r[0], or this value will
be a zero if an input from the device could not be opened. We can then use a loop equivalent to
the above audio play example, based on OS_GBPB but in this case we give the swi reason 4. i.e.
we set rin.r[0]=4 for the calls to OS_GBPB and the captured series of audio values will be
saved to the databuffer whose start address we have given OS_GBPB in r[2]. Otherwise the
registers are set as for playback.

In principle we can have the machine carry out more than one capture and/or play process in
parallel, using more device if required. However clearly there will be a point where given
hardware won�t be anle to keep up with the demands this places upon it!

Multiple Audio Controllers and HDMI Audio

As of January 2016 changes were added into the ROSS which provide a significant extension in
its capabilities. In general terms, the most significant alteration was to implement the ability to
select alternative sound hardware. In immediate practical terms the most significant aspect of this
was to allow the user to enable audio output to be directed out from the computer over an
HDMI connection. This means the ability to export audio in digital format to a screen or other
suitable HDMI device. The initial version of these new capabilities was for the ARMX6 machine,

 J. C. G. Lesurf � 22 � RO Sound System V0.95 Feb 2016

but the intention is that they will become a standard part of the ROSS on any suitable hardware.

In the past, some audio cards were developed and could be used to play or capture audio
computers made by Acorn. However these generally involved loading dedicated third party
firmware and were never part of the standard OS provision.. So these changes represents a
significant development. Here I will cover both of these new abilities. But it should be noted that
any further extensions to other types of sound hardware in the future should also be able to be
accessed using equivalent methods.

To avoid ambiguity I will refer to the choice of audio hardware in terms of selecting its audio
�controller�. This allows me to keep the term audio �device� for referring to specific inputs and
outputs like loudspeakers or a headphone socket which some controllers may allow to be
independently used or controlled.

SharedSound

SoundDMA SoundControl

Player App2

Driver2

Player App1

Driver1

Source2 Source1

Input Files or streams of audio data
Audio

Control

Fig 5 Overview of audio playback with controller choice

HAL

Controller

Mainboard hardware HDMI hardware

*Audio switch

HDMI controller

Figure 5 illustrates how these new abilities essentially sit �underneath� the pre-existing audio and
control pathways when playing audio. In practice, so far as any audio playing software is
concerned it can operate as previously. It general it need not know which audio controller/
hardware is actually selected and in use. Provided the hardware can play at the required sample
rate it just operates as before. The changes only really affect what happens once audio has been
passed to the SoundDMA system.

When the user, or some software, needs to select or change the audio controller and hardware to
be used they can make use of the established command, *Audio. This has now been extended so
it can accept a parameter (string) which tells the HAL (Hardware Abstraction Layer) which audio
controller and hardware should now be connected to SoundDMA.

For example, on the ARMX6 machine

*Audio SoundDMA#HAL_0005_41000000

would tell the sound system to use the mainboard hardware and its controller. Whereas

*Audio SoundDMA#HAL_0007_16000000

 J. C. G. Lesurf � 23 � RO Sound System V0.95 Feb 2016

would tell the sound system to use the HDMI audio hardware and controller (assuming this was
present and initiated.) The strings that follow the *Audio command are ��ID strings� which
indicate which controller is to be used. Note that these strings, and the details of the actual audio
controllers, may vary depending on your hardware, etc. Also, in practice the �switch� is a part of
the SoundDMA module, and the HDMI controller is a part of the IMXVideo module. However
these details should not matter for practical use of the system.

The SWI Sound_SelectDefaultDevice can also be used to choose the required controller
and hardware . Hence,

 sprintf(deviceIDstring,"SoundDMA#HAL_0007_16000000\0");
 rin.r[0]=(int)deviceIDstring;
 _kernel_swi(Sound_SelectDefaultDevice,&rin,&rout);

would also set the chosen audio controller and hardware to be HDMI on the ARMX6. If the call
was successful it will return a zero in rout.r[0]. A non-zero value will be a pointer to an error
block detailing the problem encountered. An obvious problem which may arise is that the
machine running the program lacks the new ability to select/change the default audio hardware
and controller. The SWI Sound_ReadSysInfo reads the features the sound system provides
and thus can be used to determine the relevant information, as exampled below.

 rin.r[0]=1; /* reason code 1 */
 _kernel_swi(Sound_ReadSysInfo,&rin,&rout);
 result = 2&rout.r[1];
 if (result == 2)
 {
 printf("System supports choice of sound hardware/controller.\n");
 }
 else
 {
 printf("Old OS, no choice of sound hardware!\n");
 }

If you don�t already know the ID string, the same SWI can also be used to obtain its value for the
current audio hardware controller. For example:

 char devstring[1024]; /* set up a buffer for the result */

 rin.r[0]=2; /* reason code 2 */
 rin.r[1]=(int)devstring; /* tell the swi where the buffer is */
 rin.r[2]=1023; /* max safe length for result */
 _kernel_swi(Sound_ReadSysInfo,&rin,&rout);
 printf("ID string for the current device = %s\n",devstring);

will print out the ID string for the current sound hardware controller. Note that I chose 1024
bytes for the buffer size simply as a value I felt was likely to be large enough. Then told the SWI
that the maximum available size was only 1023 to ensure no chance of it overflowing.

The SWI Sound_EnumerateDevices can be used to list all of the controllers available. For
each controller that is found the SWI Sound_DeviceInfo can also obtain a �name� string. For
example:

 J. C. G. Lesurf � 24 � RO Sound System V0.95 Feb 2016

 char devstring[1024];
 char namestring[1024];

 rin.r[0]=0;
 rin.r[1]=(int)devstring;
 rin.r[2]=1023;
 _kernel_swi(Sound_EnumerateDevices,&rin,&rout);
 printf("ID string for audio device = %s\n",devstring);

 dslen=0; dvcount=0;
 do
 {
 printf("\n");
 dvcount++;
 rin.r[0]=rout.r[1];
 rin.r[1]=(int)devstring;
 rin.r[2]=1023;
 _kernel_swi(Sound_EnumerateDevices,&rin,&rout);

 if(rout.r[2]>1)
 {
 printf("ID string for audio device = %s\n",devstring);
 nin.r[0]=(int)devstring;
 nin.r[1]=(int)namestring;
 nin.r[2]=1023;
 nin.r[4]=0;
 _kernel_swi(Sound_DeviceInfo,&nin,&nout);
 printf("Name of device = %s\n",namestring);
 }
 dslen=rout.r[2];
 } while (dslen>1);

uses these calls to find out which controllers are present and list the name strings they provide on
request. On my ARMX6 at present this gives the results:

 ID string for audio device = SoundDMA#HAL_0007_16000000
 Name of device = i.MX6 HDMI audio controller

 ID string for audio device = SoundDMA#HAL_0005_41000000
 Name of device = SGTL5000-compatible audio controller

Note that these name strings aren�t the ID strings. The ID strings are required for the *Audio
command or the related SWIs when you wish to select a controller. The name strings provide a
more human-readable way to see the nature of each controller and its associated hardware. On the
ARMX6 the mainboard audio �codec� hardware is modelled on the SGTL5000 chip architecture.
Hence the name string tells us this is the mainboard controller. The name which includes �i.MX6
HDMI� clearly identifies the HDMI audio controller.

The above assumes that the HDMI audio controller is available and can be used. In practice this
requires initiation and selection. This can be done via two new commands.

The first of these is the *ReadEDID command. This prompts the OS to interrogate the attached

 J. C. G. Lesurf � 25 � RO Sound System V0.95 Feb 2016

HDMI monitor and discover details like what screen and audio modes it supports. The most
immediate and obvious effect of this command will be if you examine the monitor settings
offered via the �Display� icon on the iconbar. The screen modes offered will probably have
changed because the OS has found out what screen modes your monitor supports and now offers
these instead of whatever was listed in your old Monitor Definition File.

If you are using an HDMI monitor it is now recommended that you have an obey file containing
the *ReadEDID command which is run during the bootup process. The main reason for this is
that it will optimise the screen modes offered by the �Display� application. Before the January
2016 developments the screen modes offered were based upon a Monitor Definition File (MDF)
that had to be written to be suitable for your specific monitor. This approach is now replaced by
using the new command to ask the monitor you are using to specify what screen modes it can
accept. These then replace the ones from any MDF you had been using. This should mean
optimised results. It should also mean that your computer will automatically adapt if you change
HDMI monitor!

The second new command is *HDMIOn. This tells the OS to treat the monitor as a fully HDMI
device, not a DVI device. The key difference here is that the HDMI protocols can convey audio,
but DVI � even via an HDMI lead � cannot. In effect, this command sets up the computer to be
able to send audio via HDMI. However if you play any audio at this point it will still go via the
main computer output as before. Note that this command�s name is perhaps slightly confusing
because in practice what it does is switch on HDMI audio. It is worth being aware of this because
there is in fact another similar command, *HDMIOff, which changes the output back to the DVI
system and hence disables audio transfer via HDMI. Despite its name, an HDMI monitor should
still function as your display following an *HDMIOff. However in practice you are unlikely to
need to use *HDMIOff.

Having used the above commands to actually switch the audio output you then need to issue the
relevant *Audio command to actually get HDMI audio working. Hence in practice if you wish
to have this enabled from bootup you can include an obey file containing the commands:

 *ReadEDID
 *HDMIOn
 *Audio SoundDMA#HAL_0007_16000000

This reads the relevant information from the HDMI monitor, enables audio being able to get to
the monitor, and sets the sound system to use the HDMI audio controller as the current default.

The audio formats which the controller/hardware can accept will vary from one example to
another. Two new SWI calls have been introduced to enable the details of the current HDMI
device to be determined if required. The SWI ScreenModes_EnumerateAudioFormats can
be used to determine what types of audio data stream can be accepted by the HDMI device
connected to the machine. So for example:

 hdmi_format=1;
 hdmi_token=-1;
 do
 {
 rin.r[0]=1;
 rin.r[1]= hdmi_format;
 rin.r[2]= hdmi_token;
 _kernel_swi(ScreenModes_EnumerateAudioFormats,&rin,&rout);

 J. C. G. Lesurf � 26 � RO Sound System V0.95 Feb 2016

 hdmi_format=rout.r[1];
 hdmi_token=rout.r[2];
 /* if greater than zero, modes found OK so loop though them */
 if(hdmi_token >=0)
 {
 modes_found=1;
 format_name[0]=(char)0;
 switch(hdmi_format)
 {
 case 1 : sprintf(format_name,"LPCM \0");
 break;
 case 2 : sprintf(format_name,"AC-3 \0");
 break;
 case 3 : sprintf(format_name,"MPEG1\0");
 break;
 case 4 : sprintf(format_name,"MP3 \0");
 break;
 case 5 : sprintf(format_name,"MPEG2\0");
 break;
 case 6 : sprintf(format_name,"AAC \0");
 break;
 case 7 : sprintf(format_name,"DTS \0");
 break;
 case 8 : sprintf(format_name,"ATRAC\0");
 }

 if (hdmi_format==1)
 {
 printf(" Format %d = %s, channels %d, sample rate %d, bits/
channel %d\n",hdmi_format,format_name,rout.r[3],rout.r[4]/
1024,rout.r[5]);
 }
 else
 {
 printf(" Format %d = %s, channels %d, sample rate %d, max
bitrate %d\n",hdmi_format,format_name,rout.r[3],rout.r[4]/
1024,rout.r[5]);
 }
 }
 } while (hdmi_token != (-1));

will list the audio formats which a HDMI device (e.g. monitor) can accept via its controller. As an
example, an LG IPS235 monitor I tried listed the following modes:

 Format 1 = LPCM , channels 2, sample rate 32000, bits/channel 16
 Format 1 = LPCM , channels 2, sample rate 44100, bits/channel 16
 Format 1 = LPCM , channels 2, sample rate 48000, bits/channel 16
 Format 1 = LPCM , channels 2, sample rate 32000, bits/channel 20
 Format 1 = LPCM , channels 2, sample rate 44100, bits/channel 20
 Format 1 = LPCM , channels 2, sample rate 48000, bits/channel 20
 Format 1 = LPCM , channels 2, sample rate 32000, bits/channel 24
 Format 1 = LPCM , channels 2, sample rate 44100, bits/channel 24
 Format 1 = LPCM , channels 2, sample rate 48000, bits/channel 24

 J. C. G. Lesurf � 27 � RO Sound System V0.95 Feb 2016

This shows it will accept LPCM stereo audio at the common standard bit rates and sample sizes.
Note that at present the ROSS is still limited to a maximum of 16 bits per sample. Audio CD
material is 44100/16. and 48000/16 is the usual default for TV broadcasts, DVB Video stereo
output, etc.

Some better monitors will also show that they can support other formats, e.g. AC-3, for 6 or 8
channel �surround sound� for Home Theatre uses. However at present the ROSS can only handle
sending stereo LPCM audio. Your monitor may have an optical digital output, but note that it
seems standard for these to always output at the 48000 samples/sec rate for LPCM whatever you
LPCM rate you send it over HDMI.

Another SWI, ScreenModes_ReadInfo will ask the HDMI device how many �speakers� it can
provide. Note this is an optional part of the HDMI specifications. So not all monitors or devices
will give a reply. By using:

 rin.r[0]=1;
 _kernel_swi(ScreenModes_ReadInfo,&rin,&rout);
 hdmi_speaker=rout.r[0];
 hdmi_valid=rout.r[1];
 if ((hdmi_speaker&hdmi_valid) == 0)
 {
 printf(" No HDMI Speakers found!\n\n");
 }
 else
 {
 hdmi_bitmasked=(hdmi_speaker&hdmi_valid);
 printf (" HDMI speaker arrangements reported as available:\n\n");
 if ((hdmi_bitmasked&1) == 1) printf("Stereo Left and Right\n");
 if ((hdmi_bitmasked&2) == 2) printf("LFE\n");
 if ((hdmi_bitmasked&4) == 4) printf("Front Center\n");
 if ((hdmi_bitmasked&8) == 8) printf("Rear Left and Right\n");
 if ((hdmi_bitmasked&16) == 16) printf("Rear Center\n");
 if ((hdmi_bitmasked&32) == 32) printf("Front Left Center and Front
Right Center\n");
 if ((hdmi_bitmasked&64) == 64) printf("Rear Left Center and Rear
Right Center\n");
 }

you can list any speaker arrangements which the HDMI device reports. Because responding is
optional you may get no response despite the device actually having speakers you can use!

 J. C. G. Lesurf � 28 � RO Sound System V0.95 Feb 2016

The RISC OS Sound System - Reference.

Introduction

This documents the SWIs and commands used by various Sound modules, etc. You should refer
to the general ROSS document for examples illustrating the uses of these SWIs/commands and
explanations of how the various parts of the system connect and work together. In general it may
be advisible to call the X versions of SWIs to trap errors as not all drives support all SWIs.

CDFS and CD Audio

Here the emphasis is mainly on the use of the CD module for Audio discs so I will omit the
details of those SWIs that are only for data CDs . There are also some SWIs for which I have no
details and others I can�t check because they don�t work on all hardware! However the full list of
SWIs provided on my ARMX6 are:

 0x041240 CD_Version 0x041241 CD_ReadData 0x041242 CD_SeekTo

 0x041243 CD_DriveStatus 0x041244 CD_DriveReady 0x041245 CD_GetParameters

 0x041246 CD_SetParameters 0x041247 CD_OpenDrawer 0x041248 CD_EjectButton

 0x041249 CD_EnquireAddress 0x04124A CD_EnquireDataMode 0x04124B CD_PlayAudio

 0x04124C CD_PlayTrack 0x04124D CD_AudioPause 0x04124E CD_EnquireTrack

 0x04124F CD_ReadSubChannel 0x041250 CD_CheckDrive 0x041251 CD_DiscChanged

 0x041252 CD_StopDisc 0x041253 CD_DiscUsed 0x041254 CD_AudioStatus

 0x041255 CD_Inquiry 0x041256 CD_DiscHasChanged 0x041257 CD_Control

 0x041258 CD_Supported 0x041259 CD_Prefetch 0x04125A CD_Reset

 0x04125B CD_CloseDrawer 0x04125C CD_IsDrawerLocked 0x04125D CD_AudioControl

 0x04125E CD_LastError 0x04125F CD_AudioLevel 0x041260 CD_Register

 0x041261 CD_Unregister 0x041262 CD_ByteCopy 0x041263 CD_Identify

 0x041264 CD_ConvertToLBA 0x041265 CD_ConvertToMSF 0x041266 CD_ReadAudio

 0x041267 CD_ReadUserData 0x041268 CD_SeekUserData 0x041269 CD_GetAudioParms

 0x04126A CD_SetAudioParms 0x04126B CD_SCSIUserOp

Note that the CD Data Block (CDDB) is explained in the main part of the ROSS
documentation. It acts to identify the drive upon which a SWI will act.

What follows is a list of some of the main Audio and drive SWI APIs related to being able to read
Audio CDs.

CD_Version Identifies the version of the module.
On exit r[0] points to a version and string for the CDFS module.

CD_DriveStatus Determines the drive�s operational status
On entry r[7] = pointer to CDDB for the drive
On exit r[1] = 1 (CD in drive), 2 (busy), 4 (not ready), or 8 (unavailable)

CD_OpenDrawer Opens drawer.
On entry r[7] = pointer to CDDB.

CD_EjectButton Controls any eject button. (Allows the drive to be locked/unlocked.)
On entry r[0] = 0 (enable button) or 1 (disable button), r[7] = pointer to CDDB.

CD_PlayTrack Plays a chosen track.
On entry r[0] = track number, r[1] = &FF, r[7] = pointer to CDDB.

 J. C. G. Lesurf � 29 � RO Sound System V0.95 Feb 2016

CD_AudioPause Pause or resume audio playback.
On entry r[0] = 0 (resume) or 1 (pause), r[7] = pointer to CDDB

CD_EnquireTrack Returns information on the tracks present on the Audio CD.
The action depends on the value given on entry in r[0].

If r[0] = 0, and r[1] = pointer to 2-byte buffer, r[7] = pointer to CDDB then it
returns the first and last track numbers in the bytes of the buffer pointed to by r[1].

If r[0] = track number (1 - 99), r[1] = pointer to 2-int buffer, r[7] = pointer to
CDDB it returns the start frame in the first (4 byte) int of the buffer and a value
identifying the disc type in the second.

CD_AudioStatus Discovers if a disc is playing, etc.
On entry r[7] = pointer to CDDB
On exit r[0] AND &F = 0 (playing), 1 (paused), 3 or 5 (stopped), 4 (error)

CD_DiscUsed Details of disc space usage.
On entry r[0] = 1, r[1] points to an 8-byte buffer, r[7] = pointer to CDDB
On exit the buffer contains at offsets:
+0 = number of frames, +1 = number of seconds, +2 = number of mins
+3 = always zero, +4 always 2048
This specified the total duration of the recording on the Audio CD in mins, seconds,
and frames (75ths of a second). It includes 151 �inaccessible� audio frames. So the total
number of readable audio frames on the disc is such that:

(min*60) + sec)*75 + frames = readable + 151

CD_Inquiry Returns drive details
On entry r[0] = pointer to 36-byte buffer, r[7] = pointer to CDDB
On exit the buffer contains the device name in the bytes at offset 8 - 31 and its firmware
version in bytes 32 - 36.

CD_CloseDrawer Closes drive drawer
On entry r[7] = pointer to CDDB

CD_Identify Returns driver handle for use with other SWIs.
On entry r[7] = pointer to CDDB with driver handle set to zero.
On exit r[2] returns -1 (drive invalid) or drive handle.

I will add more Audio CD SWI details at such time as I can find out more about them, or can
even determine which of them actually work!

Digital Renderer

The primary purpose of the DigitalRenderer (DR) module is to allow programs and applications
ported from Linux to be able to play/render their output via the ROSS. It is not a standard part
of RO but is widely used for such purposes. As outlined in the main ROSS document it is also a

 J. C. G. Lesurf � 30 � RO Sound System V0.95 Feb 2016

convenient and easy way to play audio files. It provides a filing system for playback, a set of
commands, and a set of SWIs. I have already explained the commands provided by DR. Here I
will give more detail regarding the DRender: file system and the DR SWIs. Note that much of
the comments given below were kindly provided by Andreas Dehmel or Chris Martin.

DRender:
From Version 0.40 onward the DR module has provided this filing system to allow the user to
play audio by simple �writing the sample values to a file�. This allows using samples like on Unix
by writing them to a pseudo-device (/dev/dsp). All you have to do is first configure the defaults
(see SWI DigitalRenderer_SetDefaults or the command DRenderDefaults), open
the file and pipe the data in. If you're running in a TaskWindow you don't even have to take care
you don't write too much data because the module will automatically sleep using UpCall 6

when the buffer is full (that's the same UpCall the TaskWindow uses to yield control to other
tasks and means that the computer doesn't freeze for the duration). However if you're using this
interface from an application, you should check the number of free buffers using SWI
DigitalRenderer_StreamStatistics, however.

The filing system uses the streaming interface. Only one file can be opened on this filing system.
When it's opened, the default values are activated (number of channels, number of buffers,
sample period, ...) and the data is streamed into the buffers (and the music starts). This might
come in very handy if you're porting applications from Unix. Bear in mind, however, that the file
opened on DRender: should not be buffered, otherwise you might get strange dropout effects.

NOTE: there is a problem with the *copy command which doesn't work with the DRender:
filing system (at least not in a TaskWindow). I don't know exactly why that is, maybe copy can't
stomach the UpCall or stops interrupts, I just advise you not to use that command but rather
OS_Find / OS_GBPB combinations. DRender is officially registered as filing system number
167.

SWIs

 0x04F700 DigitalRenderer_Activate 0x04F701 DigitalRenderer_Deactivate

 0x04F702 DigitalRenderer_Pause 0x04F703 DigitalRenderer_Resume

 0x04F704 DigitalRenderer_GetTables 0x04F705 DigitalRenderer_ReadState

 0x04F706 DigitalRenderer_NewSample 0x04F707 DigitalRenderer_New16BitSample

 0x04F708 DigitalRenderer_BufferStatistics 0x04F709 DigitalRenderer_NumBuffers

 0x04F70A DigitalRenderer_StreamSamples 0x04F70B DigitalRenderer_Stream16BitSamples

 0x04F70C DigitalRenderer_StreamStatistics 0x04F70D DigitalRenderer_StreamFlags

 0x04F70E DigitalRenderer_SetDefaults 0x04F70F DigitalRenderer_Activate16

 0x04F710 DigitalRenderer_GetFrequency 0x04F711 DigitalRenderer_ActivateAuto

 0x04F712 DigitalRenderer_SampleFormat

DigitalRenderer_ActivateAuto Ideal call for the impatient!
On entry:
r[0] = number of channels
r[1] = buffer size per channel
r[2] = sample rate
All registers preserved on exit.

This call first tries DigitalRenderer_Activate16 with r[3] = 1 (i.e. restore the previous
handler). If that call fails, it converts the sample rate to the nearest value available and calls
DigitalRenderer_Activate. Only if that call fails does it return with an error.

 J. C. G. Lesurf � 31 � RO Sound System V0.95 Feb 2016

DigitalRenderer_Activate Activates DR use of the (8-bit) system.
On entry:
 r[0], bits 0-7 = number of channels (will be rounded up to 1/2/4/8)
 bit 31: clear (i.e. = 0) use polling. Otherwise call back buffer mode.
r[1] = sample buffer length (bytes per channel) must be a multiple of 16.
r[2] = Sample period (microseconds). i.e. 1000000/sample_rate
r[3] = pointer to buffer fill code if r[0], bit 31 set to 1.

Your application must call this to take over the 8-bit sound system. N.B. Once activated, things
like the system beep won�t work. This call activates the old 8-bit system. Use the following SWI
to activate the 16-bit system.

DigitalRenderer_Activate16 Activate DR use of 16-bit sound system.
On entry:
r[0] = number of channels. Must be 1 or 2 (limitation of 16bit ROSS)
r[1] = buffer size per channel in samples, not bytes.
r[2] = Sample rate
r[3] = flags: If bit 0 set (i.e. = 1) restore previous handler on exit.

Use this SWI to activate DR using the 16-bit sound system. All other DR SWIs automatically
adapt to the system chosen without your needing to worry about internal details. The call will
return with an error if no 16-bit system is available. In stereo mode, the samples are by default
assumed to be in the correct right-left channel order for Acorn's 16-bit sound system. If this is
not the case, you'll have to call DigitalRenderer_SampleFormat with format 3 (left-right).

DigitalRenderer_Deactivate Deactivates DR using sound system.
No values required on entry or returned on exit.

DigitalRenderer_Pause Pauses playback.
No values required on entry or returned on exit.

This SWI suspends sound playback (disabling DMA on sample buffers and so on). In contrast to
deactivating DR this will not install the old handlers but merely mute the entire sound system.

DigitalRenderer_Resume Resumes playback.
No values required on entry or returned on exit.

The resumes playback after it has been paused.

DigitalRenderer_GetTables For 8-bit only.
On exit: r[0] = pointer to 8k LinToLog table.

r[1] = pointer to 256 byte table scaling 8-bit log samples according
 to the currently selected *volume value.

DigitalRenderer_ReadState Indicates DR�s state
On exit: r[0] returns a value whose bits being set indicate:

 bit 0: DigitalRenderer active

 J. C. G. Lesurf � 32 � RO Sound System V0.95 Feb 2016

 bit 1: New sample data required
 bit 2: Buffer overflow occurred
 bit 3: (reserved)
 bit 4: Playback is paused
 bit 5: 16bit sound hardware used

Call this SWI to poll DigitalRenderer in single-buffer mode. If Bit 1 is set you have to provide a
new sample buffer by calling DigitalRenderer_NewSample. Bit 2 lets you check for buffer
overflows (i.e. your application took too long to provide the next sample). If you're using the call-
back method or the streaming interface, bits 1 and 2 are undefined. For streaming interface, use
the SWI DigitalRenderer_StreamStatistics.

DigitalRenderer_NewSample Provides new samples via buffer.
On entry: r[0] = pointer to buffer holding new samples (8-bit ulaw)

DO NOT call this SWI if you're using the call-back method or the streaming interface. It is for
single-buffer polling only. Call this when DigitalRenderer_ReadState returned with Bit 1
set. The buffer must have the correct size (number of channels times Sample length) and contain
data that can be sent directly to the VIDC, i.e. 8-bit logarithmic data, interleaved for multiple
channels.

DigitalRenderer_New16BitSample Provides new samples via buffer.
On entry: r[0] = pointer to buffer holding new samples (16-bit linear)

DO NOT call this SWI if you're using the call-back method or the streaming interface. It is for
single-buffer polling only. Call this when DigitalRenderer_ReadState returned with Bit 1
set. The buffer must have the correct size. Details generally as DigitalRenderer_NewSample
but with a larger buffer due to the samples having two bytes per sample.

DigitalRenderer_NumBuffers Set or read the number of buffers to use.
On entry: r[0] = new number of buffers for streaming interface or -1 to read.
On exit: If r[0] = -1 on entry r[0] returns the number of buffers currently allocated.

This call must be issued before DigitalRenderer_Activate (or DigitalRenderer

_Activate16) and initializes the streaming interface (if r[0] > 0). In this mode you can pipe
samples into a ring buffer containing r[0] buffers using the DigitalRenderer

_StreamSamples (or DigitalRenderer _Stream16BitSamples) SWIs. Each buffer is
as large as the one specified when activating DR (which ideally is also the size of the sound
hardware's buffers). This system basically allows caching a large number of samples. You can
switch off the streaming interface when the DR is inactive by calling with r[0] = 0.

DigitalRenderer_StreamSamples Provides 8-bit samples for streaming.
On entry:
r[0] = pointer to buffer holding 8-bit ulaw samples.
r[1] = number of samples.

Provides 8-bit ulaw samples to the ring buffer in streaming mode. The format is as required for
the sound hardware (see PRM4). The number of samples can be any size, but should normally
not be larger than the ring buffer size or the call will either block or samples will be truncated,

 J. C. G. Lesurf � 33 � RO Sound System V0.95 Feb 2016

depending on the stream flags (DigitalRenderer_StreamFlags). Note that the number of
samples for all channels combined and not for an individual channel.

DigitalRenderer_Stream16BitSamples Provides 16-bit samples for streaming.
On entry:
r[0] = pointer to buffer holding 16-bit signed linear samples.
r[1] = number of samples. (Not bytes!)

Similar to DigitalRenderer_StreamSamples, but the samples are in 16bit signed linear
rather than 8-bit ulaw. As in DigitalRenderer_StreamSamples, the number of samples is
for all channels combined.

DigitalRenderer_StreamStatistics Discovers number of buffers in queue.
On exit: r[0] = Number of buffers filled and waiting to be played

DigitalRenderer_StreamFlags Read or change stream flags
On entry:
r[0] = EOR mask
r[1] = AND mask (applied first)
On exit: r[0] = old stream flags

Use this to read and change the stream flags. At the moment the following flags are defined, with
the following meaning when set:
 0: (reserved)
 1: fill buffers with 0 on overruns, otherwise repeat last buffer
 2: use UpCall6 if more data is written to DRender: than fits the buffer.
 That means the task sleeps, otherwise it has to do busy waiting.
 3: (reserved)
 4: block if more samples are streamed than fit into the buffer

Use r[0] = 0, r[1] = -1 to read.

DigitalRenderer_SetDefaults Set or read DR current defaults.
On entry:
r[0] = number of channels (or 0 to read).
r[1] = format 1: 8bit ulaw;

 2: 16bit signed linear little-endian right-left;
 3: 16bit signed linear little-endian left-right)
 or 0 to read

r[2] = sample period or 0 to read
r[3] = buffer size per channel or 0 to read
r[4] = number of buffers for streaming interface
r[5] = sample rate; positive values mean: use 16bit RISC OS sound in preference

DigitalRenderer_GetFrequency Read the sample rate
r[0] = sample rate, or 0 if DR is inactive.

 J. C. G. Lesurf � 34 � RO Sound System V0.95 Feb 2016

DigitalRenderer_SampleFormat Changes or reads format
On entry: r[0] = new format or 0 to read current format.
On exit: r[0] = current format.

See DigitalRenderer_SetDefaults for the details of how the format is represented. This
call allows you to change the sample format from the default. The most important application of
this call is to swap the left and right channels in 16bit stereo mode. Changing the format in 8bit
mode doesn't have an effect. The call can be issued at arbitrary times even when the stream is
open.

HDMI Audio and Screen Modes

Three new commands have been introduced with the ability to employ HDMI audio.

*ReadEDID

This command prompts the computer to interrogate the monitor, screen, or other device attached
via HMDI. It collects the relevant details supplied by the device which describe the screen and
audio modes, etc, it can accept. It also updates the Display Manager so that it will list the relevant
screen modes which can be used. If you were previously using a Monitor Definition File to
specify the screen modes that could be selected via the Display Manager, this command will
replace them with the modes reported by the actual screen.

*HDMIOn

This sets the output from the computer�s HDMI socket be in HDMI format. HDMI format
includes the ability to carry digital audio.

*HDMIOff

This sets the output from the computer�s HDMI socket to be in DVI format. Unlike HDMI, the
DVI format cannot convey audio. However the video formats used are essentially the same.

One command has had its options extended.

*Audio on | off | <deviceIDstring>

As previously on or off turn the sound system on or off. The deviceIDstring is a string
which specifies which audio controller is to be used. Hence it determines what audio hardware is
connected for current use.

The available SWIS are:

 0x0487C0 ScreenModes_ReadInfo 0x0487C1 ScreenModes_EnumerateAudioFormats

ScreenModes_ReadInfo Reads info from the HDMI screen.
The action depends on the value given on entry in r[0].

If on entry, r[0] = 0 then on exit:
 r[0] contains a pointer to a null-terminated name for the screen.

If on entry, r[0] = 1 then on exit:
r[1] contains a Speaker mask
r[2] contains a Validity mask

 J. C. G. Lesurf � 35 � RO Sound System V0.95 Feb 2016

It is optional for a screen or other HDMI device to return this information. The Validity mask
indicates if the data has been given or not. If both returned values are zero, no information was
returned. Otherwise each bit of the values represents a specific Speaker arrangement. If a Validity
bit = 1 the Speaker bit tells us if a given Speaker arrangement is supported. The arrangments for
each bit in the masks are as follows:

Bit 0 = Front Left and Front Right
Bit 1 = LFE
Bit 2 = Front Center
Bit 3 = Rear Left and Rear Right
Bit 4 = Rear Center
Bit 5 = Front Left Center and Front Right Center
Bit 6 = Rear Left Center and Rear Right Center

Because responding is optional, an HDMI device may accept and play audio despite the above
SWI returning zeros in r[1] and r[2].

ScreenModes_EnumerateAudioFormats Lists supported audio formats.
On entry:
If r[0] = 0 Return data in �raw� format
If r[0] = 1 Return data in �friendly� format
r[1] = Format code number for this entry (-1 for first)
r[2] = Enumeration token for format code (-1 to start with first)
On exit:
r[0] = Preserved
r[1] = Format code for this entry (-1 if no more entries)
r[2] = Enumeration token for this entry (-1 if no more entries)

For �raw� results:
r[3] = Max number of channels
r[4] = Audio short descriptor byte 2
r[5] = Audio short descriptor byte 3

For �friendly� results:
r[3] = Max channels
r[4] = Sample rate in units of 1/1024 Hz
r[5] = For format code 1 (LPCM): Sample bit depth (size)
 For format code > 1: Max bit rate in Hz.

Enumeration can start at the first supported format (by specifying r[0] and r[1] as -1) or at a
specific format (Set r[1] to the required format code, and r[2] to -1). On return r[1] and
r[2] will indicate the validity of the data; for valid data they will both not be -1, and for invalid
data they will both be -1. Only if valid data is indicated will r[3] to r[5] be updated.

The format code specified in r[1] corresponds to the format codes defined by CEA 861, e.g.
basic LPCM audio is format code 1. The audio formats can be enumerated in two modes: �raw�
mode and �friendly� mode. �raw� mode returns bytes 2 and 3 of the CEA short audio descriptor
directly (byte 1 will have already been decoded to determine the values of r[1] and r[3]).
�friendly� mode interprets the bytes and converts them to standard units � however note this is
currently only supported for format codes 1 through 8.

 J. C. G. Lesurf � 36 � RO Sound System V0.95 Feb 2016

The results of the enumeration will be ordered by their format code, so if you are only interested
in one format code you can simply begin enumeration with r[1] set to that value and end
enumeration when on exit r[1] deviates from that value.

For monitors with complex EDID, it is possible that the same format will be reported twice when
enumerating in �friendly� mode.

Shared Sound

The Shared Sound module was originally developed by ESP (Expressive Software Projects) but
has now become a standard part of the ROSS. Its purposes may be summarised as:

• Shared use of digital sound output (i.e. �mixing�).
• 16 bit linear facility independently from the hardware used.
• Software support to potential users of digital sound output.
• A call back facility for CPU intensive handlers allowing the hardware drivers to operate with
 interrupts disabled.
• Provision for effects and other processes to act on the sound

SharedSound allows multiple sound handlers to output symultaenously through one sound
source. It can potentially provide a number of useful functions such as mixing, sample rate
conversion via interpolation, and volume scaling. However, current versions of the module simply
pass the relevant values onto the handlers and they are expected to do the work. Values are passed
to the Handler fill routine which indicates the current state of play � in particular the current
sample rate, along with associated values, as well as the current volume setting. The volume for a
handler is calculated from the current system volume and the volume requested for the handler as
well as scaling depending on the number of currently active handlers. This is passed as a Left and
Right (Stereo) volume as two 16 bit words packed into a 32 bit word.

SharedSound acts as a universal interface to any supported hardware. This currently includes
support for the Risc PC 16 bit sound system upgrade and the Audio Dynamics DMI50/S card.

The current version of SharedSound provides three levels of handler activity.

• The first is an immediate handler. This is called with interrupts disabled and must return as
quickly as possible. Such handlers are likely to be simple 'fill buffer' handlers that do not
need to process any data, or a timing device that is using the Sound interrupt as a timer.
• The second type of handler is a call back handler. This is called on a call back and can
therefore operate with interrupts enabled and take more time to execute.
• The third is a process handler. This is called in the same way as a call back handler but is
called at the end of the call back process to allow it to add effects or process the current buffer
in some way.

SharedSound is currently used by the the Sound16 codecs for Replay, the PCSound support
module and the MIDI Synthesiser.

SharedSound has the SharedSound_HandlerVolume SWI for setting the volume of the left
& right channels for a specific client, and SharedSound_DriverVolume for setting the
volume of the output as a whole. As with *Volume, it's the client's responsibility to obey the
values. Judging by the implementation of the built-in buffer fill code, the volume values are
simple multipliers applied to the 16-bit data, with a resolution of 1/65536. i.e. with both the

 J. C. G. Lesurf � 37 � RO Sound System V0.95 Feb 2016

handler and driver volume set to maximum, you actually get a multiplier of 1/65534 due to the
way the handler and driver volumes are combined into a 16-bit volume level that's passed to the
client/fill code.

Note that when SharedSound clients produce their output, they mix it directly into the buffer
containing the 16-bit data produced by SoundDMA's log-to-linear code. This means they must
perform their own clipping on the values, and if there are lots of sounds playing then the multiple
clipping stages could easily result in corruption.

Note also that SharedSound is currently still being developed so new features may be added and
some intended features will be implimented. Hence the details I give below can be expected to
change with time and may be out-of-date.

SharedSound handlers
The handlers of each type are called in the order in which they were installed. Process handlers are
called after call back handlers. Each handler is passed a buffer to fill with the registers used as
follows:

Input:
r[0] = parameter
r[1] = base address of buffer to fill
r[2] = end of buffer
r[3] = flags
r[4] = sample rate
r[5] = sample period
r[6] = fractional step as specified by SharedSound_SampleRate

 r[7] = LR volume
r[8] = Pointer to fill code
Exit:
r[3], r[4], r[5], and r[6] are updated at the start of a buffer fill to represent the
current values.

The important requirement on exit is that bit 0 of r[3] should be set if any data has been
written into the buffer. In fact, SharedSound cannot currently cope with no data being filled, so
zeros should always be written. More generally, the details of the flag bits are as follows:

Flags
Bits
0 Mix. If set then data must be mixed, otherwise overwrite.
1 Quality. If set then use highest quality e.g. oversampling. *
3-7 Overrun count *

 = 0 No overrun
 = 1 to 30 times buffer has been overrun
 = 31 Buffer overrun > 30

29 Stereo. Reverse stereo if set. *
30 Set if to use volume in R7, otherwise use max volume
31 Set if volume in R7 is zero, ie. muted.

N.B. * = Not currently implimented (SharedSound version 1.11). Only bit 0 of the above flags is
implemented by SharedSound. The other flags are currently used by the Sound16 drivers.

 J. C. G. Lesurf � 38 � RO Sound System V0.95 Feb 2016

Fill code
On entry to the fill handler, r[8] points to the following table:

Offset
0 Flags word, currently 0
4 Pointer to �silence fill� routine
8 Pointer to �data fill� routine

This table may be extended in future to include more fill variants; the presence/absence of these
routines will be indicated by bits in the flags word.

Silence fill code
On entry:
r[1] = Base address of buffer to be filled
r[2] = End of the buffer to be filled
r[3] = Flags (as on entry to the fill handler)
r[6] = Fractional step value
r[7] = LR volume
r[9] = Fractional accumulator
On exit:
r[0] = New flags (to be returned from fill handler in R3)
r[1] = Next byte to be filled
r[4] = Next byte to fill from
r[9] = New Fractional accumulator
r[2] r[3] r[5] r[6] r[7] r[8] r[12] preserved.
All other registers corrupted.

Data fill code
On entry:
r[1] = Base address of buffer to be filled
r[2] = End of the buffer to be filled
r[3] = Flags (as on entry to the fill handler)
r[4] = Base of buffer to fill from
r[5] = End of buffer to fill from
r[6] = Fractional step value
r[7] = LR volume

 r[9] = Fractional accumulator
On exit:
r[0] = New flags (to be returned from fill handler in R3)
r[1] = Next byte to be filled
r[4] = Next byte to fill from
r[9] = New Fractional accumulator
r[2] r[3] r[5] r[6] r[7] r[8] r[12] preserved.
All other registers corrupted.

 J. C. G. Lesurf � 39 � RO Sound System V0.95 Feb 2016

The SWIs provided are:

 0x04B440 SharedSound_InstallHandler 0x04B441 SharedSound_RemoveHandler

 0x04B442 SharedSound_HandlerInfo 0x04B443 SharedSound_HandlerVolume

 0x04B444 SharedSound_HandlerSampleType 0x04B445 SharedSound_HandlerPause

 0x04B446 SharedSound_SampleRate 0x04B447 SharedSound_InstallDriver

 0x04B448 SharedSound_RemoveDriver 0x04B449 SharedSound_DriverInfo

 0x04B44A SharedSound_DriverVolume 0x04B44B SharedSound_DriverMixer

 0x04B44C SharedSound_CheckDriver 0x04B44D SharedSound_ControlWord

 0x04B44E SharedSound_HandlerType

SharedSound_InstallHandler Used to install a handler.
On entry:
r[0] = handler address pointer
r[1] = parameter to pass
r[2] = flags
r[3] = pointer to (or name of) handler
r[4] = type of handler indicated by the value:

0 = Immediate
1 = Call back
2 = Process

On exit: r[0] = handler number.

SharedSound_RemoveHandler Removes a handler.
On entry: r[0] = handler number.

SharedSound_HandlerInfo Returns details of handler.
On entry: r[0] = handler number or 0 for first call.
On exit:
r[0] = number of next handler on list or 0 for no more.
r[1] = flags
r[2] = pointer to name
r[3] = sample rate
r[4] = handler type
r[5] = volume

SharedSound_HandlerVolume Sets L/R volume (gain) values.
On entry:
r[0] = handler number
r[1] = volume
On exit:
r[0] preserved
r[1] = current volume

The volume value consists of two 16-bit values in a 32-bit int. Bits 0-15 set the Left channel
volume (gain) and bits 16-31 set the Right channel volume (gain). SharedSound may pass this
information on to the handler. At present SharedSound does not itself alter gain values to take
mixing into account, although this may change in the future.

SharedSound_HandlerSampleType Not yet implimented?

 J. C. G. Lesurf � 40 � RO Sound System V0.95 Feb 2016

SharedSound_HandlerPause Not yet implimented?

SharedSound_SampleRate Used to set a sample rate
On entry:
r[0] = handler number or 0 to set system rate for current output.
r[1] = sample rate required
On exit:
r[1] = sample rate
r[2] = sample period
r[3] = fractional step required to achieve this rate in 8.24 fixed point format

This SWI is used to set the sample rate used by a particular handler. Information is returned to
indicate whether Shared Sound can provide this rate and if not what is the nearest rate it can
provide. Along with this is a fractional step value to suggest how the handler can achieve it's
required rate. Sample rate is always supplied in 1/1024ths of Hz.

SharedSound_InstallDriver Currently not implimented?
On entry:
r[0] = 1 for linear driver, or 2 for log driver, or a pointer to a driver table address.
r[1] = parameter to pass driver in r[12] when called.
r[2] = flags
r[3] = volume

This is to allow other output devices to be installed.

SharedSound_RemoveDriver Currently not implimented?
On entry:
r[0] = 1 to remove linear driver, 2 for log driver, or pointer to driver table address.

SharedSound_DriverInfo Currently not implimented?
On entry: r[0] = driver number
On exit:
r[0] = number of next available driver or 0 for none
r[1] = flags
r[2] = name
r[3] = volume
r[4] = overrun count.

SharedSound_DriverVolume Currently not implimented?
On entry:
r[0] = driver number
r[1] = volume

SharedSound_DriverMixer Currently not implimented?
On entry:
r[0] = driver number
r[1] = function (0 = read, 1 = set)
r[2] = mixer number

 J. C. G. Lesurf � 41 � RO Sound System V0.95 Feb 2016

r[3] = value
On exit:
r[0] preserved
r[1] = number of mixers
r[2] = value
r[3] = name

This sets or reads mixer values for a driver where relevant.

SharedSound_CheckDriver Check driver still active
No entry conditions or returns.

This is used to force SharedSound to make sure that current driver is still active. It is needed for
situations where another application has taken control of the output Linear handler and has not
returned the control to SharedSound.

SharedSound_ControlWord Replay Sound16 control
On entry: r[0] = control word

This is used by the Replay Sound16 codecs as part of the multi-tasking Replay implementation.
It provides a control word to both Replay and the Sound16 code allowing for a �1 audible
handler of many� support.

SharedSound_HandlerType Change handler type
On entry:
r[0] = handle
r[1] = type

This is used to change the type of a handler from, for example, an immediate handler to a call
back handler.

Sound

The Sound module and the commands and SWIs it provides pre-date the addition of various
other modules � in particular SharedSound � into the ROSS. A number of the SWIs and
commands it provides have either been supplanted by newer alternatives or deal with 8-bit audio
or the ancient �Voice generator� system. For that reason, here I will ignore many of the SWIs and
concentrate on the ones relevant for the modern 16-bit audio system and which don�t have later
alternatives which are to be preferred.

In the context of modern audio only a few commands provided by the Sound module are
particularly relevant. These are the *Audio, *Volume, and *Speaker, commands which have
already been discussed on pages 6-7 and page 34, along with the *Configure SoundDefault
command. Note, however that the *Audio command now also allows the user to select the
current audio controller/hardware as an extension to its original function. (See the section on
HDMI Audio and Screen Modes for more details).

The full list of SWIs are grouped into three blocks:

 0x040140 Sound_Configure 0x040141 Sound_Enable 0x040142 Sound_Stereo

 0x040143 Sound_Speaker 0x040144 Sound_Mode 0x040145 Sound_LinearHandler

 0x040146 Sound_SampleRate 0x040147 Sound_ReadSysInfo 0x040148 Sound_SelectDefaultDevice

 0x040149 Sound_EnumerateDevices 0x04014A Sound_DeviceInfo

 0x040180 Sound_Volume 0x040181 Sound_SoundLog 0x040182 Sound_LogScale

 J. C. G. Lesurf � 42 � RO Sound System V0.95 Feb 2016
 0x040183 Sound_InstallVoice 0x040184 Sound_RemoveVoice 0x040185 Sound_AttachVoice

 0x040186 Sound_ControlPacked 0x040187 Sound_Tuning 0x040188 Sound_Pitch

 0x040189 Sound_Control 0x04018A Sound_AttachNamedVoice 0x04018B Sound_ReadControlBlock

 0x04018C Sound_WriteControlBlock

 0x0401C0 Sound_QInit 0x0401C1 Sound_QSchedule 0x0401C2 Sound_QRemove

 0x0401C3 Sound_QFree 0x0401C4 Sound_QSDispatch 0x0401C5 Sound_QTempo

 0x0401C6 Sound_QBeat 0x0401C7 Sound_QInterface

Sound_DeviceInfo Reads the details of an audio controller/device
On entry:
r[0] = Pointer to the controller/device ID string.
r[1] = Pointer to a buffer for result, or 0 to check.
r[2] = Length of buffer.
r[3] = 0
On exit;
r[0] = 0, or pointer to error block.
r[1] = Buffer containing an identifying string given by the controlled device hardware.
r[2] = Length of data in r[1].

Note that the identifying string returned here in the r[2] buffer is not the same thing as the
controller�s device ID string. It is provided as a label which is more human-readable.

Sound_Enable Equvalent of *Sound On|Off
On entry:
If r[0] = 0 No action, just return current state.
If r[0] = 1 Disable sound output.
If r[0] = 2 Enable sound output.
On exit:
r[0] = Previous state [1 = disabled, 2 = enabled]

Sound_EnumerateDevices List the audio controllers/devices
On entry:
r[0] = Pointer to space/control terminated ID string to start from, or 0 to start.
r[1] = Pointer to vuffer for result, or 0 to check required buffer length.
r[2] = Length of buffer pointed to by r[1].
On exit:
r[0] = 0, or pointer to error block.
r[1] = Buffer updated with null-terminated ID string of next device, or empty string if

 no more devices.

This call can be used to enumerate the available audio controllers and their hardware devices. If
the supplied buffer was too small or the pointer was 0 an overflow error will be generated and no
data copied into the buffer.

Sound_Mode Detect and control features of 16bit system
On entry:
If r[0] = 0 Reads presence of 16-bit sound system
On exit:
If r[0] = 1 16-bit sound system available.

 J. C. G. Lesurf � 43 � RO Sound System V0.95 Feb 2016

r[1] flag bits:
bit 1 set = 16-bit linear output inc. 44·1k, 22·05k, and 11·025k.
bit 2 set = 16-bit linear output, internal clock
bit 3 set = 16-bit linear output, external clock
bit 4 = oversampling mode (1 = enabled)
bit 5 = mono conversion status (1 = enabled)

On entry:
If r[0] = 1 Oversampling control:

If r[1] = 0 Disable oversampling
If r[1] = 1 Enable oversampling if possible

On exit:
r[1] = Previous oversampling state.

On entry
If r[0] = 3 Mono control

If r[1] = 0 Disable mono conversion
If r[1] != 0 convert to mono output

On exit:
r[1] = Previous mono conversion state.

In practice if you wish to use this call you should initially use it to check for the presence of a 16-
bit system.

Sound_ReadSysInfo Examine audio features available
On entry:
If r[0] = 1 [reason code 1]
On exit:
r [0] = 0
r[1] = flags

Bit 0 set = Supports generating service calls for Sound rate changing, Sound
 starting, and Sound stopping.

Bit 1 set = Supports the SWIs, Sound_SelectDefaultDevice,
 Sound_EnumerateDevices, and Sound_DeviceInfo

On entry:
If r[0] = 2 [reason code 2]
r[1] = Pointer to buffer for result, or 0 to check required length
r[2] = Length of buffer provided
On exit:
r[0] = 0 or error (e.g. buffer overflow)
r[1] = Buffer filled with null terminated string (if buffer was long enough)
r[2] = length of result inc null terminator

To detect if this SWI call is supported you should first check that r[0] = 0 on return.

Reason code 1 allows you to discover the features the system supports. If bit 2 of the value

 J. C. G. Lesurf � 44 � RO Sound System V0.95 Feb 2016

returned in r[1] is set then the system supports the use of a choice of audio controller/hardware.
You can then use Reason code 2 to read the ID string for the currently selected audio controller.

Sound_SelectDefaultDevice Selects current controller/device
On entry:
r[0] = Pointer to a space/control terminated controller device ID string.
On exit:
r[0] = 0, or an error block.

This call allows you to select the audio controller and hardware to be used. Both 8-bit and 16-bit
sound systems will then use this controller. This SWI provides the same functionality as provided
by the extended command syntax, *Audio <deviceIDstring>.

Sound_Speaker Equivalent of *Speaker
On entry:
r[0] = 0 No Change, just return existing setting
r[0] = 1 Turn speaker off [Equivalent of *Speaker Off]
r[0] = 2 Turn speaker on [Equivalent of *Speaker On]
On exit:
r[0] = Previous speaker setting.

Sound_Volume Equivalent of *Volume
On entry:
r[0] = New volume [range 1 to 127, or 0 to read volume]
On exit:
r[0] = Previous volume

This volume value uses a log scale with 127 representing a unity scaling. For every 16 you
subtract from 127 the linear output will be halved.

SoundControl

The SoundControl module was added to the ROSS in RO 5. Its purpose is to act as a control
interface for the sound hardware, thus providing an API that can be kept consistent for different
examples of hardware. It provides the *MixVolume control discussed in the main part of the
ROSS document. In addition it currently provides just three SWIs.

 0x050000 SoundCtrl_ExamineMixer 0x050001 SoundCtrl_SetMix 0x050002 SoundCtrl_GetMix

SoundCtrl_ExamineMixer Examines all mixer settings
On entry:
r[0] = system
r[1] = pointer to a word-aligned buffer
r[2] = buffer size (may be 0)
On exit: the buffer provided will be filled with a series of 16-byte blocks
with the following format:

 bytes
0-1 flags: bit 0 set => fixed

 J. C. G. Lesurf � 45 � RO Sound System V0.95 Feb 2016

 bit 1 = 1 mono, or 0 stereo.
 bit 2 = 1 muted by default

2-3 category
4-7 minimum gain (dB*16)
8-11 maximum gain (dB*16)
12-15 minimum step size/granularity (dB*16)
r[0], r[1] preserved
r[2] decremented by number of bytes needed for complete description
 (ie if 0 on entry, now holds negative of buffer size required)
r[3] = individual block size (bytes) - will be a multiple of 4
r[4] = number of blocks placed in buffer

Should be called twice, first to determine buffer size required, then to fill in buffer. This is to
allow block size to be enlarged in future. Currently, valid block sizes are 4 bytes and 16 bytes. The
source code provided with !SoundCheck provides an example in �C� of how to do this.

SoundCtrl_SetMix SWI equivalent to *MixVolume
On entry:
r[0] = system
r[1] = category
r[2] = channel index
r[3] = mute (1 for mute, 0 for unmute)
r[4] = gain (16th of a dB)

This allows you to change the settings of active parts of the mixer. It acts in much the same way as
*MixVolume as described in the main part of the ROSS documentation.

SoundCtrl_GetMix Reads mixer gain setting.
On entry:
r[0] = system
r[1] = category
r[2] = channel index
On exit:
r[3] = muted? (1 for yes, 0 for no)
r[4] = gain (16ths of a dB)

Acknowledgements

This document is based on a large number of items of advice and information kindly provided by
many people. I would like to thank them for their help and knowledge. In particular, I�d like to
acknowledge, for simplicity in alphabetical order:

Ben Avison, Colin Granville, Dave Higton, Jeffrey Lee, Chris Martin, Willi Theiss, André
Timmermans, and Robin Watts.

and extend my thanks to them and the others. A full list of those who have helped would � to
long-term RO users � reveal many of the �usual suspects�! My apologies to anyone who I�ve
forgotten because I�ve been swamped by all the details.

 J. C. G. Lesurf � 46 � RO Sound System V0.95 Feb 2016

Jim Lesurf
8th Feb 2016

Please note that this is numbered Version 0.95 as I know that it still containes errors and has
omissions. However I am releasing it for people to comment and provide feedback. I will then
produce an improved version and make it available in due course. As and when there are
developments I will also include them. I may even get around to correcting the typos! :-)

