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 A Toolkit For Chaos

[Original March 1991.  This version reconstituted January 2019.]

Electronic engineers are used to dealing with devices which display various  forms of electronic
non-linearity. It is virtually impossible to find a radio or microwave system which does not
contain a non-linear resistance (i.e. an  ordinary diode). Varactor diodes are also widely used as
capacitors whose value  may be controlled by an applied voltage. Yet outside of a few well-
defined applications, non-linearity has generally been an unwelcome guest. One of the main
tasks of engineers is often to suppress unwanted non-linear behaviour in  electronic systems.
Circuits which display non-linearity or complex, unpredictable oscillations are likely to be
thrown in the bin as ‘useless’. 

Chaos has become a major growth area in science, and the behaviour of non-linear systems is a
hot topic for study. For many academic scientists, the fascination of experimenting with non-
linear systems and discovering amazing complexity can  be an end in itself. A practical engineer
is likely to be more sceptical and ask, “What is it good for?”

It will probably be some time before we can really know what the full range of  benefits might
be from understanding chaotic systems. Until now, one of the  most obvious advantages is
negative – “Know your enemy”. If you can define just what produces chaotic behaviour in a
given system then you are half-way to knowing how to avoid it! This can be very valuable in
preventing system failures. In the future, more positive results may be expected, although it is a
bit soon to predict just what they will be. 

At present, the most immediate positive results look like being in the direction of improving the
performance of existing non-linear applications – e.g. frequency multipliers, mixers, etc. Beyond
that, as yet, there are few obviously new applications, although work is beginning on some
ideas. For example, the use of non-linear systems to produce ‘chaotic oscillators’. These may
prove useful as broadband sources, replacing noise sources for some applications, providing
spread spectrum signals for communications or radar, and complex deterministic signals for
signal encryption. Given these  developments it is probably time for engineers to begin
familiarising  themselves with the new toolkit of chaos.

A diode is the simplest form of non-linear device. In general, diodes have a conductivity and
reactance that are voltage dependent. In principle we can imagine building any sort of non-linear
system from a suitable set of diodes along with some passive linear components, and amplifiers
to provide any gain we require.

The main properties of an ordinary diode can be defined in terms of how the  current passing
through the device depends upon the applied voltage. The non-linear properties of a varactor are
less obvious, but can be explained by comparison with an ordinary capacitor. The voltage, , of
a normal capacitor is proportional to the charge, , it holds. If we start with a discharged
capacitor and add an amount of charge, , the capacitor acquires a voltage

V
Q

Q

V = Q / C ... (1)

To change the voltage by a small amount, , we must add an extra amount of charged V

dQ = C .d V ... (2)

 We may now define the capacitance using expression 1 or 2. Either way we will get the same
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value, irrespective of our choice of V.

If we repeat the same process with a Varactor we find that the voltage produced is not simply
proportional to the charge. To change the diode voltage by dV we must now add a charge

dQ = C {V } .d V ... (3)

where  depends upon the device voltage, . To take a discharged varactor and charge it
to a voltage, , we need a charge

C (V ) V
V

Q = C ′ {V } .V ... (4)

where

C ′ {V } = ( 1

V ) ∫
 V

0

C {V } .d V ... (5)

Unlike for an ordinary capacitor, expressions 3 and 4 won't now usually provide the same
capacitance value for any randomly chosen value of .V

This situation is analogous to the resistance of a normal diode which may be  given either as a
static value  or as a dynamic or slope value  . Here we can define a
static capacitance, , or a dynamic one,  . 

R = V / I r = d V / d I
C {V } C ′ {V }

In general, these devices are used to carry out fairly basic functions like  frequency conversion
and tuning. Their analysis as presented in most textbooks  seems straightforward. Yet,
surprisingly, even quite simple arrangements containing these devices can behave in ways which
are very complex - even  chaotic. 

Ideally, we can explore the behaviour of these systems by building circuits and  watching what
they do as we vary circuit element values or applied signals. Unfortunately, this approach isn't
always practical. For example, millimetre-wave engineers have to deal with signal frequencies
of 70 - 100 GHz  or more. At these frequencies it can be quite difficult to define the electrical
properties of any circuit you have built. Measuring the details of any output signals can - unless
they are fairly simple - also prove rather  difficult and expensive. 

In some cases we are also faced with the question, “What would this new sort of device do if we
were to make one”. Solid state engineers can now manufacture a wide range of Low
Dimensional Structure Devices which - although they only have two terminals like the humble
1N4148 - can have a wide range of complicated electrical properties. Naturally, the people who
have to grow these devices would like some advance idea of which types will be most useful. 

When asked ‘what if’ questions of this type, most engineers and scientists resort to some kind of
computer model, based upon a algorithm running on a digital computer. This technique is a very
powerful one, but is does present us with some problems of its own. These can be roughly
divided into three  categories:-   i) is the program right? ii) is the computer big and fast enough?
iii) is there a problem with computational errors?

All being well, we can hope to produce a program which represents the system we wish to
model. The speed and size of the computer is likely to be determined by the available funds.
Computational errors are an unavoidable risk, and it can be very difficult to decide whether the
results we see are being affected by rounding errors or by choosing finite time steps between
calculations which are  too large. 
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The problem of finite computational precision is particularly important when examining the
behaviour of circuits which may become chaotic. Imagine a non-linear circuit or system whose
state at any moment can be defined by the values of, say, just four quantities (perhaps two
voltages & two currents). The properties of the circuit will determine how these quantities
change with time in response to some given input signal. If the process is periodic, after some
appropriate time the quantities will return to a set of values which they have  already had. The
process then repeats its previous behaviour over and over again. A chaotic process cannot, by
definition, be periodic. Hence if the  process is chaotic the quantities which describe the state of
the circuit will never repeat any set of values.

A digital computer model of this circuit in operation will store information about the state of the
process in terms of four values. Each of these will be  recorded in the computer as a finite
number of bits. For standard IEEE floating  point precision a number is recorded as four 8-bit
bytes - i.e. as 32 bits. Hence a set of four variable values will be stored as 4x32=128 bits.

Now a finite number of bits, , can only record  possible arrangements. So far as the
computer is concerned, the simple digital representation we have described above must always
be in one of the 2128 states which the computer model can distinguish. The computer can only
calculate and recognise this finite number of states. As a result any process whose state we
represent in terms of  bits must repeat itself after - at most -  recalculations since the
computer will have run out of ‘fresh’ patterns of bits. 

N M = 2N

N 2N

We can, of course, use extended precision values to increase . More complex circuits and
systems will also require more than four quantities to describe their state. Hence we can produce
computer models where  is very large indeed  - but in practice it can never be infinite. This
problem is made worse by the possibility that rounding errors during a calculation may force an
‘accidental’ repeat of a set of values after far less than  updates of the state of the model. As
processes approach becoming chaotic it becomes increasingly difficult to assess their behaviour
reliably using a computer model.

N

M

M

In general, the risk of computational error can be reduced by buying a bigger,  faster computer
and performing the digital calculations with extended precision and smaller time steps. Yet this
does not banish the risk, although it does  increase the cost. However, in order to avoid time step
(sampling) and precision (quantisation) errors we can adopt a very different technique and use
an analog  model of a non-linear device. This can then be used to cross-check the  predictions of
a digital computer model, or used by itself for the sake of cheapness and speed.

In general, we can define two basic types of passive non-linear device – a non-linear  resistance
and a non-linear reactance. These can then be treated as building  blocks to assemble other non-
linear systems. To see how they can be used to  explore the behaviour of complex or chaotic
processes we can concentrate here on just one type in the form of an artificial varactor. Figure 1a
shows a circuit which behaves as a voltage dependent capacitance. 
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Fig1a. Circuit used to create a capacitance that varies

Fig1b. Embedding ‘T’ network used with artificial varactor.

with the applied voltage – i.e. equivalent to a varactor.
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Fig 1.  Analog non-linear capacitance and experimental network.

For simplicity, we can assume that the gains,  & , of the two amplifiers  are both unity –
i.e. they act as buffers. In practice these gains may be chosen to have some other value (they
may also, of course, be voltage  dependent). In this way the voltage dependence of the
capacitance presented at its terminals can be chosen.

G 1 G 2

The diodes,  & , may be assumed to be ordinary Silicon signal diodes (e.g.  1N4148's or
similar). When  Volts the diodes will have a high effective resistance and  will be
held at about 0 Volts. In this situation any input current,  , must charge both  &  in order
to alter the voltage, , Hence for low input voltages the circuit behaves as if it were a
capacitance, 

D 1 D 2

|V | < 0·5 V 0

I C 1 C 2

V

C {V ≈ 0} ≈ C 1 + C 2 ... (6)

When  Volts any change in will produce a corresponding alteration  in . i.e. no
charge need flow into or out of . Hence in this situation the circuit behaves as a dynamic
capacitance

|V | ≫ 0·5 V V 0

C 2

C { } = C 1 ... (7)|V | ≫ 0·5

At intermediate voltages, the effective capacitance depends upon the behaviour  of the diodes
and the chosen value of . As  increases from zero, through 0·5 Volts, the effective
capacitance tends to fall smoothly from  to .

R1 |V |
C 1 + C 2 C 1

To compare the digital and analog approaches a circuit of the form of 1a was built using a pair
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of TL081 operational amplifiers.  &  were a pair of 1N4148's,  = 5kOhms (two 10k's in
parallel). The nominal capacitor values used were  0·1µF, and  1µF.

D 1 D 2 R1

C 1 = C 2 =

The  behaviour of the circuit was determined by connecting it in series with a known
inductor and then noting how the series resonance frequency varied with an applied d.c. voltage.
From these measurements it was found that the dynamic capacitance behaviour was essentially
of the form

C {V }

C {V } = C 1 +
C 2

1 + (αV )4
... (8)

 where  ,  = 0·94µF, and the coefficient, α = 2·2 per Volt.C 1 = 0·14µF C 2

This artificial varactor was then connected to a ‘T-network’ consisting of a pair of inductors and
a capacitor as illustrated in Fig 1b. The properties of  this fairly simple system could then be
examined as a function of the applied signal voltage.

The actual network used consisted of two inductors whose values were  = 3·24  mH, and  =
3·38 mH. The d.c. resistances of these inductors were  Ohms and  = 4  Ohms. These
particular  components were chosen purely because they were to hand - i.e. their choice was ‘at
random’. Their order of magnitude was selected to ensure that any affects of interest would be
likely to arise in the 100 Hz - 10 kHz frequency range.  This would make them easy to observe
on a normal oscilloscope and be well within the bandwidth of the op-amps. An input sinewave,

, and nominal d.c.  bias level,  were coupled into the circuit via a series resistor, R = 100
Ohms.

L1 Ld
RLi =  6 RLd

V a V b

Fig 2.  Typical input and output voltages vs time. 

A computer program was also produced to act as a comparative digital model.  This was written
in BBC Basic V and run on an Acorn Achimedes 410 machine  fitted with an Arm3 processor.
Although not, by any means, a 'super-mini', the Arm-3 is a 32-bit, 30MHz, RISC processor with
an on-chip cache memory. It is  therefore well suited to this sort of algorithm involving rapid
iterations of a  simple set of difference equations. In this case the set of equations used were
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   REPEAT

   Vi=Va*SIN(W*t)+Vb

   V+=I*dt/FNcap    

   Vc+=(Ii-I)*dt/C    

   I+=(Vc-RLd*I-V)*dt/Ld    

   Ii+=(Vi-Ii*(R+RLi)-Vc)*dt/Li    

   t+=dt    

   UNTIL FALSE    

   :    

   DEFFNcap    =C1+C2/(1+(2.2*V)^4)

where  is the half-peak magnitude of a nominal input sinewave at the (angular) frequency,
.  is the d.c. bias level.  is the time-step increment (here normally preset to a 1/256'th of

a cycle at the chosen input driving sinewave  frequency). BBC Basic V is a convenient language
for this type of computation for  two reasons; firstly, floating point values are stored as four
bytes of  mantissa and one of exponent - i.e.  more accurately than standard 32bit IEEE  floating
point; secondly, the provision of the unary addition operator, "+=",  which speeds up differential
calculations.

V a

W V b d t

The possible effects of finite precision and time-step value were tested by compiling a double
precision (to IEEE standard) version using the ABC Basic compiler and running this with
smaller dt values. This gave results visibly identical to the normal interpreted basic program, as
viewed by plotting   against t on the computer display. When plotting a useful output display,
the computer program ran at an actual drive waveform rate of just a few cycles per second. The
analog system operated  in real time and provided essentially identical behaviour with drive
frequencies in the kHz range. Hence it was found that the analog system  operated around 1000
times faster than the computer program. 

V d

The correspondence between analog and digital models allowed a rapid exploration of the
system behaviour using the analog system. Detailed analysis of interesting regions of operation
could then be carried out using the computer model without having to spend considerable time
checking a wide range  of conditions which produce less interesting results.

An example of interesting complexity was found, using the analog system, to occur for a drive
frequency of around 1300 Hz at =3·5 Volts (half-peak)  combined with a d.c. bias level of
around 0·25 Volts. Figure 2 illustrates some  typical results for the time variation of V in this
region. This figure was  obtained from the computer model, but identical results could be
obtained using  an oscilloscope connected to the analog circuit.

V a  

We are accustomed to examining signal versus time variations on the screen of an oscilloscope,
but in this case such a display does not tell us very much about what is happening. Fortunately,
various methods have been developed for examining complex and chaotic processes. We can
adopt one of these – a ‘phase’ plot – to explore the behaviour of our non-linear system.
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Figs 3a & 3b. Examples of phase plots showing pattern of bifurcations. 

The concept of a phase plot is fairly simple. We drive a non-linear arrangement with a periodic
signal and note the value of its output at a particular phase of each drive cycle. We then alter one
of the system parameters and repeat the  measurement. In this case, we drive the system with a
sine wave

V = V a sin {αt } ... (9)

and note the output voltage (i.e. the voltage on the non-linear capacitor), ,  at some chosen
phase angle, , of each cycle. We can now plot how  varies with, say, the d.c. bias voltage.

V p

ψ V p

 [N.B. See the appendix for a more detailed explanation of the use of a phase plot.]

Figures 3a & 3b show some typical phase plot results for the circuit we are examining. Figure 3b
is a ‘close up’ view of the most interesting section of the phase plot results. At low d.c. bias
levels, the output appears simply to be a distorted version of  the input. Each cycle is identical to
the next. If we were to just look at the output we would conclude that its period was identical
with that of the input drive signal. 

When the d.c. voltage reaches about 0·05 Volts the situation suddenly changes. Now the output
level alternates from input cycle to cycle, back and forth between two values. The output signal
now appears to have a period which is  double that of the input. The phase plot shows a
bifurcation, a place where one line splits into two. Another bifurcation occurs when the bias
voltages reaches about 0.18 Volts.  then cycles around four values and the basic period of theV p
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output appears to be four times that of the input. These bifurcations are also referred to as
‘period doublings’ for obvious reasons.

As we continue, the change in bias required to produce extra bifurcations rapidly decreases and
we see a ‘cascade’ of bifurcations. The basic period  rises rapidly and, in principle, may go to
infinity. If that occurs the system becomes ‘chaotic’ and the output waveform never produces
any two cycles which are identical. In this case the number of bifurcations appears to reach a
maximum value at a d.c. bias level around 0·25 Volts. Any further increase in bias causes a
reduction in the periodicity. A system which has undergone a finite number of bifurcations can
be said to show ‘semi-chaotic’ behaviour. Its output period may be much longer than that of the
‘driving’ input sinewave, but it eventually will repeat.

We could continue to examine the behaviour of this particular system in more detail,  exploring
the effects of altering other variables, and applying other analysis methods. However, the
purpose of looking at the complex behaviour of this particular circuit was to demonstrate the
principle that we may easily and cheaply construct an analog system which may replace a digital
computer model.  To understand how this approach may be extended we can use the example of
an  artificial non-linear resistance as shown in Figure 4. This represents a rough approximation
to a Gunn diode.

Fig4b. Resulting Voltage/Current relationship

V

I
Negative (dynamic)
resistance region

Fig4a. Circuit that mimics a Gunn Diode
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I 2

Gunn diodes are widely used at microwave and millimetre-wave frequencies as oscillators and
amplifiers. i.e. although they are two-lead devices, they can  provide gain. This is because they
exhibit the property of negative resistance.  (Strictly speaking, this is more correctly called
negative differential  conductance, but the term negative resistance is commonly used.) 
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Consider a potential divider made of two resistors,  &  connected in series. When we apply
an overall voltage, , the voltage across, say, , will be

R1 R2

V R2

V 2 =
R2

R1 + R2

... (10)

Normally we will expect ,  and hence that . If, however,  or  is
negative we may find that , which means that ! The usual potential
‘divider’ will then act as an amplifier.

R1 + R2 ≥ R2 V 2 ≪ V R1 R2

R1 + R2 < R2 V 2 ≥ V

Clearly we can't get ‘owt for nowt. Any power which is added to an amplified signal must come
from somewhere. As a result, for a two-terminal device like a Gunn diode we find that the static
resistance must always be positive, but the dynamic (slope) resistance can be negative over some
range of applied voltages. This  means that an input bias signal must be applied and this acts as
the source of  power which can be added, making it possible to amplify signal variations.

The circuit in Fig4a produces a system that shows a region of negative dynamic resistance,
acting to mimic a Gunn diode. The behaviour of the circuit may be divided into three sections:-

   i) Low voltage:  where  is the turn-on voltage of the diodes,  & ;|V | < V D / G 1 V D D 1 D 2

  ii) Medium voltage:  from  V Z / (G 1A) − V D / G 1 ≤ |V | < V D / G 1

  iii) High voltage: where .|V | ≥ V Z / (G 1A) − V D / G 1

where  is the  turn-on voltage of the zener diodes, and ;V Z A = R4 / (R3 + R4)

In the low voltage range the apparent dynamic input resistance, , will ber {V }

r { V } =
R1R2

R1 + R2

... (11)low 

In the medium range, a change in input voltage, , will alter the current flowing through 
by an amount

d V R1

d I 1 = d V / R1 ... (12)

and that through  by an amountR2

d I 2 =
d V − G .d V

R2

... (13)

 where .G = G 1AG 2

The dynamic resistance in this range will therefore be

r { } =
R1R2

R2 + (1 − G )R1

... (14)mid V

Both the magnitude and sign of r depend upon the overall gain, . If we choose a value for this
gain which satisfies the inequality

G

G > 1 +
R2

R1

... (15)

then r will be negative. Any increase in the input voltage will then produce a  fall in the input
current.
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In fact, in this situation we can synthesise a system which has a negative static resistance since
the operational amplifiers are powered separately from  the input, V. For a real two terminal
device such as a Gunn diode, the fall in  must stop before it reaches zero. Here, this effect may
be produced by the  inclusion of the zener diodes and the extra resistors. In the high voltage
range the dynamic resistance will become

I

r { V } =
R1R2

R2 + (1 − G ′)R1

... (16)high

where  is a reduced gain, , whereG ′ G ′ = G 1A′G 2

A′ =
R ′4

R ′4 + R3

... (17)

and  . In this way we can synthesise a resistance non-linearity which is
broadly similar to that of a Gunn device.

R ′4 = R4R5 / (R4 + R5)

Given the ability to construct non-linear resistances and reactances we can  employ circuits of
the types described as building blocks to assemble systems of arbitrary complexity. For
example, we could build a set of artificial varactors and connect them with a series of inductors
to form a non-linear  transmission line. This could then - at a frequency range of our choice - be
used as a form of analog parallel processor to examine harmonic/anharmonic and chaotic
processes and the propagation of solitons along a non-linear medium.

Of course, analog systems are no more perfect than digital ones. Any analog model we build
will suffer from some unavoidable defects. For example, the actual signal levels in the system
will be affected by random noise fluctuations. This noise has a similar effect to the quantisation
of digital values in limiting the precision with which we can specify any individual value. When
considering a time-series of values, however, the effects of noise  and quantisation are different.
We can recover low-level signals from noise by a suitable averaging or signal integrating
technique. Quantisation is a form of distortion, and is not inherently random in its effects. 

Quantisation distortions can, in some systems, be transformed into random errors by the addition
of an extra noise signal (usually referred to as ‘dither’). This method is very useful in systems
like CD players for producing  low distortion and recovering sub-quantisation signals. However,
this approach is less easy to apply when the entire system consists of a digital computational
process because dither must be added before quantisation.

One of the distinguishing characteristics of chaotic behaviour is the way any small perturbations
are rapidly magnified. Non-chaotic processes tend to  maintain a periodic behaviour even in the
presence of noise. In many ways, analog systems give a rather more immediate picture of the
behaviour of a  non-linear system. Perhaps it is time to start building analog computers again...

[N.B. The following address/status details were correct in 1991, but not now!]

 Dr J.C.G.Lesurf  

 Lecturer in Electronics & Physics

 Physics & Astronomy Department 

 University of St. Andrews St. Andrews 

 Fife KY16 9SS Scotland
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Appendix: System phase plots

The output waveforms generated by non-linear systems can be very complex. This gives us the
problem of trying to devise some way of ‘tidying up’ some of this complexity so we can see
more clearly just what is going on. Mathematicians have devised various ways of tackling chaos
and complexity. One of the simplest of these leads to the phase plots shown in figures 3a & 3b.

Points sharing the same drive waveform phase

Drive or ‘pump’waveform

Output which just shows

harmonic distortion

Output showing period doubling

The above Figure illustrates how the values shown on a phase plot are produced. The top
waveform  represents the time-variations of an input signal which drives or ‘pumps’ the non-
linear system at a particular frequency, f. The output this produces will depend upon both the
circuit and the details of the input. The middle and bottom waveforms represent two possible
kinds of output.

In many cases, the output is simply a distorted version of the input – i.e. it only contains
frequency components which are harmonics of those present in the input. Although its shape is
different, it repeats itself with the same basic frequency, f. This kind of output is represented  by
the middle waveform. 

The bottom waveform is typical of more complex behaviour where the output does not repeat
itself with the same frequency as the input. Under these circumstances the output contains
frequency components which are not harmonics of those present in the input.

When dealing with simple waveforms we would normally collect information about their time
variations (or frequency spectra) and hope to see recognisable patterns. This isn't much help
with very complex waveforms as the patterns tend to be so complicated as to be meaningless. To
avoid becoming bogged down in all the details we can decide to ignore most of them and only
note the output signal level at a single moment during each input cycle. The times at which we
sample the output can be chosen on the basis that they all correspond to the same phase of the
periodic input signal.

When the output is just a distorted version of the input we find that every output value we
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record is the same as every other. The ‘complexity’ of such an output waveform can then
represented by just one number, no matter how different it may look from the input.

Figure 3 uses this approach to explore how the complexity of behaviour of a particular non-
linear  system varies when we drive it with a steady 1300 Hz sinewave and slowly vary and
added applied d.c. voltage. For input d.c. voltages between 0 and about 0·05 Volts the output is
just a distorted version of the input. The details of the distortion (and hence the sampled output
level) vary with the applied d.c., but the output waveform does not change its basic nature. As a
result we  can plot a single line showing how the sampled level varies with the applied d.c.

Above about 0·05 Volts, things abruptly change. Now the sampled output level alternates back
and  forth between two different levels. This is the kind of behaviour represented by the lower
waveform of the above illustration. Now we must record two values to indicate the complexity
of the output waveform. When we plot the sampled output levels against various choices for the
d.c. input level we find that the line has split into two distinct branches. The waveform is said to
have undergone a bifurcation  at about 0·05 Volts d.c. 

The precise output level we record during each cycle isn't particularly important. What matters
is how many levels or lines we see, one after another, under a given set of conditions. The more
there are, the more complex the waveform has become, and the longer the time taken before the
output pattern will repeat itself. The phase plot therefore gives us a way of assessing how the
complexity of the circuit's behaviour alters without having to record all the details of every
possible waveform.
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