
Information and Measurement - 1 - Free PDF version

Information and Measurement



Information and Measurement - 2 - Free PDF version



Information and Measurement - 3 - Free PDF version

Information and Measurement

J. C. G. Lesurf
Physics and Astronomy Dept

University of St Andrews, Scotland

Institute of Physics Publishing

Bristol and Philadelphia



Information and Measurement - 4 - Free PDF version

© I. O. P. Publishing Ltd, 2002

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN  0  7503  0823  0

Library of Congress Cataloging-in-Publication Data available

First published 1995 (Hardback)

Revised and extended second edition published 2002 (Paperback)      

  Free PDF issued 2018.

        

      

       

   

   

The right of James Lesurf to be identified as the author of this work has been
asserted by him in accordance with the Copyrights, Designs, and Patents Act,
1988.

Originally: Published by Institute of Physics Publishing, wholly owned by

The Institute of Physics, London

Institute of Physics Publishing, Dirac House, Temple Back, Bristol

BS1  6BE, UK

US Editorial Office: Institute of Physics Publishing, The Public Ledger
Building, Suite 1035, 150 South Independence Mall West, Philadelphia,

PA 19106, USA

Printed in the UK by J. W. Arrowsmith Ltd, Bristol.



Information and Measurement - 5 - Free PDF version

To Chris, as always, for making everything worthwhile.

Special thanks to Mike Glover and Bob Pollard

at Icon Technology for TechWriter, the

technical desktop publisher which

made writing this book a pleasure!



Information and Measurement - 6 - Free PDF version

Contents

Preface 8

Chapter 1 � Where does information come from?              11

Chapter 2 � Signals and messages 18

Chapter 3 � Noise 26

Chapter 4 � Uncertain measurements 36

Chapter 5 � Surprises and redundancy 43

Chapter 6 � Detecting and correcting mistakes 51

Chapter 7 � The sampling theorem 63

Chapter 8 � The information carrying capacity of a channel 73

Chapter 9 � The CD player as an information channel 85

Chapter 10 � The CD player as a measurement system 96

Chapter 11 � Oversampling, noise shaping, and digital filtering 105

Chapter 12 � Analog or digital? 113

Chapter 13 � Sensors and amplifiers 123

Chapter 14 � Power coupling and optimum S/N 135

Chapter 15 � Signal averaging 143

Chapter 16 � Phase sensitive detection 153



Information and Measurement - 7 - Free PDF version

Chapter 17 � Synchronous integration 164

Chapter 18 � Data compression 175

Chapter 19 � Data thinning 187

Chapter 20 � Chaos rules! 202

Chapter 21 � Spies and secret messages 214

Chapter 22 � One bit more 226

Chapter 23 � What have we here? 239

Chapter 24 � Time and frequency 253

    

Chapter 25 � Frequency measurement systems 267

Appendix 1 � Solutions to numerical questions 284

Appendix 2 � Programs 294



Information and Measurement - 8 - Free PDF version

Preface to the 2nd Edition

This new edition contains over 50 pages of new material. Most of this is
contained in three entirely new chapters. These deal with counting,
frequency measurement, and the use of correlation to detect and identify
signal patterns. In addition, the original version of Chapter 19 on Data
Thinning has been replaced by an entirely new chapter. The version in
first edition was relatively brief and chose the ill-fated example of DCC
(Digital Compact Cassette). The new version in this book is substantially
longer and uses JPEG and MiniDisc as its examples. As well as these major
changes, the opportunity has been taken to correct some minor errors
and omissions.

The flavour and intent of the book remains unchanged, but I hope that
the changes will enhance the book�s usefulness. As before, the approach I
have taken is to base explanations upon the underlying physics and use
examples which the reader may be familiar with and find interesting.

Jim Lesurf

February 2001

Preface to the 1st Edition

Information has many faces. A physicist may take a course called
Instrumentation or Measurement Techniques. An engineer may study
Information Technology, and a computer scientist or mathematician
Information Theory. Courses under these and similar names all tend to offer
partial views of a bigger underlying subject. 

The specialisation of students taking different degree subjects has tended
to lead to a visible fragmentation in the coverage of existing textbooks. On
the one hand there are many theoretical books dealing with the
mathematics of information theory which ignore the engineering
required to put theory into practice. On the other hand there are
engineering books on instrumentation technology which fail to give a
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clear explanation of the concepts which underpin their operation.
However, to collect information we have to make measurements. We need
real, practical instruments to collect and process this information. A
pattern of numbers on a computer disc or a waveform on an oscilloscope
screen tells us nothing unless we know how it was produced. 

The main purpose of this book is to provide a readable and interesting
introduction to a subject area wide enough to be useful to almost every
scientist and engineer. The emphasis is on width and clarity rather than
an attempt to include every detail. In my experience many undergraduate
students find information theory textbooks too abstract and mathematical.
This tends to deter all but the most theoretically minded from
understanding the subject. Yet information technology is arguably the
most important scientific topic of all for anyone who wants to understand
and participate in the new technologies which dominate our society. To
be useful, the mathematics of information theory has to be based on the
properties of the real world and lead to practical applications. As a result,
the apparently distinct topics often called information theory,
measurement, and instrumentation are best understood by recognising
that they are facets of the same jewel. 

The approach I have taken in this book differs from most other texts. I
have deliberately mixed together the basic maths, engineering, and
physics in order to show how they are linked in real situations. I have
chosen to illustrate the basic techniques of measurement and information
processing using examples which are likely to be of interest to most
science and engineering students (and, I suspect, their teachers!). For this
reason a large portion of the book concentrates on the Compact Disc audio
system. There are also chapters on Encryption (secret codes) as well as
chaos and its uses. The CD system is particularly useful � both because
most of us will have encountered it, and because it provides an excellent
illustration of how measurement and information technology go together
in the real world. The other examples show the range and power of the
subject.

For engineers and scientists �absolute truth� is a matter of personal
judgement, not objective fact. In information theory this means that every
measurement and message only conveys a finite amount of information.
In the real world nothing is absolutely certain or precise. Our state of
knowledge is always imperfect, limited, and subject to later improvement.
I have tried to to avoid the error � sadly common in textbooks � of
presenting every detail and ramification of an argument and burying
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understanding under a mound of facts. This book explains the concepts
of information theory on a �successive approximation� basis. The
explanations given in each chapter are intended to be simple enough to
guide the reader through the subject without causing confusion. Later
explanations give further details as required when more sophisticated
techniques are introduced. 

If the book has a theme it is that �The best place to start is the physics of
the real world's behaviour�. The form of the book is designed to make it
suitable as a �course book� for an undergraduate course of up to a couple
of dozen one-hour lectures. Each chapter provides the material for one
lecture topic. Each finishes with a summary which the reader can use to
check that they have learned the main points. Most chapters are also
followed by a set of tutorial questions. Detailed answers to the numerical
questions are provided in an appendix. The correct answer value is also
included (in bold type) at the end of each numerical question. You can
use this to check your answer before consulting the back of the book.
There is an additional appendix listing a number of programs in both
BASIC and �C�. The purpose of these questions and programs is to help
the reader to discover how the ideas presented in the book are put into
practice.

I hope that I have produced a book which will be useful to a wide range of
physical scientists, engineers, mathematicians, and computer scientists. If I
have been successful this book will help illuminate how their individual
interests and skills link together to form a greater body of understanding.
Finally, I would like to thank all the students and others who helped me to
discover and correct the mistakes which earlier versions of this book
contained. They provided a powerful error correction mechanism I
haven't described in the book!

Jim Lesurf

July 1994
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Chapter 1

Where does information come from?

1.1 Introduction

This book is designed to provide you with an explanation of the basic
concepts of information collecting and processing systems. To do this we
will examine examples ranging from secret codes to compact disc players.
Using these practical examples you should be able to see how the
mathematics of Information Theory can be applied in practical situations to
make Instruments which perform useful tasks. This first chapter is intended
to a be a general outline. Most of the concepts introduced here will be
looked at more carefully later.

Scientists and engineers devote considerable attention to the processing
and storage of information, yet questions relating to how information is
produced generally attract less consideration. To some extent, this blind
spot seems to stem from a belief that any interest in this area smells
strongly of philosophy, not engineering. In general, practically minded
scientists don't want to �waste their time� with philosophy � although
there are many notable exceptions to this rule.

This book is not about philosophy. No time will be devoted to questions
like:

�What is the meaning of meaning?�

�How do we know what we know?�

 etc.

Despite this, when trying to understand information based systems it's vital
to have some idea of how information is created or captured.

1.2 What isinformation?

For our purposes, we can say that information initially comes from some
form of sensor or transducer. This generates some form of response which
can then be measured. It is this measurement or detection which �creates�
information. (In fact, the sensor is reacting to the arrival of some input
pattern of energy or power. It would be fairer to say it �picks up� the
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information, but we'll ignore this fact.) Once we adopt this starting point
it becomes clear that the topics of instrumentation and measurement
form the basis of all practical information systems.

This viewpoint provides us with a double advantage over someone who is
studying information theory purely as a branch of mathematics. Firstly, it
gives us a way to understand information processing systems in terms of
the physical properties of the real world. Secondly, it helps us sort out
questions related to the �value� or �meaning� of information without the
risk of being dragged into metaphysics. Instead we can simply ask, �How
was this information produced?�

What is an �instrument�? At first glance, it can appear to science and
engineering students that the subject called Instrumentation is obsessed
with describing how voltmeters and oscilloscopes work. Yet the subject
covers a much wider and more important area. A colour TV is an
instrument. A digital computer is an instrument. Each senses some form
of input and responds by producing an appropriate output. The TV
responds to an electromagnetic wave from a distant transmitter to
produce a corresponding picture on a screen and sound from a
loudspeaker. The computer can be affected by various sorts of input, from
a keyboard, a mouse, or by reading a magnetic disc. It can respond by
altering the electronic pattern held in its memory, by altering its monitor
display, or recording something on a disc.

Most of the examples we'll look at in this book will be electronic or optical.
This is because optical and electronic methods are powerful and widely
used. Despite this, it's important to realise that the basic points made in
this book aren't only true in these areas. To emphasise this, we can start by
considering a simple mechanical measurement system � a kitchen
balance � to make some fundamental points which apply to all
measurement (information gathering) systems.

The balance has a pan or plate supported by a spring. When we place
something on the pan the added weight presses down on the spring,
compressing it. The pan moves downwards until the compression force
from the squeezed spring balances the force of the increased weight. Most
balances have a rotary dial with a pointer attached to the pan. The
movement caused by the weight rotates the pointer to give us a �reading�
of the weight.
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Downward
movement

Kitchen technology measurement system.Figure 1.1

The first point to note is that, like most measurement systems, this one is
indirect. What we actually observe is a movement (rotation) of the pointer.
We don't actually see the magnitude of the weight. If, for example, we put
an iron on the pan we might see the pointer move around through 120
degrees. If we liked, we could also use a ruler to find that the pan moved
down 2 cm. However, we don't usually quote weights in degrees or
centimetres! In order to make sense of these observed values we have to
calibrate the balance. To do this we can place two or three different known
weights on the scales and make a note of how far the pointer goes around
(or the pan falls) each time. We can then use these results to make a series
of calibration marks on the face of the dial. Now, when we put something
� e.g an iron � on the scales we can read off its weight from the dial.
This calibration process means that the balance provides us with a means
to compare the weight of the iron with a set of other �standard� weights. In
general, all measurements are Comparisons with some defined standard.

Usually, we buy a kitchen balance which should already be calibrated (i.e.
its dial is marked in kg, lb, etc, not degrees) and we don't bother to
calibrate the weighing instrument for ourselves. However, when we
consider the need for a calibration process an awkward question springs to
mind � where did the �known� weights come from that were used to
calibrate the readings? If all measurements are comparisons, how were the
values of those weights known? They, too, would need to have been
weighed on some weight measurement system. If so, how was that system
calibrated?
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Any measurement we make is the last link in a chain of similar
measurements. Each one calibrates a system or a �standard� (e.g. a known
weight) which can be used for the next step. Right back at the beginning
of this chain (at the National Physical Laboratory in the UK and other
standards labs around the world) there will a Primary Reference system or
standard which is used to define what we mean by �1 kg�, or �1 second� or
whatever. In effect, when we plonk something on the pan of a kitchen
balance we're indirectly comparing it with the standard kg weight kept
under a glass cover at the NPL.

When we place an iron on the pan we have to wait a second or two to let
the system settle down and allow the pointer to stop moving. Similarly,
when we remove the iron the system takes a short time to recover. The
second point we can make about the measurement system is, therefore,
that it has a finite Response Time �  i.e. we have to wait for a specific time
after any change in the weight before we can make a reliable reading. This
limits our ability to measure any changes which take place too quickly for
the system.

The third point to note is fairly obvious from our choice of an iron. If we
put too large a weight on the pan the pointer will go right around and
move �off scale�. (If the iron is very heavy we may even smash the scales!)
No matter how well we search the shops, we can't find scales which can
accurately measure any weight, no matter how big. Every real instrument
is limited to operate over some finite Range. Beyond this range it won't
work properly and Overloads or Saturates to give a meaningless response.

The fourth and final basic point is something we won't usually notice
using ordinary scales since the effect is relatively small. All of the atoms in
the scales, including those in its spring, will be at room temperature. (In a
kitchen this probably means at or above 20 Celsius or 293 Kelvin.) As a
result, they'll be moving around with random thermal motions. Compared
to the effect of placing an iron on the scales these movements are quite
small. However, if we looked at the pointer very carefully with a powerful
microscope we'd see its angle fluctuating randomly up and down a little
bit because of the motions of the atoms in the spring. As a result, if we
wanted to measure the weight very accurately this thermal jittering would
limit the precision of our reading. As a result, no matter how good the
scales, our ability to make extremely accurate measurements is limited by
thermal random effects or thermal noise.
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1.3 Accuracy and resolution

It is important to realise that the amount of information we can collect is
always finite. The example of kitchen scales has introduced us to the
limiting effects of clipping, noise, and response time. It doesn't matter
how clever we are, these problems occur in all physical systems since they
are consequences of the way the real world works. To see some of the
other problems which arise when we're collecting information, consider
the system in figure 1.2. This diagram represents a diffraction grating
being used to measure the power/frequency spectrum produced by a light
source. 

The system is intended to provide us with information about how bright
the light source is at various light wavelengths. It relies upon the reflection
properties of a surface made with a series of parallel ridges called a
Reflection Grating. For an ordinary plane mirror, the angle of reflection
equals the angle of incidence. For a grating, the angle of reflection also
depends upon the wavelength of the light and the details of the grooved
surface pattern. Hence the arrangement shown acts as a sort of adjustable
filter. Only those light wavelengths which reflect at the appropriate angle
will make their way through the output slit onto the detector. 

Simple diffraction grating spectrometer.Figure 1.2

V

Light
source

Input
slit

Diffraction
Grating

Output
slit

Detector
(Light Sensor)

AmplifierVoltmeter

As with the kitchen scales, the system provides an indirect way to measure
the light's spectrum. We use the angle of the diffraction grating to tell us
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the wavelength being observed. The voltage displayed on the meter
indicates the light power falling on the detector. To discover the light's
spectrum we slowly rotate the grating (or move the output lens/slit/
detector) and note how the voltmeter reading varies with the grating
angle. To convert these angles and voltages into wavelengths and light
powers we then need to know the Sensitivity of the detector/amplifier
system and the angles at which various wavelengths would be reflected by
the grating � i.e. the system must be calibrated.

In most cases the instrument will be supplied with appropriate display
scales. The voltmeter will have a dial marked in units of light power, not
volts. The grating angle display will be marked in wavelengths, not
degrees. These scales will have been produced by a calibration process. If
the measurements we're making are important it will probably be sensible
to check the calibration by making some measurements of our own on a
�known� light source.

As with the kitchen balance, our ability to measure small changes in the
light level will be limited by random noise � in this case random
movements of the electrons in the measurement system and fluctuations
in the rate at which photons strike the detector. The accuracy of the
power measurement will depend upon the ratio of the light power level
hitting the detector to the random noise. We could increase the light level
and improve the precision of the power measurement by widening the
slits and allowing more light through. However, this would have the
disadvantage of allowing light reflected over a wider range of angles to
reach the detector. Since the angle of reflection depends upon the light
wavelength this means we are allowing through a wider range of
wavelengths.

In fact, looking at the system we can see that it always allows through a
range of wavelengths. Unless the slits are narrowed down to nothing
(cutting off all the light!) it will always allow light reflected over some
range of angles,  (and hence having a range of wavelengths, ) to get
through. As a result there is an unavoidable �trade off� between the
instrument's power sensitivity and its frequency Resolution or ability to
distinguish variations in power confined to a narrow frequency interval.
This kind of trade off is very common in information collection systems. It
stems from basic properties of the physical world and means that the
amount of information we can collect is always finite � i.e. we can never
make perfect measurements with absolute accuracy or precision or
certainty.

∆Θ ∆λ
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Summary

You should now know that information is collected by Instruments which
perform some kind of Measurement. That measurement systems usually
give an Indirect indication of the measured quantity and that all
measurements are Comparisons which have to be Calibrated in some way.
The amount of information we can collect is always finite, limited by the
effects of Noise, Saturation (or Overload), and Response Time. That many
information gathering techniques involve a Trade-Off between various
quantities � for example, between the Resolution of a wavelength
measurement and the Sensitivity of a related power measurement. That
these limitations arise from the properties of the physical world, not poor
instrument design.
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Chapter 2

Signals and messages

2.1 Sending information

In the first chapter we looked at how measurement instruments can
produce information. The information produced and processed by these
systems will be in the form of a Signal which carries a message (specific set
of information). In the case of the grating spectrometer shown in figure
1.2 the signal was a voltage communicated from the light detector to the
voltmeter. This voltage will vary in a specific pattern as the grating angle is
altered. It is this pattern which carries the message.

All information handling systems have the same basic form. Firstly, there
will be some type of information Source. This can take many forms, from
the microphone in a telephone to the keyboard of a computer. The
source will be connected to a Receiver by some sort of Channel. In the case
of a telephone, the receiver will be an earpiece in another telephone and
the information carrying channel between them may be a set of wires.
Information is sent along the wires in the form of a varying voltage and
current which acts as a signal whose details carry the actual information or
message.

In this book we will tend to talk about signals being �transmitted�. Despite
this it's important to realise that � from the theoretical point of view �
there isn't any real difference between transmitting signals, storing them
on discs/tapes etc to read later, and processing them in a computer. Most
of the basic comments and properties outlined in this book apply to
information processing systems in general. They aren't restricted to
telephones or TV broadcasts! For this reason the concept of signals is of
fundamental importance to information theory. Before the invention of
the telephone, people could send messages by posting written letters, or
by getting a chain of other people to stand on hilltops and wave
semaphore flags, or even by lighting bonfires! Before the desktop
computer there was pen and paper. Modern systems are more convenient,
but if you really wanted to you could do it some other old-fashioned way!

No matter how it's done, before a signal can be used to communicate
some specific information in the form of a Message, the sender and
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receiver must have agreed on the details of how the actual signals are to
be used. It is not enough to agree that someone will stand on a hilltop and
wave flags. We have to arrange that, �These flags held like this represent
the letter �A�; these held like this represent �B��� i.e there must be some
sort of pre-arranged Code for sending the information. It is also clearly
important that we can distinguish one code Symbol (�A�, �B�, �C�, etc are
examples of distinct symbols) from another, otherwise we will make
mistakes.

On the basis of ‘A=000, B=001, C=010, etc...’ this signal
could be sampled at the points shown and then sent in the
form, ‘GGGHHFED...’, etc.

Figure 2.1

Voltage

Time

Signal
range

Sampling an analog signal.
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It's important to realise that the same message can be conveyed in any
form we like provided we obey the basic rules of information theory. As an
example, consider the message illustrated in figure 2.1. This shows a
varying voltage coming from a sensor. At this point it doesn't matter very
much where this pattern has come from or what it represents. It might be
coming from a telephone mouthpiece and carrying information about
what someone is saying. It might be from the light detector in figure 1.2
and indicates how the light level varies as the grating angle is altered.
What matters is that the details of the signal pattern constitute the
message which carries the information. In the case of the instrument
shown in figure 1.2 the information is signalled from detector to voltmeter
by a smoothly varying voltage whose level is roughly proportional to the
detected light level. Signals of this type are called Analog since the varying
level (the voltage) is treated as a mathematical analog of the original
(light power in this case) pattern. We can therefore imagine that the
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shape of the curve plotted in figure 2.1 holds the information about the
spectrum of the light being observed.

If we wanted to communicate this information to someone we could
connect up some amplifiers and wires and send it as an analog voltage
level which varies as shown. (In this case, the various voltage levels which
we can distinguish from one another are the �symbols�, although it's not
normal for analog signals to be described in that way.) Alternatively, we
can adopt other ways to communicate or store the same information. For
example, we can choose to Sample the signal waveform and convert it into
a series of binary numbers. To do this we proceed as follows.

We begin by defining a specific maximum Signal Range which is wide
enough to ensure that the signal level is always inside the chosen range.
We then choose a point on the waveform and ask, �Is the point in the top
half of the range?�. If it is we write down a �1�, if not we write down a �0�.
We then define a new range which only covers that half of the original
one which contains the point and ask the question again to obtain
another �1� or �0� answer. This provides a two-digit number which tells us
which quarter of the original range the point occupies. In principle, this
process of halving the range, asking the question, getting a yes/no answer,
and noting the result as a one or zero can be repeated as many times as we
like. We can then repeat this whole process for a series of points along the
waveform. This process is called Sampling the waveform. Note that if the
signal level ever moves out of the initial signal range we've chosen we
won't have any way of indicating its actual level. Should this happen, the
signal is said to have been Clipped since we can only indicate its value by
the nearest available set of �1�s and �0�s.

In the example shown in figure 2.1 the question and answer process is
performed three times for each chosen point. This gives us a series of
three-digit values which tell us which eighth of the signal range contains
each sample. The result is a series of binary numbers whose pattern holds
the information required to define or reconstruct the actual waveform.
We could therefore transmit these numbers to someone and they could
then use them to draw out the original waveform shape. 

The process considered above converts the waveform information into a
signal encoded in Binary Digital form. Digital numbers are very convenient
to transmit and are ideal for storing and processing in modern digital
computers. We can, however, encode the same information in any way we
find convenient. For example, if we wanted to record in a notebook, we
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could represent each possible digital number as a letter. For example, as
shown in the diagram, we could choose 000 = �A�, 001 = �B�, 010 = �C�, etc.
The information in the waveform could then be written down as
�GGGHHFED��. It doesn't matter what form of code we choose. Provided
we have Encoded it correctly, the same information will be preserved. The
message will remain the same although the form of the signal used
(analog voltage, digital numbers, letters in a book) will be different.

2.2 How much information in a message?

In the above example we asked three yes/no questions about each chosen
point on the initial waveform. Yes/no questions like this are the simplest
we can ask. Each answer is a yes/no or �1�/�0� which gives us the minimum
possible amount of extra information. This minimum possible quantity of
information is called a Bit. Having asked three yes/no questions per point
we therefore obtain a series of values, each of which contains just three
bits worth of information. In general, asking n questions per sample
produces a series of n-bit binary numbers, each of which defines which

th of the signal range each point occupies. There are only
possible n-bit numbers. Hence we require  distinct symbols (�A�, �B�,
�C�, � �H� or �000�, �001�, �010�, � �111�, or whatever) to convey the
information. The limited range of possible values means we can use a
limited �alphabet� of  symbols.

1 / 2n 2n

2n

2n

The amount of information we collect about the waveform depends upon
how many points we sample and how many yes/no answers we get for
each. We can therefore hope to get twice as much information by taking
double the number of samples. However, although asking an extra
question per sample doubles the number of symbols required it doesn't
provide twice as much information. In the example considered above,
asking an extra question per sample would mean each binary result would
have four bits instead of three. This means we would collect four-thirds as
much information not twice as much! The basic rule of information
theory is that the total amount of information, H, collected will be

H = N n ... (2.1)
where N is the number of samples and n the number of bits (questions
and answers) per sample. Given an initial signal which lasts for a period of
time, T, sampled at a series of instant t apart, we would therefore obtain a
total amount of sampled information
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H =
T n

t
= (T

t ) log2 {M } ... (2.2)

where  is the number of symbols available to convey the message.M = 2n

In practice, the amount of information we can communicate in a given
time will be limited by the properties of the channel (the wires, amplifiers,
optical fibres, etc) we use. We therefore often need to know the
information carrying capacity of a channel to decide if it is up to a given
task. Consider the example of a varying analog voltage sent along some
wires to be measured with an Analog to Digital Convertor (ADC). Here the
wires are the channel and the ADC is the signal receiver. How many bits
worth of information could an ideal ADC obtain from the analog signal in
a given time? The input seen by the ADC will be a combination of the
transmitted signal level and a small amount of random noise. This
determines the size of the smallest signal details we can expect to observe.
There will also be a limit to how great a signal voltage can be transmitted
without �clipping� or serious distortion. For the sake of example, let's
assume that the channel has a noise level of around 1 mV and can handle
a maximum range of 1 V. 

Ideally, the ADC's range should equal that of the input channel, i.e. the
ADC should in this case start with a voltage range,  of 1 V. An n-bit
ADC could then determine the signal level at any instant with an accuracy
of . An 8-bit ADC could divide the input 1 V range into

 bands, each  V wide, and determine which of
these bands the input was in at any instant. A 10-bit ADC could divide the
1 V range into  bands, each  V wide. We
might therefore expect to extract more information and obtain a more
accurate result by using a 10-bit ADC instead of an 8-bit one. However, if
we tried using an even better ADC giving 11 or more bits per sample we
wouldn't obtain any extra information about the signal. This is because
the 10-bit ADC already divides the input range into bands just 0·97 mV
wide � i.e. slightly smaller than the amount by which the random noise
jitters the input up and down. There's no point trying to determine the
voltage level more accurately than this. We'll simply be looking at the
effects of the noise. So it would a waste of effort to use an 11-bit ADC in
this case as the �extra� bits wouldn't tell us anything useful.

V r ang e

V r ang e / 2n

28 = 256 1 / 28 = 0·0039

210 = 1024 1 / 210 = 0·00097

This effect arises because the input signal has a finite Dynamic Range � the
ratio of maximum possible signal size to the minimum detail detectable
over the random noise. The dynamic range, D, of an analog signal is
defined as a power ratio given in decibels between the maximum possible
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signal level and the mean noise level, i.e. we can say that

D = 10 log {Pma x

Pn
} = 10 log





V 2
ma x

v 2
n



 ... (2.3)

where  and  represent the rms maximum signal and rms noise.
This dynamic range should be distinguished from the actual signal to noise
ratio (SNR), at any time

V m ax v n

SNR = 10 log { Ps

Pn
} ... (2.4)

where  is the actual signal power level which is usually less than .Ps Pm ax

There will also be a limitation on how quickly the voltage being
transmitted along the wires can be changed. This is due to the finite
response time of any system. Here, for example, we can assume that (due,
perhaps to stray capacitances) the wires take a microsecond to react to a
change. This means we can't expect to obtain any extra information by
making the ADC sample the input it sees more often than once a
microsecond, choosing a sampling rate above 1 MHz (106 samples per
second) won't therefore provide any extra information. 

If it takes the channel (the wires) a microsecond to respond to a voltage
rise and a microsecond to respond to a fall, the highest signal frequency
we can expect it to carry will be one cycle (one up and down) every two
microseconds � a maximum signal frequency of 0·5 MHz. The Bandwidth
of a channel is the range of frequencies it can carry. In most cases we can
assume that this range extends down to �d.c.� so the maximum frequency
and the bandwidth usually have the same value. In this case we see that the
sensible sampling rate is about 1 MHz and the bandwidth of the analog
channel is 0·5MHz. This implies that, in general, we can expect the
required sampling rate to be double the bandwidth.

In this case, the combination of 1 mV of noise, a signal voltage range of
1 V, and a 1 µS response time mean that there is no point in using an ADC
which tries to collect more than 10 bits per microsecond. It is important to
note that this limitation of the rate the ADC collects information is
imposed by the channel which transmits the analog signal to it, not a
defect of the ADC itself. A better ADC wouldn't give us any extra
information since 10×10  bits per second is all this particular analog signal
channel can carry. The analysis we've carried out here is just a rough
approximation. We'll be considering the question of the information
carrying capacity of a channel more carefully in a later chapter. However,

6
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we can already see that the effects of random noise, clipping, and
response time/bandwidth combine to limit the information carrying
capacity of any information channel no matter what form of signal it uses.

Summary

In this chapter you saw how all information processing systems can be
regarded as consisting of an information Source connected to a Receiver by
some form of Channel. That any particular set of information is a Message
which is sent as a Signal pattern using some form of Code made up of
appropriate Symbols. You saw how an analog (continuously varying) signal
can be Sampled to recover all the information it contains. That the amount
of information a channel carrying an analog signal can convey is finite,
limited by the biggest unclipped level it can manage (Clipping), the Noise
level, and the time it takes to respond to a changed input (the channel's
Response Time or Bandwidth).

Questions

 1) Sketch a diagram of a typical analog Signal pattern. Use the diagram to
help explain how such a signal can be Sampled, and what we mean by a Bit
of information.

2) An analog voltage Channel is used to transmit a signal to an Analog to
Digital Converter (ADC). The input voltage can vary over the range from +2
to  V and the channel Noise  level corresponds to ±1 mV. How many bits
per sample must the ADC produce to be able to measure the input voltage
level at any moment without any loss of information? How many different
code Symbols would be required to record all the possible values produced
by the ADC? [11 bits/sample. Minimum of 2000 symbols needed to cover
all the levels. The 11-bit ADC actually provides 2048 symbols.]

−2

3) The channel used for 2) can carry signal frequencies (sinewaves) from
0 Hz up to 150 kHz. What is the value of the channel's Response Time? How
many samples per second must the ADC take to ensure that all the analog
information is converted into digital form? [Response time = 3·3 µs.
300,000 samples/s.]

4) A Message takes 10 seconds to transmit along the analog channel. How
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many bits of of information is it likely to contain? [33 million.]

5) Explain the difference between the Dynamic Range of a channel or
system and the Signal to Noise Ratio of a signal. Write down an equation
giving the S/N ratio in decibels in terms of the signal power and noise
power.
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Chapter 3

Noise

3.1 The sources of noise

Whenever we try to make accurate measurements we discover that the
quantities we are observing appear to fluctuate randomly by a small
amount. This limits our ability to make quick, accurate measurements and
ensures that the amount of information we can collect or communicate is
always finite. These random fluctuations are called Noise. They arise
because the real world behaves in a quantised or �lumpy� fashion. A
common question when designing or using information systems is, �Can
we do any better?� In some cases it's possible to improve a system by
choosing a better design or using it in a different way. In other cases we're
up against fundamental limits set by unavoidable noise effects. To decide
whether it is worth trying to build a better system we need to understand
how noise arises and behaves. Here we will concentrate on electronic
examples. However, you should bear in mind that similar results arise
when we consider information carried in other ways (e.g. by photons in
optonics systems). 

3.2 �Johnson noise�

In 1927 J. B. Johnson observed random fluctuations in the voltages across
electrical resistors. A year later H. Nyquist published a theoretical analysis
of this noise which is thermal in origin. Hence this type of noise is
variously called Johnson noise, Nyquist noise, or Thermal noise.

A resistor consists of a piece of conductive material with two electrical
contacts. In order to conduct electricity the material must contain some
charges which are free to move. We can therefore treat it as �box� of
material which contains some mobile electrons (charges) which move
around, interacting with each other and with the atoms of the material. At
any non-zero temperature we can think of the moving charges as a sort of
Electron Gas trapped inside the resistor box. The electrons move about in a
randomised way � similar to Brownian motion � bouncing and
scattering off one another and the atoms. At any particular instant there
may be more electrons near one end of the box than the other. This
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means there will be a difference in electric potential between the ends of
the box (i.e. the non-uniform charge distribution produces a voltage
across the resistor). As the distribution fluctuates from instant to instant
the resulting voltage will also vary unpredictably. 

V

+-

Resistor

D.C. Amplifier

D.C. Voltmeter

Mobile
Electrons

Fluctuating voltage produced by random

 movements of mobile electrons.

Figure 3.1

Figure 3.1 illustrates a resistor connected connected via an amplifier to a
centre-zero d.c. voltmeter. Provided that the gain of the amplifier and the
sensitivity of the meter are large enough we will see the meter reading
alter randomly from moment to moment in response to the thermal
movements of the charges within the resistor. We can't predict what the
precise noise voltage will be at any future moment. We can however make
some statistical predictions after observing the fluctuations over a period
of time. If we note the meter reading at regular intervals (e.g. every
second) for a long period we can plot a histogram of the results. To do
this we choose a �bin width�, , and divide up the range of possible
voltages into small �bins� of this size. We then count up how often the
measured voltage was in each bin, divide those counts by the total number
of measurements, and plot a histogram of the form shown in figure 3.2.

d V

We can now use this plot to indicate the likelihood or probability,
, that any future measurement of the voltage will give a result in

any particular small range, . This type of histogram is
therefore called a display of the Probability Density Distribution of the
fluctuations. From the form of the results, two conclusions become
apparent:

p {V } .d V
V → V + d V
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Firstly, the average of all the voltage measurements will be around zero
volts. This isn't a surprise since there's no reason for the electrons to
prefer to concentrate at one end of the resistor. For this reason, the
average voltage won't tell us anything about how large the noise
fluctuations are.

Histogram of some noise voltage measurements.Figure 3.2

dV

p(V)

V
0

V
DC

Secondly, the histogram will approximately fit what's called a Normal (or
Gaussian) distribution of the form

p {V }  . d V ∝ Exp {−2V 2

σ2 } ... (3.1)

(Note that you'll only get these results if you make lots of readings. One or
two measurements won't show a nice Gaussian plot with its centre at zero!)
The value of σ which fits the observed distribution indicates how wide the
distribution is, hence it's a useful measure of the amount of noise. 

The σ value is useful for theoretical reasons since the probability
distribution is Gaussian. In practice, however, it is more common to
specify a noise level in terms of an rms or root-mean-square quantity. Here
we can imagine making a series of m voltage measurements,

 , of the fluctuating voltage. We can then calculate
the rms voltage level which can be defined as
v 1 ,  v 2  ,  �  v j � v m

v r m s ≡ ∑
m

j = 1

v 2
j

m
... (3.2)

In general in this book we can simplify things by using the �angle
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brackets�, , to indicate an averaged quantity. Using this notation
expression 3.2 becomes

〈 〉

v r m s = 〈v 2
j 〉 ... (3.3)

Since  will be positive when and when  we can expect
to always be positive whenever the Gaussian noise distribution has a width
greater than zero. The wider the distribution, the larger the rms voltage
level. Hence, unlike the mean voltage, the rms voltage is a useful indicator
of the noise level. The rms voltage is of particular usefulness in practical
situations because the amount of power associated with a given voltage
varies in proportion with the voltage squared. Hence the average power
level of some noise fluctuations can be expected to be proportional to

.

v 2
j v j > 0 v j < 0 v r m s

v 2
r m s

Since thermal noise comes from thermal motions of the electrons we can
only get rid of it by cooling the resistor down to absolute zero. More
generally, we can expect the thermal noise level to vary in proportion with
the temperature.

3.3 �Shot noise�

Many forms of random process produce Gaussian/Normal noise. Johnson
noise occurs in all systems which aren't at absolute zero, hence it can't be
avoided in normal electronics. Another form of noise which is, in practice,
unavoidable is Shot Noise. As with thermal noise, this arises because of the
quantisation of electrical charge. Imagine a current flowing along a wire.
In reality the current is actually composed of a stream of carriers, the
charge on each being q, the electronic charge (1·6 × 10  Coulombs). To
define the current we can imagine a surface through which the wire passes
and count the number of charges, n, which cross the surface in a time, t.
The current, i, observed during each interval will then simply be given by

−19

i =
q n

t
... (3.4)

Now the moving charges will not be aligned in a precise pattern, crossing
the surface at regular intervals. Instead, each carrier will have its own
random velocity and separation from its neighbours. When we repeatedly
count the number of carriers passing in a series of m successive time
intervals of equal duration, t, we find that the counts will fluctuate
randomly from one interval to the next. Using these counts we can say
that the typical (average) number of charges seen passing during each
time t  is
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〈n 〉 = ∑
m

j = 1

n j

m
... (3.5)

where  is the number observed during the j th interval. The mean
current flow observed during the whole time, , will therefore be

n j

m t

I =
〈n 〉 q

t
... (3.6)

During any specific time interval the observed current will be

i j =
n jq

t
... (3.7)

which will generally differ from I  by an unpredictable amount. The effect
of these variations is therefore to make it appear that there is a randomly
fluctuating noise current superimposed on the nominally steady current,
I. The size of the current fluctuation, , during each time period can be
defined in terms of the variation in the numbers of charges passing in the
period,  , i.e. we can say that

∆i j

∆n j

∆i j =
q ∆n j

t
   where    ∆n j = n j − 〈n 〉 ... (3.8)

As with Johnson noise, we can make a large number of counts and
determine the magnitude of the noise by making a statistical analysis of
the results. Once again we find that the resulting values have a Normal
distribution. By definition we can expect that  (since  is
arranged to be the value which makes this true). Hence, as with Johnson
noise, we should use the mean-squared variation, not the mean variation,
as a measure of the amount of noise. In this case, taking many counts and
performing a statistical analysis, we find that

〈∆n 〉 = 0 〈n 〉

〈∆n 2〉 ≈ 〈n 〉 ... (3.9)
Note that � as with the statement that thermal noise and shot noise
exhibit Gaussian probability density distributions � this result is based on
experiment. In this book we will not take any interest in why these results
are correct. It is enough for our purposes to take it as an experimentally
verified fact that these statements are true. Combining the above
expressions we can link the magnitude of the current fluctuations to the
mean current level and say that

〈∆i 2〉 =
q 2 〈∆n 2〉

t 2
=

q 2 〈n 〉
t 2

=
q 2

t 2
×

I t

q
=

q I

t
... (3.10)

Hence we find that the rms size of the random current fluctuations is
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approximately proportional to the average current. Since some current
and voltage is always necessary to carry a signal this noise is unavoidable
(unless there's no signal) although we can reduce its level by reducing the
magnitude of the signal current.

3.4 An alternative way to describe noise

Up to now we've looked at the statistical properties of noise in terms of its
overall rms level and probability density function. This isn't the only way to
quantify noise. Figure 3.3 shows an alternative which is often more
convenient.

V

e n

R
T Ri n

Amplifier Band-Pass Filter

RMS Volts

Spectral noise measurement.Figure 3.3

at
deg.

As in figure 3.1 we're looking at the Johnson noise produced by a resistor.
In this case the voltage fluctuations are amplified and passed through a
band-pass filter to an rms voltmeter. The filter only allows through
frequencies in some range, . The filter is said to pass a
bandwidth, .  is the input resistance of the amplifier.
Note that this diagram uses a common conventional �trick� of pretending
that the noise generated in the resistor is actually coming from an invisible
random voltage generator, , connected in series with an �ideal� (i.e.
noise-free) resistor. If we build a system like this we find that the rms
fluctuations seen by the meter imply that the (imaginary) noise generator
produces an average voltage-squared

f m in < f < f m ax

B = f m ax − f m in Rin

e n

〈e 2
n〉 = 4kT BR ... (3.11)

where: k is Boltzmann's Constant (=1·38 × 10  Ws/K); T is the resistor's−23
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temperature in Kelvin; R  is it's resistance in Ohms; and B is the bandwidth
(in Hz) over which the noise voltage is observed. (Note that, as with the
earlier statements about Normal Distribution, etc, this result is not being
proved, but given as a matter of experimental fact.) In practice, the
amplifier and all the other items in the circuit will also generate some
noise. For now, however, we will assume that the amount of noise
produced by R is large enough to swamp any other sources of random
fluctuations. Applying Ohm's law to figure 3.3 we can say that the current
entering the amplifier (i.e. flowing through ) must beRin

i =
e n

(R + Rin) ... (3.12)

The corresponding voltage seen at the amp's input (across ) will beRin

v = iRin =
e nRin

(R + Rin) ... (3.13)

hence the mean noise power entering the amplifier will be

N = 〈i v 〉 =
〈e 2

n〉 Rin

(R + Rin)2
... (3.14)

For a given resistor, R, we can maximise this by arranging that
when we obtain the Maximum Available Noise Power,

Rin = R

N ma x =
〈e 2

n〉
4R

  which, from eqn 3.8   = kT B ... (3.15)

This represents the highest thermal noise power we can get to enter the
amplifier's input terminals from the resistor. To achieve this we have to
match (i.e. equalise) the source and amplifier input resistances. From this
result we can see that the maximum available noise power does not
depend upon the value of the resistor whose noise output we are
examining. 

The Noise Power Spectral Density (NPSD) at any frequency is defined as the
noise power in a 1 Hz bandwidth at that frequency. Putting  into
eqn 3.15 we can see that Johnson noise has a maximum available NPSD of
just  � i.e. it only depends upon the absolute temperature and the
value of Boltzmann's constant. This means that Johnson noise has an
NPSD which doesn't depend upon the fluctuation frequency. The same
result is true of shot noise and many other forms of noise. Noise which has
this character is said to be White since we the see the same power level in a
fixed bandwidth at every frequency. 

B = 1

kT
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Strictly speaking, no power spectrum can be truly white over an infinite
frequency range. This is because the total power, integrated over the
whole frequency range, would be infinite! (Except, of course, for the
trivial example of a NPSD of zero.) In any real situation, the noise
generating processes will be subject to some inherent mechanism which
produces a finite noise bandwidth. In practice, most systems we devise to
observe noise fluctuations will only be able to respond to a range of
frequencies which is much smaller than the actual bandwidth of the noise
being generated. This in itself will limit any measured value for the total
noise power. Hence for most purposes we can consider thermal and shot
noise as �white� over any frequency range of interest. However the NPSD
does fall away at extremely high frequencies, and this ensures that the
total noise power is always finite.

It is also worth noting that electronic noise levels are often quoted in units
of Volts per root Hertz or Amps per root Hertz. In practice, because noise levels
are � or should be! � low, the actual units may be nV/  or pA/ .

These figures are sometimes referred to as the NPSD. This is because most
measurement instruments are normally calibrated in terms of a voltage or
current. For white noise we can expect the total noise level to be
proportional to the measurement bandwidth. The �odd� units of NPSD's
quoted per root Hertz serve as a reminder that � since power ∝ volts  (or
current ) � a noise level specified as an rms voltage or current will
increase with the square root of the measurement bandwidth.

Hz Hz

2

2

3.5 Other sorts of noise

A wide variety of physical processes produce noise. Some of these are
similar to Johnson and shot noise in producing a flat noise spectrum. In
other cases the noise level produced can be strongly frequency
dependent. Here we will only briefly consider the most common form of
frequency-dependent noise:   noise. Unlike Johnson or shot noise
which depend upon simple physical parameters (the temperature and
current level respectively)  noise is strongly dependent upon the
details of the particular system. In fact the term '  noise' covers a
number of noise generating processes, some of which are poorly
understood. For this form of noise the NPSD, , varies with frequency
approximately as

1 / f

1 / f
1 / f

S n

S n ≈ f  − n ... (3.16)
where the value of the index, n, is typically around 1 but varies from case to
case over the range, .0.5 < n < 2
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As well as being widespread in electronic devices, random variations with a
 spectrum appear in processes as diverse as the traffic flow in and out

of Tokyo and the radio emissions from distant galaxies! In recent years the
subject of  noise has taken on a new interest as it appears that some
�Chaotic� systems may produce this form of unpredictable fluctuations. 

1 / f

1 / f

Summary

This chapter has shown how random noise arises from the quantised
behaviour of the real world. Two types of noise � Johnson Noise and Shot
Noise � were described in detail and their nature shows that they are, in
practice, essentially unavoidable. You should now know that noise can
only be predicted or quantified on a statistical basis because its precise
voltage/current at any future instant is unpredictable. That its magnitude
is quantified in terms of averaged rms voltages/currents or mean power
levels. The concepts of the Maximum Available Noise Power and Noise Power
Spectral Density were introduced and we saw that Johnson Noise (and also
Shot Noise) have a uniform NPSD � i.e. they have a White power
spectrum. Other forms of noise can show different noise spectra, most
commonly a �1/f � pattern.

Questions

1)  Explain with the help of a diagram how Thermal Noise arises. Explain
why the mean noise voltage, when averaged over a long time, is almost
zero.

2) Explain what's meant by the Power Spectral Density of a signal. Thermal
and Shot Noise are often said to have a �white� Noise Power Spectral Density
(NPSD). What does this tell us about them?

3) A 10 kΩ resistor at 300 K is connected to the input of an amplifier
whose input resistance is 22 kΩ. Given that Boltzmann's constant, k = 1·38
× 10-23 Ws/K, calculate the noise power spectral density of the thermal
noise the resistor puts into the amplifier.  [3·5×10 - 21 W/Hz.]

4) What value of amplifier input resistance would draw the Maximum
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Available Noise Power from a 10 kΩ resistor? What is the thermal NPSD
entering an amplifier with this input resistance when the the 10 kΩ
resistor is at 300 K? [10kΩ. 4·12×10 - 21 W/Hz.]

5) How does 1/f noise differ from Shot and Thermal noise?
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Chapter 4

Uncertain measurements

4.1 Doubtful information and errors

Random noise has the effect of making the result of any quantitative
measurement uncertain to some extent. This lack of perfect precision is
often referred to in terms of producing a given level of Error in any result.
Alas, many students are rather unhappy with the whole subject of errors.
After all, who likes to admit they may have made a �mistake�? In the minds
of many, �more errors = less marks�! For this reason it's useful to realise
that the errors produced by unavoidable random noise aren't something
to be embarrassed about. They're a consequence of the real world we're
all stuck with. We'll be looking at ways to cope with the effects of noise
later on. (We will also see that there are situations where random errors
are actually useful!) In this chapter we'll examine how noise affects our
ability to communicate information. 

To see how noise affects information transmission, consider the situation
illustrated in figure 4.1.

Transmitter Receiver
Signal

Noise

V 0

V 1

Transmitted Signal Received Signal + Noise

Digital communication over a noisy channel.Figure 4.1

Here a message is being sent as a stream of binary digits, i.e. it is in the
form of a Serial Digital signal. The transmitter uses one voltage level, , to
signal a �1� and another voltage, , to signal a �0�. The information is

V 1

V 0
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therefore carried by the voltage pattern. Some random noise is
introduced during transmission. As a result, the received signal is a
combination of the intended signal voltage pattern and this added noise.
For simplicity we can assume that the transmitter and receiver are in
themselves �perfect�, i.e. they don't generate any noise of their own. In
reality this won't be true. For our purposes here it doesn't really matter
where the noise comes from. Any actual noise coming from the
transmitter/receiver circuits would have an identical effect to the same
total noise level injected onto the channel from an external source.

In the absence of any noise the receiver could repeatedly measure the
input it sees and decide, �If this is  I've received a �0�, if it's  I've
received a �1�.� However, the noise means that the input it sees is hardly
ever actually equal to or . It therefore requires some other recipe for
deciding whether it's received a �0� or �1�. The simplest way to do this is to
define a sensible Decision Level, , mid-way between  and 

V 0 V 1

V 0 V 1

V ′ V 0 V 1

V ′ ≡
V 0 + V 1

2
... (4.1)

V '

V '

V

V
0

V
0

1
V

1
V

Histogram of
received voltages
when a ‘1’ is
being sent.

Histogram of 
received voltages
when a ‘0’ is
being sent.

Voltages that
give the wrong
result.

The effect of noise on the voltages seen by the receiver.Figure 4.2

p {V }

p {V }

The receiver now works by saying, �If I see a voltage  I've received a
�1�, if I see a voltage  I've received a �0�.� 

≥ V ′
< V ′
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The results of decoding a noisy digital message in this way can be
understood by looking at figure 4.2.

The effects of the noise can be assessed by making a large number of
measurements of the received voltage levels and plotting a probability
distribution of the results. The top graph shows a plot of the distribution
of voltages seen by the receiver when the transmitter is sending . In this
situation the received voltage will be  where  varies randomly
from one measurement to another. Since the average noise voltage of lots
of measurements is essentially zero the resulting spread of voltages has its
mean at . For Normal noise the distribution therefore has a Gaussian
shape with its peak at . A similar result, shown in the lower graph, arises
when the transmitter is trying to send , but in this case the average (and
peak of the shape) are at .

V 0

V 0 + v n v n

V 0

V 0

V 1

V 1

Since the receiver decides that any voltage above  is a �1� and any
voltage below  is a �0� we can predict the frequency of mistakes by
calculating the fraction of the plots which are the wrong side of . When
the transmitter is trying to send  the probability or relative frequency,

, with which the received voltage is seen to be in a small interval,
, centred at some voltage, V, will be

V ′
V ′

V ′
V 1

p {V }
d V

p {V } .d V = A. Exp {−2 (V − V 1)2

σ2 } .d V ... (4.2)

Since the observed voltage must always be somewhere in the range from
 to  we can say that the value of the coefficient, A, must be such that−∞ +∞

∫
 + ∞

 − ∞
A. Exp {−2 (V − V 1)2

σ2 }  d V = 1 ... (4.3)

i.e. the probability that the observed voltage is somewhere between  and
 is unity. Since the total area under the distribution shape isn't affected

by the choice of , this is equivalent to saying that

−∞
+∞

V 1

1

A
≡ ∫

 + ∞

 − ∞
Exp {−2V 2

σ2 }  d V ... (4.4)

When  is being sent, the chance, , it will be correctly received is
determined by the fraction of the distribution which lays above . This
can be determined from integrating over the appropriate part of the curve
to obtain

V 1 C 1

V ′
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C 1 = ∫
  ∞

V ′
p {V }  d V = ∫

 ∞ 

 V ′
A. Exp {−2 (V − V 1)2

σ2 }  d V ... (4.5)

In a similar way, the chance , that  will be correctly received is
determined by the fraction of the distribution which is below  when
is being sent, i.e. we can say

C 0 V 0

V ′ V 0

C 0 = ∫
  V ′

−∞
p {V }  d V = ∫

  V ′

−∞
A. Exp {−2 (V 0 − V )2

σ2 }  d V ... (4.6)

Using a book of standard integrals we can find that the above expressions
are equivalent to

C 1 =
1

2
 . 

1 + Erf { 2 . (V 1 − V ′)
σ }

 ... (4.7)

C 0 =
1

2
 . 

1 + Erf { 2 . (V ′ − V 0)
σ }

 ... (4.8)

and

A ≡ ( 1

σ)  . 
2

π
... (4.9)

where Erf is a standard mathematical function called the Error Function.
Since this isn't a pure maths book the details of this proof and the precise
nature of the error function don't matter very much. It is enough for us to
accept that it is just another function like sine or cos  that we can look up
in a book and which happens to be the right one to solve the integrals. We
can now use the above expressions to see how often the receiver will pick
up the correct signal level in the presence of some noise.

Since we defined  to be mid-way between  we have a situation
where . Hence we only need to look at how one of the above
depends upon the chosen voltages and the noise level. The amplitude of
the signal voltage being transmitted is . The rms amplitude
of the typical noise voltage is σ. Since  we can
therefore say that the fractional chance of each �1� or �0� being received
correctly will be

V ′ V 0 and  V 1

C 1 = C 0

V s = V 1 − V 0

V ′ = (V 1 + V 0) / 2

C =
1

2
 . 

1 + Erf { V s

2 . σ}
... (4.10)

The dependence of C upon the signal/noise voltage ratio, , can be
seen by looking at the curve plotted in figure 4.3. As we would expect C
approaches unity when the signal to noise ratio is high. In this situation

V s /σ
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the signal voltage is very big compared to the noise, hence the noise will
have no noticeable effect.

A more curious result is that when the signal/noise ratio is zero
� i.e. the receiver will correctly pick up 50% of the message's pattern of
�1�s and �0�s even when the transmitter doesn't send the signal! At first
sight this seems very odd. Surely, if the signal amplitude is zero the
receiver has no way to know what the message is�

C = 0·5

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

C

V s /σ

Fraction of ‘1’s and ‘0’s received correctly.Figure 4.3

The reason for this odd result can be explained as follows. Imagine that
we didn't bother with using a proper signal receiver but instead just kept
tossing a coin. Every time we get a head we decide the message should
contain a �1�. Every tail is taken as a �0�. In this way we can build up a
pattern of �1�s and �0�s without bothering to look at the actual signal.
Since there are only two possibilities (�1� or �0�), every time we throw the
coin we have a 50% chance of getting the correct result. As a consequence
50% of the �1�s and �0�s in our coin-generated version of the message will
be correct. However, this doesn't mean that we have received 50% of the
actual information since we don't know which 50% of the coin-generated
bits are the correct ones! This result is just the same as if we'd used
random noise to make the receiver perform the equivalent of �toss coins�
to generate a random string of bits.

This demonstrates an important feature of the way information is
communicated and processed. The amount of information we have
doesn't just depend upon how many bits we've gathered. It also depends
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upon how confident we are that each bit is correct. The amount of
information received depends upon how certain we are that the pattern is
correct. If we're only 50% certain and there are only 2 possibilities we
don't actually have any real information since any other outcome is just as
likely to be the correct one.

Summary

This chapter has shown how the effect of noise is to produce random
errors when we communicate a signal. These random errors mean we can
never be absolutely certain that we've received the correct information.
Since noise is present in all real systems this means that we can never be
certain that the information we have is absolutely correct. You should also
now know that the amount of information in a signal pattern depends
upon how certain we are that it is correct.

Questions

N.B. In the following, use the approximation

Erf {x} ≈ 1 −
0·348t − 0·0958t 2 + 0·748t 3

Exp {x 2}
where

t ≡
1

1 + 0·47x

1) A digital transmission system uses 0·5 V to signal a logical �0� and 4·5 V
to signal a logical �1�. A message is transmitted which consists of a
sequence which contains 2000 �1�s and 2000 �0�s. The channel used to
carry the message has a noise level we can characterise by a value of σ =
1·5 V. How many bits are likely to be received correctly using a receiver
whose decision level is set mid-way beween the logical �0� and �1� levels?
[3984 in total.]

2) How many bits would have been received correctly in question 1 if the
receiver's decision level had been set at either a) 3 V, or b) 1 V?
(Remember that a chance of a �0� being received correctly is C0 and the
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chance of a �1� being received correctly is C1.)[ a) 3953,  b) 3494.]

3) Write a program to calculate how the chance of correct reception in
the system described above varies if the decision level is varied between
0·5 V and 4·5 V.
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Chapter 5

Surprises and redundancy

In the last chapter we saw how the amount of information in a received
signal pattern depends upon how confident we can be that its details are
correct. We also saw how the probability that a digital bit of information
will be correctly received is

C =
1

2

1 + Erf { V s

2 . σ}
... (5.1)

where  is the peak-to-peak size of the signal voltage and σ is a measure
of the width of the noise voltage's probability density pattern (histogram).
This expression is theoretically fine, but it can be awkward to use in
practice. In most real situations it is more convenient to deal with signal
and noise powers or rms voltages. We therefore need to turn expression
5.1 into a more useful form.

V s

A square-wave of peak-to-peak amplitude, , will have a mean power
 where  is the appropriate resistance across which the

observed voltage appears. Hence we can use

V s

S = (V s / 2R )2 R

V s = 2 RS ... (5.2)
to replace the signal voltage in the above expression. To establish the
noise power in terms of the width, σ, we have to evaluate the noise's rms
voltage level, . To do this we can argue as follows:v r m s

In chapter 3 we saw that the noise level can be represented in terms of a
probability distribution of the form

p {V } .d V = A Exp {− 
2V 2

σ2 } .d V ... (5.3)

where, to ensure that the actual voltage always lies between + ∞ and  ,
we can say that

− ∞

A ≡
1

σ

2

π
... (5.4)

To compute the rms voltage we take many voltage readings, square them,
add them together, divide by the number of readings, and take the square
root of the result. This is mathematically equivalent to 
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v r m s = ∫
+∞

−∞
V 2p {V }  d V ... (5.5)

This is because, when we make lots of voltage measurements, the fraction
of them which falls between  and  is . By solving the
above integral we discover that

V V + dV p {V } .d V

v r m s =
σ

2
... (5.6)

The noise power level will be  and hence we can say that N = v 2
r m s / R

σ = 2 RN ... (5.7)
We can now use 5.2 and 5.7 to replace  and σ in expression 5.1 and
obtain the result

V s

C =
1

2




1 + Erf





S

2N








... (5.8)

This expression tells us the chance that bits will be received correctly in
terms of two easily measurable quantities � the signal power, S, and the
noise power, N. 

Whenever possible we should make the signal/noise power ratio as large
as we can to minimise the possibility of errors. If this is done we can often
neglect the information loss produced by random noise. It should be
remembered, however, that the signal/noise ratio will always be finite.
Hence we can never get rid of this problem altogether. Despite this, a S/N
power ratio of just 10 gives C = 0·999214 � i.e. around 99·98% of the bits
in a typical message received with this S/N would be correct. A slightly
better S/N ratio of 25 gives C = 0·9999997. This is equivalent to an Error
Rate of around 3 bits in every ten million (3:10,000,000).

It may seem that an error rate below �one in a million� isn't really worth
making a fuss about. Alas, there are some factors which we have not, as
yet, taken into account.

• We will usually be sending a number of bits to indicate a code word
and these words may be built up into a longer message. A given
message may be composed of a lot of bits.

• Whilst a 1:1,000,000 error rate may be acceptable for many purposes,
it may be a disaster in other circumstances. 

For example, consider one of the systems used to signal to strategic
defence nuclear submarines. These submarines are designed to cruise
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hidden below the ocean surface. They should remain hidden up until
such time as they might be required to launch a nuclear attack. For this
reason they avoid transmitting any radio signals which would give away
their location to an enemy. Their standing orders include an instruction
to �launch retaliation� if their home county is destroyed by a �sneak
attack�. The question therefore arises, �How can they tell if their home
country has been flattened?�. A country that has been destroyed may not
have any radio transmitters left to transmit a signal to the subs, ordering
them to attack.

To get around this problem the military devised a �fail disaster� system.
The home country regularly transmits a sequence of coded messages at
prearranged moments. The sub pops up a radio buoy at these times,
listens for these broadcasts, and verifies that the codes are correct. The
submarine commander then uses the absence of these messages as a
�signal� to the effect that, �Home has been wiped out, attack enemy
number 1�. An incorrectly coded message is interpreted as a �signal� that,
�We have been taken over by an enemy and forced to make this broadcast
against our will. Attack!�. Clearly, for a signalling system of this kind a
single error could be a genuine disaster. Even a one in a million chance of
a mistake is far too high. So steps have to be taken to make an error
practically impossible. The importance of errors varies from situation to
situation, but it should be clear from the above example that we
sometimes need to ensure very low error rates.

When dealing with the effects of errors on messages (rather than on single
bits) we must also take into account how effectively we are using our
encoding system to send useful information and how important the
messages are. 

Some messages are quite surprising, whereas others are so predictable that
they tell us almost nothing. To quote some examples from the English
language.

1) �This car does 0 � 60 in 0·6 seconds.�

2) �If you want to catch a bus you should q over there.�

3) �Party at 8, bring a bottle.�

The contents of this first message indicate a remarkable car! Although
every symbol in this sentence looks OK by itself, the whole message is
clearly rather suspect. We can only guess what the correct message was. In
the second message the error is pretty obvious and we can feel almost
certain that we know what the correct message should be. The third
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message looks fine, but it may still be wrong, e.g. the party may be at 9
o'clock and the figure 8 is, in fact, a mistake. It is also ambiguous; the
party may be at house number 8, not at 8 o'clock.

Messages 1 and 3 contain examples of errors which, if noticed, give no
reliable indication of the correct message. In order to deal with errors of
this type we need to include some extra information in the message.

Message 2 contains an error which can be corrected. In the context of the
message and our knowledge of the English language, the whole word
�queue� is unnecessary. The �ueue� is redundant. This relates to the
observation that � in English � the letter �u� is often redundant. We
could replace almost every �qu� in English with �q� without the correct
meaning being lost (although we'd get complaints about our spelling!)

Clearly, it is valuable to choose a system of coding which makes errors
obvious and allow us to correct received messages. To see how it is
possible to produce systems which do this we need to analyse redundancy
and its effect on the probability of a message being understood correctly.

In an earlier chapter we saw that the amount of information in a message
can be expected to increase with log  of the number of code symbols
available. This, in fact, assumes that all the available symbols are used (a
symbol which isn't used might as well not exist). It also assumes they are
all used with similar frequency. Hence the probability, P, of a particular
symbol appearing would  where M is the number of available code
symbols. We can therefore say that the amount of information would vary
with 

2

= 1 / M

log2 {M } = log2 {1

P} = − log2 {P} ... (5.9)

Consider the situation where we use a set of M symbols, , , , � ,
for sending messages. By collecting a large number of messages and
examining them we can discover how often each symbol tends to occur in
a typical message. We can then define a set of probability values

X 1 X 2 X 3 X M

Pi ≡
N i

N
... (5.10)

from knowing that each symbol,  , occurs  times in a typical message
N symbols long. In a situation where all the symbols tend to appear equally
often we can expect that  for every symbol  � i.e. all the symbols
are equally probable. More generally, the symbols appear with various

X i N i

Pi = 1
M X i
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frequencies and each  value indicates how often each symbol appears.Pi

When all the symbols are equally probable the amount of information
provided by each individual symbol occurrence in the message will be

. The total amount of information in a typical message N symbols
long would then be
log2 {M }

H = N . log2 {M } = −N . log2 {P} ... (5.11)
where  for all i, since in this case the probabilities all have the same
value. This expression giving the total amount of information in terms of
symbol probabilities indicates how we can define the amounts of
information involved when the symbols occur with differing frequencies.
We can then say that the amount of information provided just by the
occurrences of, say, the  symbol will be

P = Pi

X i

H i = −N i log2 {Pi} = −N Pi log2 {Pi} ... (5.12)
From this expression we can see that the smaller the probability of a
particular symbol, the more informative it will be when it appears.
Surprising (i.e. rare) messages convey more information than boringly
predictable ones! The total amount of information in the message will
therefore be the sum of the amounts carried by all the symbols

H = ∑
M

i = 1

−N i log2 {Pi} = ∑
M

i = 1

−N Pi log2 {Pi} ... (5.13)

From expression 5.12 we can say that every time  appears in a typical
message it provides a typical amount of information per symbol
occurrence of 

X i

h i = H i / N i = − log2 {Pi} ... (5.14)
(Note that to make things clearer we will use H to denote total amounts of
information and h to denote an amount per individual symbol
occurrence.) From expression 5.14 we can say that the amount of
information per symbol occurrence, averaged over all the possible symbols
is

h =
H

N
= ∑

M

i = 1

−Pi log2 {Pi} ... (5.15)

In general, this averaged value will differ from the individual  values
unless all the symbols are equally probable. Then  and 5.15
would become equivalent to . It's
interesting to note that the form of the above expressions is similar to
those used for entropy in thermodynamics. Many books therefore use the

h i

Pi = 1 / M
h = M × (− (1 / M ) log2 {Pi}) = h i
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term entropy for the measure of information in a typical message or code.

The above argument gives us a statistical method for calculating the
amount of information conveyed in a typical message. Of course, some
messages aren't typical, they're surprising. The information content of a
specific message may be rather more (or less) than is usual.  The above
expressions only tell us the amounts of information we tend to get in an
average message.

Consider now a specific message N symbols long where each symbol, ,
actually occurs  times. The amount of information provided by each
individual symbol in the message is still , but there are now  of
these, not the  we would expect in a �typical� or average message. We
can therefore substitute  into expression 5.13 and say that the total
amount of information in this particular message is 

X i

Ai

�log2 {Pi} Ai

NPi

Ai

H = − ∑
M

i = 1

Ai . log2 {Pi} ... (5.16)

In order to convey information, every one of the symbols we wish to use
must have a defined meaning (otherwise the receiver can't make sense of
them). This is another way of saying that the number of available symbols,
M, must always be finite. Since any particular symbol in a message must be
chosen from those available we can say that 

∑
M

i = 1

Pi = 1 ... (5.17)

In most cases the chance of a particular symbol occurring will depend to
some extent upon the previous symbol (e.g. in English, a �u� is much more
likely to follow a �q� than any other letter) and some combinations of
symbols occur more often than others (e.g. �th� or �sh� are more common
than �xz�). The term Intersymbol Influence is used to describe the effect
where the presence (or absence) of some symbols in some places affects
the chance of other symbols appearing elsewhere. To represent this effect
we can define a Conditional Probability,  to be the probability that the
j th symbol will follow once the i th has appeared. The chance that the
symbol combination  will appear can then be assigned the Joint
Probability, 

Pi → j

X iX j

Pi j = Pi . Pi → j ... (5.18)
Just as the amount of information provided by an individual symbol taken
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by itself depends upon its probability, so the extra information provided
by a following symbol depends upon how likely it is once the previous
symbol has already arrived. For example � in English, a �u� is a virtual
certainty after a �q�, hence it doesn't provide very much extra information
once the �q� has arrived. The �u� is said to be redundant once the �q� has
arrived. However, although it doesn't provide any real extra information it
is useful as a way of checking the correctness of the received message.

The term Conditional Entropy is often used to refer to  , the average
amount of information which is communicated by the j th symbol after
the i th has already been received. Since h is proportional to , the
joint entropy,  (the amount of information provided by this pair of
symbols taken together), must simply be

h i → j

log2 {P}
h i j

h i j = h i + h i → j ... (5.19)
If we wish to maximise the amount of information in a typical message
then we would like every symbol and combination of symbols to be as
improbable as possible (i.e. minimise all the P values). Alas, expression
5.17 means that when we make one symbol or combination less likely
some others must become more probable. We can't make all the existing
symbols less likely without adding some new ones! From the English
language example of a �u� following a �q� we can see that the effect of
intersymbol influence is generally to reduce the amount of information
per symbol since the �u� becomes pretty likely after a �q�. Hence we can
expect that the information content of a message is maximised when the
intersymbol influence is zero. Under these conditions 

h i j = h i + h j   (no influence) ... (5.20)
i.e. the amount of information communicated by two symbols is simply
double that provided by either of them taken by itself. In such a situation
none of the transmitted symbols are redundant. Since this is the best we
can do, it follows that, more generally

h i → j ≤ h j ... (5.21)
i.e. the average extra information produced by the following symbol can
never exceed that which it would have as an individual if there were no
intersymbol influence. 

Summary

You should now understand how the amount of information in a message
depends upon the probabilities (or typical frequencies of occurrence) of
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the various available symbols. That the chance of transmission errors
depends upon the signal/noise ratio. That the amount of information in a
specific message can differ from an average one depending upon how
surprising it is (how many times specific symbols actually occur in it
compared with their usual probability). That Intersymbol Influence can help
us check that a message is correct, but reduces the maximum information
content.

Questions

1) An information transmission system uses just 4 symbols. The symbols
appear equally often in typical messages. How many bits of information
does each symbol carry? How much information (in bits) would a typical
message 1024 symbols long contain? [2 bits per symbol. 2048 bits.]

2) An information transmission system uses 6 symbols. Four of these,
, have a typical probability of appearance, .

The other two symbols,  have probabilities, . How
much information would a typical message 512 symbols long carry? How
much information would a specific message 512 symbols long carry if it
only contained 300 's, 100 's, and 112 's? [1280 bits. 1424 bits.]

X 1 X 2 X 3 and  X 4 P = 0·125
X 5 and  X 6 P = 0·25

X 1 X 3 X 6

3) Explain what's meant by the term Intersymbol Influence. Say why and
when this can be either a �good thing� or a �bad thing� depending upon
the circumstances.
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Chapter 6

Detecting and correcting mistakes

6.1 Errors and the law!

In chapter 4 we saw that random noise will tend to reduce the amount of
information transmitted or collected by making us uncertain that the
resulting message pattern is correct. We've also seen how redundancy can
provide a way to check for mistakes and, in some cases, correct them. One
of the advantages of digital signal processing systems is that they are
relatively (but not totally) immune from the effects of noise. A S/N ratio of
just 10:1 is enough to ensure that 99·92% of digital bits will be correct. 

For short, unimportant, messages this level of immunity from errors is
fine, but it isn't good enough for other situations. For example, consider a
computer which has to load (read) a 200 kbyte (1·6 million bits)
wordprocessing program from a disc. A 0·01% error rate would mean the
loaded program would contain around 160 mistakes! This would almost
certainly cause the program to crash the computer. By the way, note that
the term �error rate� doesn't mean the errors appear at regular intervals. If
it did, we could simply count our way along the pattern to find and correct
the errors! The errors will be randomly placed. The rate simply indicates
what fraction of the bits are likely to be wrong, not where they are. The
term, �error rate� is therefore potentially misleading, although it is
commonly used.

We can reduce the rate at which errors occur by improving the S/N ratio,
but there is, in fact, a better way, based on deliberate use of redundancy.
By introducing some intersymbol influence we can make some patterns of
symbols illegal � i.e. we arrange that they can only occur as the result of a
mistake. This makes it possible to detect that the signal pattern contains
an error. The main disadvantage of this technique is that we have to
reduce the amount of information we're trying to get into a given message
since some of the symbols are now being used to �check� others rather
than sending any extra information of their own. (It can be argued that
this doesn't really matter since � if we don't do anything about it �
random noise will destroy some of the information anyway, although we
may not know about it!) One of the simplest ways to deal with errors is to
repeat the message. The two versions can then be compared to see if
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they're the same. 

If the probability that any particular bit or symbol in a message is correct is
C, then the chance that it's an error must be . (It must be
either right or wrong!) As a result, when we send and compare two copies
of a message, the chance that both copies have a symbol error in the same
place will be . As an example consider a system whose S/N ratio
provides a chance  that individual bits are correct. This means
that  per bit. The chance of both copies of a specific bit being
wrong will therefore be  � i.e. in a typical pair of repeated
messages there is only a 1:1000000 chance that both copies of any
particular bit will be wrong. Now the chance that a particular bit in �copy
#1� is correct and �copy #2� is wrong will be . Similarly,
the chance that just the first copy is wrong will be . The
chance that both are correct will be .

E = 1 − C

E
2

C = 0·999
E = 0·001

E
2 = 0·000001

C .E = 0·000999
E .C = 0·000999

C
2 = 0·998001

When we compare two versions of a long message we therefore typically
find that  of the bits agree with their copies
and just  differ. As a result we can see that just
under 0·2% of the bit �pairs� disagree. We have detected the presence of
the errors which caused these disagreements and know where in the
message they appear. This is the advantage of this �repeat message�
technique over just sending one copy. In this example, sending two copies
is �redundant� because they should both contain the same information.
Once we know about the errors we can take appropriate action (e.g. ask
the transmitter to repeat the �uncertain� parts of the message). A single
copy of the message would contain about 0·1% mistakes but we wouldn't
know about them unless we arrange for some redundancy. Hence without
redundancy we can't do anything to recover what we've lost.

100× (C 2 + E
2) % = 99·8002%

100×2× (C.E ) % = 0·1998%

The system of using a pair of messages isn't perfect. (What is?) There are
still  errors which we won't spot because both copies have been
changed in the same place. As a result there are still 0·0001% undetected
errors in the received information. However, this is much better than the

% of undetected errors we'd get if only one copy of the message
had been sent.

E
2

E = 0·1

By spotting differences between two copies of the message we can detect
nearly all of the places where there has been a random noise produced
error. However, we still don't know which of the differing versions is
correct. A way to overcome this is to go one stage further and use the
military approach called, Tell Me Three Times. This means we send three
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copies of the same message. Using the same arguments as before we can
now say the chance that all three copies of a specific bit are correct is

 99.70%. The chance that any one version is wrong is
0·2994%. (There are three chances for one version out of three to be
wrong.) Similarly, the chance that two versions both have an error in any
specific bit is   0·0002997%. The chance that all three are wrong
is  0·0000001%. (N.B. These values have all been rounded to 4
significant figures to make them more readable!)

C
3 = 3C 2

E =

3C .E
2 =

E
3 =

One effect of tell me three times is to reduce the undetected error rate
 still further. However, the main benefit is that nearly all the errors

can now be corrected. This is because in most cases a difference between the
three versions of the message occurs because just one of them is wrong.
The signal receiver can therefore work on a �majority vote� system and
decide that, �when two versions agree and one differs, the correct signal is
the one shown by the two versions in agreement�. It then can use this rule
to recover the �correct� information. Occasionally, this means it will make
a mistake when two versions have been changed by errors, but from the
figures shown above we can see this will only happen for about one
correction in a thousand. Hence the tell me three times technique allows
us to detect and correct most of the errors produced by random noise. 

(E 3 )

6.2 Parity and blocks

The disadvantage of tell me three times is that we have to send every
message three times instead of being able to send three different sets of
information with the same number of bits or symbols. This makes it a
relatively inefficient and slow way to convey (or store) information.
Fortunately, there are various other methods available for detecting and
correcting errors which don't reduce the overall information carrying
capacity quite so much. One of the most common digital techniques is the
use of Parity bits. Before explaining these it's useful to consider the
concept of binary Words.

From previous chapters you should already be familiar with the idea of
using a set of binary digits (bits) to represent information. (See, for
example, chapter 1 where we represented a series of sampled voltages as
�000�, �001�, etc.) It's usual to refer to groups of eight bits as a Byte of
information. This stems from early computers which mostly handled 8 bits
of information at a time. More generally, the term word has come to mean
a group of bits which carry a convenient amount of information. Most
modern desktop computers have microprocessors which can handle 16 or
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32 bits of information at a time. The information in such a processing
system is said to be held as a set of 16 or 32 bit words. Each binary word can
then be regarded as a digital Symbol. These symbols can be built up in
patterns to represent the information. Unlike the term �byte�, �word� can
mean any convenient number of associated bits.

To see how Parity Checking can be used to detect and correct errors,
imagine a system when the information is initially held as a series 8-bit
words. The system may want to transmit � or process in some other way
� a series of words, %10011100, %10010100, %11100101, etc. (Note that
here a �%� before the number is used to indicate that it's in binary
notation.) The parity of each word can be defined to be odd or even
depending upon how many �1�s it contains. On this basis, %10011100 has
even parity, %1101010 has odd parity, %11100101 has odd parity, and so
on. We can now add an extra bit onto each word to represent its parity.
For example, we can add a �1� onto the end if the word was even or a �0�
onto the end if it was odd. This converts the initial words as follows:

 %10011100 ⇒ %100111001

 %10010100 ⇒ %100101000

 %11100101 ⇒ %111001010

We now transmit or process these new 9-bit words instead of the original 8-
bit ones. This extra bit we've tacked onto each original word doesn't carry
any fresh information. It's called a parity bit because it simply confirms the
parity of the other bits in the word. This means the patterns we transmit
are now partially redundant and this redundancy can be used by the
receiver to check for errors. Under the system we've chosen every legal 9-
bit word has an odd number of �1�s. The receiver can now read each 9-bit
word as it arrives and check that it's parity is, as expected, odd.

Random noise may occasionally change one of the bits in a word during
transmission. As a result, the received 9-bit word will now have an even
number of �1�s. The receiver can spot this fact and use it to recognise that
the word is illegal. This means that it's not a pattern which the transmitter
would send. Hence the receiver can discover that it must contain an error.
In this way the parity bits allow error detection. Note that this isn't the
only way to implement parity bits. We could put the extra bits at the start
of the words, or somewhere in the middle. We could choose to add a �1�
onto the odd words and a �0� to the even ones to make all the legal 9-bit
words have even parity. The details don't matter so long as the receiver
knows what to expect.
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Using this example we can now define some ways to quantify the degree of
redundancy in the coding system used to transmit information. In this
case, each 9 transmitted bits only contains 8 bits worth of real information.
We can define the ratio of  number of bit of information to the number of
bits transmitted to be the Efficiency of the coding system used, i.e. we can
say

Efficiency =
number of information bits

number of info bits + number of parity bits
... (6.1)

In this case the ratio is 8/9, hence the transmission system has an
efficiency of 0·888. The redundancy can be defined to be one minus the
efficiency,  0·111. These values can be compared with the �tell me
three times� system where we had to send three times as many bits as were
required to contain the original information � i.e. an efficiency of 1/3rd
or redundancy of 2/3rds. Note that although the parity system we've
described is more efficient than �tell me three times� it still requires us to
send more bits than were needed for the original information. This is a
general rule. Every system for detecting (and correcting) mistakes
produced by random noise requires us to communicate or store �extra�
bits which essentially repeat some of the information.

1 − 8
9 =

Comparing the parity checking system described above with �tell me three
times� we can see it can detect occasional 1-bit errors, but has a much
lower redundancy. However, it can't correct errors. To do that we can use
a slightly more complex approach based upon what are called Block Codes.
A simple example is shown below. Here we collect the words we want to
transmit into a series of blocks of the kind illustrated, e.g. a data stream
%01011000, %11100011, %00011011, %11001100, %010�, etc. is
collected into blocks of four words to make patterns of 8×4 bits like:

      'row' parity bits

%01011000 → 0

%11100011 → 0

%00011011 → 1

%11001100 → 1

‘column’ parity bits           ↓
%10010011

We now generate a set of �row� parity bits for checking each words. We
also generate a set of �column� parity bits � using the first bit of each
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number for the first parity bit, then the second bit of each number for the
second, etc. In the example we've chosen this means that each original
block of 8×4=32 bits of information is used to produce an extra 12 bits. We
then transmit all 44 bits to a receiver. To see what happens when a
random error occurs during transmission we can assume that the received
version of the above turns out to be as shown below

             Received         Computed

%01011000 → 0 0

%11100111 → 0 1

%00011011 → 1 1

%11001100 → 1 1

                ↓
Received %10010011

Computed %10010111

The receiver collects the received block of data and parity bits sent by the
transmitter. It then computes its own version of what the parity bits should
be and compares them with the values it has received. In this example one
of the bits has been altered from a �0� to a �1� during transmission. As a
result, the received and computed parity bits won't agree and the receiver
can tell that there's a mistake in the block it has received. It can now use
one parity disagreement to identify which row the error is in and the other
to identify the column it is in. As a result it can locate and correct the
mistake. This ability of block codes to both detect and correct mistakes is
an important feature of modern information processing.

Note that there's nothing magic about the choice of choosing an 8×4
block size. We could have arranged the block as 8×8, or put two words on
each row and used 16×16, or even split the words to make some peculiar
arrangement like 11×7. Provided the transmitter and receiver use the
same rules any arrangement may be OK. Note also that we aren't limited
to a �two-dimensional� block. We could arrange the bits in a �cube� of, say,
8×8×8 bits, and collect a third set of parity bits running through the
pattern in another �direction�. (In principle, we can arrange the bits in a
many-dimensional pattern although it gets a little hard to visualise!)

The choice of block arrangement depends upon how worried we are
about the effects of noise. The 2-dimensional example shown above works
fine for single bit errors, but runs into trouble if there is more than one
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error in a block. For example, if there are two errors in a row then the
received and computed parity values for that row will agree. The receiver
would then be able to detect that two columns contained errors, but not
which row they were on. Hence this simple example can correct 1-bit
errors but only detect 2-bit errors in a block.

In general, the error detecting and correcting ability of a block code can
be defined in terms of measure called the Minimum Hamming Distance.
Block codes work because some transmitted word patterns of �1�s and �0�s
are illegal. The Hamming Distance between any pair of legal words is
defined as the number of bits which have to be changed to convert one
word into the other. The Minimum Hamming Distance is defined as the
lowest Hamming Distance value we find between any pair of legal words in
the chosen code system. This provides us with a number which determines
how well a code system can cope with errors.

The properties of well designed code systems with various Minimum
Hamming Distances are as follows:

MHD = 1 No error immunity (every pattern appears legal)

MHD = 2 Detects 1 error, no correction

MHD = 3 Detects and corrects 1 error

MHD = 4 Detects up to 2 errors and can correct 1 error

MHD = 5 Detects 2, corrects 2

etc�

In a given situation we can start by deciding how many errors at a time we
want to be able to spot or correct. Then use the MHD to tell us how many
illegal patterns have to �surround� each legal one. This then tells us how
much redundancy and how many parity bits we need.

6.3 Choosing a code system

There is an enormous variety of data encoding systems. It sometimes
seems as if theoreticians keep inventing new ones purely as something to
name after themselves! Despite this, many of them are designed to have
features useful in specific situations. Most are designed to combat random
errors and work along the lines described in the last section. We will be
looking at an example of a powerful error correcting code when we
examine how Compact Discs work in a later chapter. Here we will examine
two special systems which have properties useful for particular jobs. The
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first example is a digital Linear Encoder.
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Simple linear position encoder.Figure 6.1

Figure 6.1 shows a metal plate which has a pattern of insulating material
placed upon its surface. A line of electrical contacts is arranged to press
against the plate. When they touch the metal a current can flow through
them. This current will be blocked if they are touching a part of the
surface coated with insulator. The contacts therefore form a set of sensors
which produce a pattern of currents which changes in response to plate
movements. In the figure these currents are shown connected to a row of
lights which would light up to indicate the plate position. More
commonly, the sensors would be connected to a computer system to input
a binary number which represents the position of the plate. Hence the
system acts as an encoder which provides a signal which changes as the
plate is moved from left to right. The pattern shown in the illustration is
designed to provide a plain binary value which increases as the plate
moves from left to right.

The main disadvantage of this arrangement is that it may require more
than one bit to change simultaneously, e.g. consider what happens as the
plate moves from position 7 (%0111) to 8 (%1000). This requires all four
bits to change at the same time. For any real device, the actual bits sensed
will alter at different instants as the plate moves from position 7 to 8.
Hence between the correct readings of 7 and 8 we may find the encoder
gives momentary readings of 15 (%1111), or 13 (%1101), or 12 (%1100),
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or 3 (%0011). In fact, as every bit has to change between 7 and 8, we
could momentarily get any number from 0 to 15 as the plate moves from
one position to the other. A computer reading the sensed number at the
wrong moment would therefore think the plate was leaping about in a
frantic way as it moved from 7 to 8!

To avoid this problem we can replace the simple binary code with a new
code system (i.e. change the pattern on the encoder plate) designed so
that only one bit changes between adjacent locations. Two possible
systems are the Gray code and a 'walking' code shown below:

            #              Gray        Walking     #              Gray       Walking

00 %0000 %00000000 08 %1100 %11111111

01 %0001 %00000001 09 %1101   %11111110

02 %0011 %00000011 10 %1111   %11111100

03 %0010 %00000111 11 %1110   %11111000

04 %0110 %00001111 12 %1010   %11110000 

05 %0111 %00011111 13 %1011   %11100000 

06 %0101 %00111111 14 %1001   %11000000

07 %0100 %01111111 15 %1000   %10000000

Clearly the walking code uses redundancy to achieve its effect as it
requires eight bits to cover the range 0 � 15. The Gray code is more
interesting as it is simply a re-arrangement of the pure binary numbers
from 0 � 15. The problem described above occurs because of
imperfections in the way the plate and sensors are built. The errors
produced aren't random. As we slowly move across the number
boundaries the pattern of �jumping about� is always the same for a given
plate/sensor system. Errors of this kind are said to be Systematic since they
depend upon fixed physical imperfections of the system we're using. The
Gray code example shows that it is sometimes possible to devise a code
which overcomes a specific systematic problem without any loss of
efficiency. Dealing with random errors always requires a drop in
efficiency. This is an important difference between errors produced by
random noise and errors produced by repeatable, systematic effects.

The second example illustrates another weapon we can use to protect
ourselves against mistaking received errors for reliable information. This
technique is called Soft Decision Making and it depends upon being able to
spot when received bits are �suspect�. Combined with a block-checking
code, this is a powerful way of reducing the effects of random noise.
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To implement this technique we need to think about the transmission
method rather than the code system. A simple example is electronic
digital transmission along metal wires. Here bits can be lost due to
momentary loss of contact (e.g. due to a rusty plug/socket somewhere) as
well as random noise. This can produce bursts of errors where a series of
bits are missed. The most direct method is to send, say, TTL voltage levels
(between 0 and 1 V for �0� and between 3 and 5 V for �1�). A momentary
loss of signal may produce either 0 V (received as �0�) or allow a receiving
TTL gate to float high (giving a received �1�). Hence, depending upon the
receiver circuits used, a temporary loss of data looks like a string of �0�s or
�1�s.

Various systems have been devised to avoid this. The most common is the
transmission system called �RS-232/432�. Here a positive current (typically
about +3.5 mA) signals �1� and a negative one (�3.5 mA) signals a �0�. A
momentary signal loss gives zero current which the receiver can respond
to by tagging the appropriate bits as 'don't know'. It is worth noting that
this method is essentially making use of three logic levels to send binary
data; �3.5 mA=�1�, +3.5 mA=�0�, and 0 mA= �don't know�, although the
transmitter is only attempting to send two of these.

In practice, this technique does have one potentially significant
disadvantage which can be illustrated using the example of the RS232
logic levels. In the absence of any attempt to detect the �don't know�
condition the receiver could decide whether a �1� or �0� was being
communicated by checking whether the received current was above or
below 0 mA. Random noise would therefore have to change the current
level by at least 3.5 mA in order to produce an error.

In order to be able to sense message interruptions the receiver must be
designed so as to respond to some range of currents, ± I, centred on 0 mA
by deciding that the signal level is �undefined�. Random noise now only
has to alter the received current by an amount (  ) mA, to make a
bit appear unreliable. Similarly, the random noise only needs to produce a
momentary current fluctuation of more than  to make a momentary loss
of signal as an apparently reliable �1� or �0�. This means that we can't avoid
this problem by making I  very small without giving up the ability to spot
when data is failing to arrive. As a result, assigning an intermediate range
of levels to mean �undefined� leads to an increase in the frequency of
errors produced by random noise. However, provided that the S/N ratio is
high, this increase can be small enough to be an acceptable price for
being able to sense momentary data losses.

3.5 − |I |

|I |
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Summary

You should now know that the effects of random errors can (usually!) be
detected and corrected. In it's simplest forms this can be done using a
method like �tell me twice� or �tell me three times� which repeat all the
information. That parity bit generation methods and the use of block
codes �dilute� the amount of information repetition to provide a lower
amount of protection but a higher transmission Efficiency (lower
Redundancy) than simple �tell me again�. You should also understand that
the amount of protection from random errors depends upon the amount
of redundancy since we require a given amount of extra �illegal� symbols
or bit-patterns in between the legal ones to be able to deal with random
errors. You should also now know that the ability of a code system to
detect and correct errors can be measured in terms of the code system's
Minimum Hamming Distance value.

Finally, the example of the Gray code shows that non-random or Systematic
errors can be corrected without the need for any extra bits or words � i.e.
without any redundancy. The example of RS-232 shows that giving the
receiver the ability to spot data losses, called Soft Decision Making, can be
useful in dealing with Bursts of errors produced by problems like
temporarily loss of contact with the transmitter.

Questions

1) A message is transmitted in the form of a series of digital bits. The
signal is carried by a channel with a signal to noise ratio which means that
each individual bit has a 0·9 chance of being received correctly. The
message is 10,000 bits long. How many noise-produced random errors is a
single copy of the message likely to contain when received? To try and
reduce the effects of noise the message is sent using the Tell Me Three Times
method. After error correction, how many undetected errors are likely to
appear in the received message? [1000. 280.]

2) Explain what is mean by the terms Parity Bit and Parity Checking. A Block
Code system groups 16 message bits at a time into a two-dimensional block
in order to generate a set of parity bits. Draw a diagram of this process and
explain how it enables single bits errors in a block to be detected and
corrected. Explain why the presence of two bit errors in a block can be
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detected but not always corrected using this system. What is the value of
the transmitted signal's Efficiency  including the parity bits? What is the
value of the signal's Redundancy? [Efficiency = 16/24. Redundancy =
0·333.]

3) Draw a diagram of a Linear Encoder and use it to explain why the normal
binary number sequence, %0000, %0001, %0010, etc., isn't a very suitable
choice for the encoder pattern. Explain how either Walking Code or Gray
Code can overcome the problem. Explain what advantage Gray Code has
over Walking Code.

4) Explain the term Soft Decision Making. Give a brief explanation of how
the RS-232 data transmission system can indicate data losses during
transmission.
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Chapter 7

The Sampling Theorem

7.1 Fourier Transforms and signals of finite length

In the first few chapters we saw that the amount of information conveyed
along a channel will depend upon its bandwidth (or response time), the
maximum signal power, and the noise level. The way we estimated the
effects of these was fairly rough. We now need to look at this fundamental
question of a channel's information carrying Capacity more carefully. The
amount of information contained in a message can be formally defined
using the Sampling Theorem. The maximum information carrying capacity
of a transmission channel can be defined using Shannon's Equation. Taken
together, they provide the basis of the whole structure of Information
Theory. Rather than tackle the Sampling Theorem or Shannon's Equation
�head on�, it is useful to take a diversion and begin by considering the
relationship between a time-varying signal and its Frequency Spectrum. 

0 T 7.1a The observed signal.

7.1d A periodic signal which
has the observed shape within
the interval 0 — T.

A signal observed during the interval, 0 − T.Figure 7.1

7.1b and c Possible forms of the
signal outside the observed
period 0 — T.

A message which requires an infinite time to finish isn't of any practical
value. This is because we can't know what information it contains until it
has all arrived! As a result, in practice we can only observe or deal with
signals which have defined �start� and �stop� points. The fact that
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information about a real signal or process can only cover a finite duration
or interval has some important consequences.

Consider the situation illustrated in figure 7.1a. This shows how a
particular analog signal is seen to vary over a time interval, t = 0 to t = T.
(For simplicity we've �switched on the clock� at the start of the observation.
Note that this doesn't affect our conclusions.) Now the only message
information we have is confined to the chosen time interval. Logically,
therefore, we have to accept that if we had looked at the signal for at other
times we might have seen any of the alternatives shown in figure 7.1b, c,
etc. However, the limited information we have doesn't allow us to know
what happened outside our observation. We can, of course, theorise about
what we might have seen if we had observed what was happening at other
times. Provided any hypothesis doesn't conflict with the information we
possess it can be accepted for the purpose of argument. 

The signal we have observed can be described by some specific function of
time, , which is only known when . From the argument
given above we can, in principle, imagine an infinite variety of theoretical
functions, , which are defined so that

p {t } 0 ≤ t ≤ T

p′ {t }
p′ {t } = p {t }  ;  0 ≤ t ≤ T ... (7.1)

 but which allow  to do whatever we like at other times.p′ {t }

Using functions like  or  we can describe the behaviour of a
signal in terms of its variations with time. An alternative method for
describing a signal is to specify its frequency spectrum in terms of some
suitable function, . We can then consider the signal level at any
instant, t, as 

p {t } p′ {t }

S {f }

p {t } = ∑ a n Cos {2πf n t + φn} ... (7.2)

i.e. the signal is regarded as being composed of a series of contributions at
a set of frequencies, . The size of each contribution,  and its phase at
t = 0, , being defined by the value of  at the appropriate frequency,

. (Note that this means that, in general,  must specify two values, an
amplitude and a phase, hence it is most convenient to treat this as a
function which produces a complex result.)

f n a n

φn S {f }
f n S {f }

Clearly the time domain description, , of a signal and its frequency
domain description, , must contain identical information if they are

p {t }
S {f }
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both to specify the same signal or message. The two functions must
therefore be linked in some way. Mathematically, this link can be made
using the technique called Fourier Transformation.

Experience shows that it can be a mistake for a student to read more than
one book which uses Fourier analysis! Comparing one text with another
reveals a host of odd factors of 2, π, etc., which seem to pop up and
disappear without any obvious reason. The most common result of this is
to make most engineering and science students decide to avoid the topic
whenever possible! Unfortunately, Fourier methods are very useful.
Ignoring them is a bit like avoiding using saws when doing woodwork
because you aren't sure which type of saw is best. Since this isn't a maths
book we won't examine Fourier Transforms in detail, but it is worth
making a few comments which may be helpful.

Firstly, we can see from equation 7.2 that to specify the effect of a given
frequency component on a signal we need to have two values. In 7.2. these
were an amplitude, , and a phase, . We could, however, achieve the
same effect in other ways. For example, we could define the same signal in
terms of pairs of values, , in an expression like

a n φn

An  and  Bn

p {t } = ∑  An Cos {2πf n t } + Bn Sin {2πf n t } ... (7.3)

or we could use something like

p {t } = ∑ Real [a n Exp {−j2πf n t + φn}] ... (7.4)

All of these are equivalent ways to achieve the same result, but they alter
the form of the Fourier Transform expressions required to link the time
and frequency domains.

Secondly, the form of the Fourier Transform expressions depends upon
whether we are interested in knowing the power (or amplitude) of the
signal or the total energy it conveys. This affects whether the expressions
have to be multiplied by a factor proportional to  since power = energy
per unit time. Here we will use the type of expression given in 7.3 and
consider the amplitude (e.g. the voltage) of the signals. This determines
the details of the Fourier Integrals we'll use. In fact, we would come to the
same conclusions using any of the other approaches.

1
T
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Sines and cosines are an example of a set of Orthogonal Functions. The
general topic of the properties of orthogonal functions is beyond the
scope of this book. All we have to do is outline some of their basic
properties which are relevant here. In general, a set of functions, ,
which satisfy the integral

Fn {z}

∫
 b

a

Fn {z} Fm {z}  d z = 0   when  n ≠ m ... (7.5)

are said to be �orthogonal over the range a to b�. For the case of sine or
cosine functions we can regard  and  as having two different
angular frequencies, , . If we consult a book of
integrals or a text on the properties of functions we can find that,
provided 

Fn {z} Fm {z}
ωn ≡ 2πf n ωm ≡ 2πf m

n ≠ m

∫
 π

0

Sin {m x } Sin {nx }  d x = ∫
 π

0

Cos {m x } Cos {nx }  d x = 0... (7.6)

where m and n are integers. This is equivalent to saying 

∫
 T

0

Sin {nω0t } Sin {mω0t }  d t = ∫
 T

0

Cos {nω0t } Cos {mω0t }  d t = 0

... (7.7)
where . We can interpret this as defining a �fundamental
frequency', , which can fit one half-cycle into the interval, T. 

ω0 ≡ π /T
f 0 ≡ 1

2T

This orthogonal behaviour is very important for the usefulness of Fourier
analysis. The reason for this can be understood by going back to the signal
we considered at the start of this chapter. This is a signal, , whose
value is known only during the interval, .

p {t }
0 ≤ t ≤ T

As we have seen, we can imagine a variety of functions, , which are
identical to  during this observed interval but behave however we wish
at other times. Provided we always ensure that  during the
signal interval every possible choice of  provides us with exactly the
same information (pattern) during this period as . All these possible
choices are indistinguishable from one another if we only observe this
finite interval. This gives us the freedom to choose any  which is
identical to  during the observed interval. We can therefore select
one which is convenient for the purpose of analysing the signal. There is
nothing to stop us from choosing a form for  which is Periodic � i.e.
one which repeats itself over and over again � with a period equal to the
observed signal's interval, T. This assumption is convenient for the

p′ {t }
p {t }

p′ {t } = p {t }
p′ {t }

p {t }

p′ {t }
p {t }

p′ {t }
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purposes of Fourier analysis. If we assume  is periodic in this way it
will take the form shown in figure 7.1d.

p′ {t }

It should be clear that a signal which repeats itself in this way can only
contain frequencies which are multiples of a fundamental frequency,

(plus, perhaps, a non-zero d.c. level). This is because the
presence of any other frequencies would mean each �cycle� of the periodic
function would differ from its neighbours. We can therefore say that the
function must be of the form

f 0 = 1 / T

p′ {t } = ∑
N

n = 0

An Cos {2πnf 0t } + Bn Sin {2πnf 0t } ... (7.8)

where N represents the highest frequency present and the  values
determine the magnitude and phase of the n th frequency component of
the signal. Note that this expression only contains a d.c. level ( , a
component at the fundamental frequency, , and components at its
harmonic frequencies, . (As  and  the d.c. level
equals .  has no physical meaning.) Since this function is chosen so as
to be indistinguishable from  during the observed period we can
therefore say that  is indistinguishable from

An  Bm

n = 0)
f 0

nf 0 Sin {0} = 0 Cos {0} = 1
A0 B0

p {t }
p {t }

p {t } = ∑
N

n = 0

An Cos {2πnf 0t } + Bn Sin {2πnf 0t } ... (7.9)

during the observed period. The coefficients,  may be obtained
from  using the Fourier integrals,

An  and  Bn

p {t }

An =
2

T ∫
 T

0

p {t } Cos {2πnf 0t }  d t ... (7.10)

Bn =
2

T ∫
 T

0

p {t } Sin {2πnf 0t }  d t ... (7.11)

These expressions represent the Fourier Transform of the known signal,
, and allow us to calculate the signal's frequency spectrum.

(Expressions 7.10 and 7.11 can be seen to be true once we accept that 7.6
and 7.7 are correct. In effect, the above expressions let us �pick out� the
two coefficients we want from  at any chosen frequency, .)

p {t }

p {t } nf 0

From the above arguments it should be clear that we can freely convert
information back and forth between the time domain and the frequency
domain. Given this ability it must be true that the frequency spectrum
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contains the same information as the time-varying signal.

7.2 The Sampling Theorem and signal reconstruction

Any real signal will be transmitted along some form of channel which will
have a finite bandwidth. As a result the received signal's spectrum cannot
contain any frequencies above some maximum value, . However, the
spectrum obtained using the Fourier method described in the previous
section will be characteristic of a signal which repeats after the interval, T.
This means it can be described by a spectrum which only contain the
frequencies, 0 (d.c.), , where N is the largest integer
which satisfies the inequality . As a consequence we can
specify everything we know about the signal spectrum in terms of a d.c.
level plus the amplitudes and phases of just N frequencies � i.e. all the
information we have about the spectrum can be specified by just 2N +1
numbers. Given that no information was lost when we calculated the
spectrum it immediately follows that everything we know about the shape
of the time domain signal pattern could also be specified by just 2N +1
values. 

f m ax

f 0,  2f 0,  3f 0,  � N f 0

N f 0 ≤ f m ax

For a signal whose duration is T  this means that we can represent all of
the signal information by measuring the signal level at 2N +1 points
equally spaced along the signal waveform. If we put the first point at the
start of the message and the final one at its end this means that each
sampled point will be at a distance  from its neighbours. This result is

generally expressed in terms of the Sampling Theorem which can be stated
as: �If a continuous function contains no frequencies higher than  Hz it is
completely determined by its value at a series of points less than  apart.�

1
2f m ax

f m ax
1

2 f m ax

Consider a signal, , which is observed over the time interval,
, and which we know cannot contain any frequencies above

. We can sample this signal to obtain a series of values, x , which
represent the signal level at the instants, , where i  is an integer in
the range 0 to K . (This means there are  samples.) Provided that

, where N is defined as above, we have satisfied the requirements
of the Sampling Theorem. The samples will then contain all of the
information present in the original signal and make up what is called a

p {t }
0 ≤ 0 ≤ T
f m ax i

t i = iT
K

K + 1
K ≥ 2N
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Complete Record of the original.

In fact, the above statement is a fairly �weak� form of the sampling
theorem. We can go on to a stricter form:

�If a continuous function only contains

frequencies within a   bandwidth, B Hertz, it is

completely determined by its value at a series of 

 points spaced less than seconds

apart.�

1 / (2B)

This form of the sampling theorem can be seen to be true by considering
a signal which doesn't contain any frequencies below some lower cut-off
value, . This means the values of  for low n (i.e. low values
of ) will all be zero. This limits the number of spectral components
present in the signal just as the upper limit, , means that there are no
components above . This situation is illustrated in figure 7.2. 
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Spectrum of a band-limited signal of finite length.Figure 7.2

From the above argument a signal of finite length, T, can be described by
a spectrum which only contains frequencies, . If the signal
is restricted to a given bandwidth, , only those

f 0,  2f 0,  � N f 0

B = f m ax − f m in
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components inside the band have non-zero values. Hence we only need to
specify the  values for those components to completely define
the signal. The minimum required sampling rate therefore depends upon
the bandwidth, not the maximum frequency. (Although in cases where
the signal has components down to d.c. the two are essentially the same.)

An  and  Bn

The sampling theorem is of vital importance when processing information
as it means that we can take a series of samples of a continuously varying
signal and use those values to represent the entire signal without any loss
of the available information. These samples can later be used to
reconstruct all of the details of the original signal � even recovering
details of the actual signal pattern �in between� the sampled moments. To
demonstrate this we can show how the original waveform can be
�reconstructed� from a complete set of samples.

The approach used in the previous section to calculate a signal's spectrum
depends upon being able to integrate a continuous analytical function.
Now, however, we need to deal with a set of sampled values instead of a
continuous function. The integrals must be replaced by equivalent
summations. These expressions allow us to calculate a frequency spectrum
(i.e. the appropriate set of  values) from the samples which
contain all of the signal information. The most obvious technique is to
proceed in two steps. Firstly, to take the sample values, , and calculate
the signal's spectrum. Given a series of samples we must use the series
expressions

An  and  Bn

x i

An =
2

K ∑
K

i = 0

x i Cos {2πnf 0t i}       Bn =
2

K ∑
K

i = 0

x i Sin {2πnf 0t i}... (7.12)

to calculate the relevant spectrum values. These are essentially the
equivalent of the integrals, 7.10 and 7.11, which we would use to compute
the spectrum of a continuous function. The second step of this approach
is to use the resulting  and  values in the expressionAn Bn

x {t } = ∑
N

n = 0

An Cos {2πnf 0t } + Bn Sin {2πnf 0t } ... (7.13)

to compute the signal level at any time, t, during the observed period. In
effect, this second step is simply a restatement of the result shown in
expression 7.9. Although this method works, it is computationally
intensive and indirect. This is because it requires us to perform a whole
series of numerical summations to determine the spectrum, followed by
another summation for each  we wish to determine. A morex {t }
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straightforward method can be employed, based upon combining these
operations. Expressions 7.12 and 7.13 can be combined to produce

x {t } =

∑
N

n = 0

2

K ∑
K

i = 0

x i [Cos {2πnf 0t i} Cos {2πnf 0t } + Sin {2πnf 0t i} Sin {2πnf 0t }]

... (7.14)
which, by a fairly involved process of algebraic manipulation, may be
simplified into the form

x {t } = ∑
K

i = 0

x i Sinc {π (t − t i)
∆t } ... (7.15)

where the Sinc function can be defined as

Sinc {z} ≡
Sin {z}

z
... (7.16)

and  is the time interval between successive samples.∆t = T / K

Given a set of samples, , taken at the instants, , we can now use
expression 7.15 to calculate what the signal level would have been at any
time, t, during the sampled signal interval.

x i t i

7.3a Input signal and samples taken.

7.3b Sinc function interpolation from samples.

Signal reconstruction from a series of sampled values.Figure 7.3

samples

Clearly, by using this approach we can calculate the signal value at any
instant by performing a single summation over the sampled values. This
method is therefore rather easier (and less prone to computational



Information and Measurement - 72 - Free PDF version

errors!) than the obvious technique. Figure 7.2 was produced by a BBC
Basic program to demonstrate how easily this method can be used.

Although the explanation given here for the derivation of expression 7.15
is based upon the use of a Fourier technique, the result is a completely
general one. Expression 7.15 can be used to �interpolate' any  given set of
sampled values. The only requirement is that the samples have been
obtained in accordance with the Sampling Theorem and that they do,
indeed, form a complete record. It is important to realise that, under
these circumstances, the recovered waveform is not a �guess' but a reliable
reconstruction of what we would have observed if the original signal had
been measured at these other moments.

Summary

You should now be aware that the information carried by a signal can be
defined either in terms of its Time Domain pattern or its Frequency Domain
spectrum. You should also know that the amount of information in a
continuous analog signal can be specified by a finite number of values.
This result is summarised by the Sampling Theorem which states that we can
collect all the information in a signal by sampling at a rate , where B is
the signal bandwidth. Given this information we can, therefore,
reconstruct the actual shape of the original continuous signal at any
instant �in between� the sampled instants. It should also be clear that this
reconstruction is not a guess but a true reconstruction. 

2B

Questions

1) A single microphone is used to make an analog recording of a song 3
minutes long. The microphone only responds to signals in the 10 Hz to
18 kHz frequency range. How many digital samples are required to
convert all the song's information into a complete digital record? [6·47
million.]

2) A complex signal is digitally recorded for 1 minute. The recorded
information is then used to work out the spectrum of the observed
spectrum. What will be the value of the frequency resolution of the
spectrum we obtain? [1/60th of a Hertz.]
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Chapter 8

The information carrying capacity of a
channel

8.1 Signals look like noise!

One of the most important practical questions which arises when we are
designing and using an information transmission or processing system is,
�What is the Capacity of this system? � i.e. How much information can it
transmit or process in a given time?� We formed a rough idea of how to
answer this question in an earlier chapter. We can now go on to obtain a
more well defined answer by deriving Shannon's Equation. This equation
allows us to precisely determine the information carrying capacity of any
signal channel. 

Consider a signal which is being efficiently communicated (i.e. no
redundancy) in the form of a time-dependent analog voltage, . The
pattern of voltage variations during a specific time interval, T, allows a
receiver to identify which one of a possible set of messages has actually
been sent. At any two moments,  and , during a message the voltage
will be  and . 

V {t }

t 1 t 2

V {t 1} V {t 2}

Using the idea of intersymbol influence we can say that � since there is
no redundancy � the values of  and  will appear to be
independent of one another provided that they're far enough apart (i.e.

) to be worth sampling separately. In effect, we can't tell
what one of the values is just from knowing the other. Of course, for any
specific message, both  and  are determined in advance by
the content of that particular message. But the receiver can't know which
of all the possible messages has arrived until it has arrived. If the receiver
did know in advance which voltage pattern was to be transmitted then the
message itself wouldn't provide any new information! That is because the
receiver wouldn't know any more after its arrival than before. This leads us
to the remarkable conclusion that a signal which is efficiently
communicating information will vary from moment to moment in an
unpredictable, apparently random, manner. An efficient signal looks very
much like random noise!

V {t 1} V {t 2}

|t 1 − t 2| > 1
2B

V {t 1} V {t 2}
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This, of course, is why random noise can produce errors in a received
message. The statistical properties of an efficiently signalled message are
similar to those of random noise. If the signal and noise were obviously
different the receiver could easily separate the noise from the signal and
avoid making any errors.

To detect and correct errors we therefore have to make the real signal less
�noise-like�. This is what we're doing when we use parity bits to add
redundancy to a signal. The redundancy produces predictable
relationships between different sections of the signal pattern. Although
this reduces the system's information carrying efficiency it helps us
distinguish signal details from random noise. Here, however, we're
interested in discovering the maximum possible information carrying
capacity of a system. So we have to avoid any redundancy and allow the
signal to have the �unpredictable� qualities which make it statistically
similar to random noise.

The amount of noise present in a given system can be represented in
terms of its mean noise power

N = V 2
N / R ... (8.1)

where R is the characteristic impedance of the channel or system and
is the rms noise voltage. In a similar manner we can represent a typical
message in terms of its average signal power

V N

S = V 2
S / R ... (8.2)

where  is the signal's rms voltage.V S

A real signal must have a finite power. Hence for a given set of possible
messages there must be some maximum possible power level. This means
that the rms signal voltage is limited to some range. It also means that the
instantaneous signal voltage must be limited and can't be beyond some
specific range, .  A similar argument must also be true for noise. Since
we are assuming that the signal system is efficient we can expect the signal
and noise to have similar statistical properties. This implies that if we
watched the signal or noise for a long while we'd find that their level
fluctuations had the same peak/rms voltage ratio. We can therefore say
that, during a typical message, the noise voltage fluctuations will be
confined to some range

V ′S

±V ′N = ± ηV N ... (8.3)
where the form factor, η, (ratio of peak to rms levels) can be defined from
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the signal's properties as

η ≡
V ′S
V S

... (8.4)

When transmitting signals in the presence of noise we should try to ensure
that S is as large as possible so as to minimise the effects of the noise. We
can therefore expect that an efficient information transmission system will
ensure that, for every typical message, S is almost equal to some maximum
value, . This implies that in such a system, most messages will have a
similar power level. Ideally, every message should have the same,
maximum possible, power level. In fact we can turn this argument on its
head and say that only messages with mean powers similar to this
maximum are �typical�. Those which have much lower powers are unusual
� i.e. rare.

Pm ax

8.2  Shannon's equation

The signal and noise are Uncorrelated � that is, they are not related in any
way which would let us predict one of them from the other.  The total
power obtained, , when combining these uncorrelated, apparently
randomly varying quantities is given by

PT

PT = S + N ... (8.5)
i.e. the typical combined rms voltage, , will be such thatV T

V 2
T = V 2

S + V 2
N ... (8.6)

Since the signal and noise are statistically similar their combination will
have the same form factor value as the signal or noise taken by itself. We
can therefore expect that the combined signal and noise will generally be
confined to a voltage range . ±ηV T

Consider now dividing this range into  bands of equal size. (i.e. each of
these bands will cover .) To provide a different label for
each band we require  symbols or numbers. We can then always indicate

 band the voltage level occupies at any moment in terms of a
unique b-bit binary number. In effect, this process is another way of
describing what happens when we take digital samples with a b-bit analog
to digital convertor working over a total range .

2b

∆V = 2ηV T / 2b

2b

∆Vwhich 

2V T

There is no real point in choosing a value for b which is so large that is
smaller than . This is because the noise will simply tend to randomise

∆V
2ηV N
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the actual voltage by this amount, making any extra bits meaningless. As a
result the maximum number of bits of information we can obtain
regarding the level at any moment will given by

2
b =

V T

V N
... (8.7)

i.e.   

2
b =

V 2
T

V 2
N

= (V 2
N

V 2
N

) + ( V 2
S

V 2
N

) = 1 + (S / N ) ... (8.8)

which can be rearranged to produce

b = Log2 {(1 +
S

N )
1/2} ... (8.9)

If we make M, b-bit measurements of the level in a time, T, then the total
number of bits of information collected will be

H = M b = M . Log2 {(1 +
S

N )
1/2} ... (8.10)

This means the information transmission rate, I, bits per unit time, will be

I = (M

T ) Log2 {(1 +
S

N )
1/2} ... (8.11)

From the Sampling Theorem we can say that, for a channel of bandwidth,
B, the highest practical sampling rate, , at which we can make
independent measurements or samples of a signal will be

M / T

M

T
= 2B ... (8.12)

Combining expressions 8.11 and 8.12 we can therefore conclude that the
maximum information transmission rate, C, will be

C = 2B Log2 {(1 +
S

N )
1/2} = B Log2 {1 +

S

N } ... (8.13)

This expression represents the maximum possible rate of information
transmission through a given channel or system. It provides a
mathematical proof of what we deduced in the first few chapters. The
maximum rate at which we can transmit information is set by the
bandwidth, the signal level, and the noise level. C is therefore called the
channel's information carrying Capacity. Expression 8.13 is called
Shannon's Equation after the first person to derive it.
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8.3 Choosing an efficient transmission system

In many situations we are given a physical channel for information
transmission (a set of wires and amplifiers, radio beams, or whatever) and
have to decide how we can use it most efficiently. This means we have to
assess how well various information transmission systems would make use
of the available channel. To see how this is done we can compare
transmitting information in two possible forms �  as an analog voltage
and a serial binary data stream � and decide which would make the best
use of a given channel.

When doing this it should be remembered that there are a large variety of
ways in which information can be represented. This comparison only tells
us which out of the two we've considered is better. If we really did want to
find the �best possible' we might have to compare quite a few other
methods. For the sake of comparison we will assume that the signal power
at our disposal is the same regardless of whether we choose a digital or an
analog form for the signal. It should be noted, however, that this isn't
always the case and that any variations in available signal power with signal
form will naturally affect the relative merits of the choices.

Noise may be caused by various physical processes, some of which are
under our control to some extent. Here, for simplicity, we will assume that
the only significant noise in the channel is due to unavoidable thermal
noise. Under these conditions the noise power will be

N = kT B ... (8.14)
where T is the physical temperature of the system, and k is Boltzmann's
constant.

Thermal noise has a �white� spectrum � i.e. the noise power spectral
density is the same at all frequencies. Many of the other physical processes
which generate noise also exhibit white spectra. As a consequence we can
often describe the overall noise level of a real system in terms of a Noise
Temperature, T, which is linked to the observed total noise by expression
8.14. The concept of a noise temperature is a convenient one and is used
in many practical situations. Its important to remember, however, that a
noisy system may have a noise temperature of, say, one million Kelvins, yet
have a physical temperature of no more than 20 °C! The noise
temperature isn't the same thing as the �real� temperature. A very noisy
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amplifier doesn't have to glow in the dark or emit X-rays! 

Most real signals begin in an analog form so we can start by considering an
analog signal which we wish to transmit. The highest frequency
component in this signal is at a frequency, W  Hz. The Sampling Theorem
tells us that we would therefore have to take at least 2W samples per
second to convert all the signal information into another form. If we
choose to transmit the signal in analog form we can place a low-pass filter
in front of the receiver which rejects any frequencies above W. This filter
will not stop any of the wanted signal from being received, but rejects any
noise power at frequencies above W. Under these conditions the effective
channel bandwidth will be equal to W and the received noise power, N,
will be equal to . Using Shannon's equation we can say that the
effective capacity of this analog channel will be

kT W

C ana l o g = W Log2 {1 +
S

kT W } ... (8.15)

In order to communicate the same information as a serial string of digital
values we have to be able to transmit two samples of m bits each during the
time required for one cycle at the frequency, W � i.e. we have to transmit
2mW bits per second. The frequencies present in a digitised version of a
signal will depend upon the details of the pattern of �1�s and �0�s. The
highest frequency will, however, be required when we alternate �1's and
�0's. When this happens each pair of �1's and �0's will look like the high
and low halves of a signal whose frequency is mW (not 2mW). Hence the
digital signal will require a channel bandwidth of mW to carry information
at the same rate as the analog version.

Various misconceptions have arisen around the question of the bandwidth
required to send a serial digital signal. The most common of these
amongst students (and a few of their teachers!) are:-

  i) �Since you are sending 2mW bits per second, the required digital bandwidth is
2mW.�

  ii) �Since digital signals are like squarewaves, you have to provide enough
bandwidth to keep the �edges square� so you can tell they're bits, not sinewaves.� 

Neither of the above statements are true. The required signal bandwidth is
determined by how quickly we have to be able to switch level from '1' to '0'
and vice versa. The digital receiver doesn't have to see �square' signals, all
it has to do is decide which of the two possible levels is being presented
during the time allotted for any specific bit.

In order to allow all the digital signal into the receiver whilst rejecting �out
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of band� noise we must now employ a noise-rejecting filter in front of the
receiver which only rejects frequencies above mW. The effective capacity of
this digital channel will then be

C d ig i t a l = mW Log2 {1 +
S

kT m W } ... (8.16)

This shows the capacity of the channel at our disposal if we can set the
bandwidth to the value required to send the data in digital serial form.
Note that this is not the actual rate at which we wish to send data! The
digital data rate is 

I = 2m W ... (8.17)
It will only be possible to transmit the data in digital form if we can satisfy
two conditions:

  i) The channel must actually be able to transmit frequencies up to mW.

  ii) The capacity of the channel must be greater or equal to I.

The digital form of signal will only communicate information at a higher
rate than the analog form if 

I > C ana l o g ... (8.18)
so there is no point in digitising the signal for transmission unless this
inequality is true. The number of bits per sample, m, must therefore be
such that

m > (1

2) Log2 {1 +
S

kT W } ... (8.19)

Otherwise the precision of the digital samples will be worse than the
uncertainty introduced into an analog version of the signal by the channel
noise. As a result, if the digital system is to be better than the analog one,
the number of bits per sample must satisfy 8.19. (Note that this also means
the initial signal has to have a S/N ratio good enough to make it
worthwhile taking m bits per sample!)

Unfortunately, we can't just choose a value for m which is as large as we
would always wish. This is because the data rate, I, cannot exceed the
digital channel capacity, . From 8.16 and 8.17 this is equivalent to
requiring that

C d ig i t a l

2mW ≤ mW Log2 {1 +
S

kT m W } ... (8.20)

i.e.
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m ≤
S

3kT W
... (8.21)

We can therefore conclude that a digitised form of signal will convey more
information than an analog form over the available channel if we can
choose a value for m which simultaneously satisfies conditions 8.19 and
8.21, and the available channel  can carry a bandwidth, mW. If we can't
satisfy these requirements the digital signalling system will be poorer than
the analog one.

8.4 Noise, quantisation, and dither

An unavoidable feature of digital systems is that there must always be a
finite number of bits per sample. This affects the way details of a signal will
be transmitted. 

8.1a Typical input signal

8.1b Quantised and
sampled signal

8.1c Result of applying
‘dithering’ before 
quantisation and sampling

8.1d Filtered version
of dithered samples

The use of ‘dithering’ to overcome quantisation distortion.Figure 8.1

Figure 8.1a represents a typical example of an input analog signal. In this
case the signal was obtained from the function  � i.e.
an exponentially decaying sinewave. Figure 8.1b shows the effect of
converting this into a stream of 4-bit digital samples and communicating
these samples to a receiver which restores the signal into an analog form.
Clearly, figures 8.1a and 8.1b are not identical! The received signal (figure
8.1b) has obviously been Distorted during transmission and is no longer a

Sin {ax } Exp {−b x }
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precise representation of the input. This distortion arises because the
communication system only has 2  = 16 available code symbols or levels to
represent the variations of the input signal. The output of the system is
said to be Quantised. It can only produce one of the sixteen available
possible levels at any instant. The difference between adjacent levels is
called the Quantisation Interval. Any smooth changes in the input become
converted into a �staircase� output whose steps are one quantisation
interval high.

4

This form of distortion is particularly awkward when we are interested in
the small details of a signal. Consider, for example, the low-amplitude
fluctuations of the �tail� of the signal shown in figure 8.1a. These variations
are totally absent from the received signal shown in figure 8.1b. This is
because the digitising system uses the same symbol for all of the levels of
this small tail. As a result we can expect that any details of the signal which
involve level changes smaller than a quantisation interval may be entirely
lost during transmission.

At first sight these quantisation effects seem unavoidable. We can reduce
the severity of the quantisation distortion by increasing the number of bits
per sample. In our 4-bit example the quantisation interval is 1/2  th of the
total range (6·25%). If were to replace this with a Compact Disc standard
system using 16-bit samples the quantisation interval would be reduced to
1/2 th (0.0015%). This reduces the staircase effect, but doesn't banish it
altogether. As a result, small signal details will, it seems, always be lost.
Fortunately, there is a way of dealing with this problem. We can add some
random noise to the signal before it is sampled. Noise which has been
deliberately added in this way to a signal before sampling is called Dither.

4

16

Figure 8.1c shows the kind of received signal we will obtain if some noise is
added to the initial signal before sampling. This noise has the effect of
superimposing a random variation onto the staircase distortion. Figure
8.1d shows the effect of passing the output shown in figure 8.1c through a
filter which smooths away the higher frequencies. This essentially
produces a �moving average' of the received signal plus noise. This
filtering action can be carried out by passing the output from the
receiver's digital-to-analog convertor through a low-pass analog filter (e.g.
a simple RC time constant). Alternatively, filtering can be carried out by
performing some equivalent calculations upon the received digital values
before reconversion into an analog output. This �numerical� approach was
adopted for the example shown in figure 8.1.
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Comparing figures 8.1d and 8.1b we can see that the combination of input
dithering and output filtering can remove the quantisation staircase. We
may therefore conclude that Dithering provides a way to overcome this
form of distortion. It can also (as shown) allow the system to communicate
signal details such as the small �tail� of the waveform which are smaller
than the quantisation. In reality any input signal will already contain some
random noise, however small. In principle therefore we don't need to add
any extra noise if, instead, we can employ an analog-to-digital convertor
(ADC) which produces enough bits per sample to ensure that the
quantisation interval is less than the pre-existing noise level. All that
matters is that the signal presented to the ADC varies randomly by an
amount greater than the quantisation interval. In principle, the amount of
information communicated is not significantly altered by using dithering.
However, the form of information loss changes from a �hard� staircase
distortion loss to a �gentle� superimposed random noise which is often
more acceptable � for example, in audio systems, where the human ear is
less annoyed by random noise than periodic distortions. The ability of
dithered systems to respond to tiny signals well below the quantisation
level is also useful in many circumstances. Hence dither is widely used
when signals are digitised. 

From a practical point of view using random noise in this way is quite
useful. Most of the time engineers and scientists want to reduce the noise
level in order to make more accurate measurements. Noise is usually
regarded as an enemy by information engineers. However when digitising
analog signals we want a given amount of noise to avoid quantisation
effects. The noise allows us to detect small signal details by averaging over
a number of samples. Without the noise these details would be lost since
small changes in the input signal level would leave the output unchanged. 

In fact, the use of dither noise in this way is a special case of a more
general rule. Consider as an example a situation where you are using a 3-
digit Digital VoltMeter (DVM) to measure a d.c. voltage. In the absence of
any noise you get a steady reading, something like 1·29 V, say. No matter
how long you stare at the DVM, the value remains the same. In this
situation, if you want a more accurate measurement you may have to get a
more expensive DVM which shows more digits! However, if there is a large
enough amount of random noise superimposed on the d.c. you'll see the
DVM reading vary from time to time. If you now regularly note the DVM
reading you'll get some sequence like, 1·29, 1·28, 1·29, 1·27, 1·26, 1·29,
etc... Having collected enough measurements you can now add up all the
readings and take their average. This can provide a more accurate result
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than the steady 1·29 V you'd get from a steady level in the absence of any
noise.

We'll be looking at the use of Signal Averaging in more detail in a later
chapter. Here we need only note that, for averaging to work, we must have
a random level fluctuation which is at least a little larger than the
quantisation interval. In the case of the 3-digit DVM  the quantisation level
is the smallest voltage change which alters the reading � i.e. 0·01 Volts in
this example. In the case of the 4-bit analog to digital/digital to analog
system considered earlier it is  of the total range. Although the
details of the two examples differ, the basic usefulness of dither and
averaging remains the same.

1 / 24

Summary

You should now know that an efficient (i.e. no redundancy or repetition)
signal provides information because its form is unpredictable in advance.
This means that its statistical properties are the same as random noise.
You should also now know how to use Shannon's Equation to determine the
information carrying capacity of a channel and decide whether a digital or
analog system makes the best use of a given channel. You should now
know how quantisation distortion arises. It should also be clear that a
properly dithered digital information system can provide an output signal
which looks just like an analog �signal plus noise� output without any signs
of quantisation.

Questions

1) Explain what we mean by the Capacity of an information carrying
channel. A channel carries a signal whose maximum possible peak-to-peak
voltage is  V and has a peak-to-peak noise voltage,  V.
The bandwidth of the channel is  kHz. Derive Shannon's Equation
and use it to calculate the value of the channel's capacity. [199,314 bits/
second.]

V S = 1 V N = 0·001
B = 10

2) Explain what we mean by the Noise Temperature of a system. A channel
has a bandwidth of 100 kHz and is used to carry a serial digital signal. The
signal is produced by an 8-bit analog to digital convertor fed by an analog
input. How many samples per second can the system carry? The signal
power level is 1 µW. What is the highest noise temperature value which
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would still let the system carry the digital signal successfully? [25,000
samples/second. 2·4×1011 K.]

3) Using the same channel as above, what is the highest noise temperature
which would be acceptable if the channel were used to carry the
information in its original analog form? [8·8×107 K.]

4) Explain what we mean by the term Dither and say how it can be used to
overcome Quantisation Distortion effects.
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Chapter 9

The CD player as an information channel

9.1 The CD as an information channel

The next few chapters use the example of the CD audio system to show
some of the basic properties of instruments used to gather and process
information. CD has been selected for various reasons. It provides an
excellent example of many digital data processing methods and allows us
to explore the relationship between signals held in equivalent analog and
digital forms. Both the source information gathering (i.e. the recording
studio, etc.) and the information replay system (the CD player) can be
used to illustrate a variety of highly effective measurement and
information processing techniques. The CD system can also be
simultaneously regarded as:

 i) A measurement system, collecting audio information.

ii) A signal processing system.

 iii) An information communication channel/storage system.

The decision to choose CD for close examination is also based upon the
thought that most science and engineering students will have a CD player
and will be interested in understanding how it works.

Usually, texts on information theory tend to concentrate on systems where
an information source and a receiver are directly connected by some
channel. Information is then communicated through the channel in Real
Time. Arrangements which store information for recovery at a later time
can also be considered as communication systems. In general, the ideas
and techniques of information theory can be applied equally well to both
real time and stored or �delayed� messages. The disc recording process
then becomes an information transmitter or source. The CD player is a
form of information �receiver�, and the disc itself is an information
�channel�.

When designing or choosing any information transmission system we must
start by defining the properties of the signals we wish it to carry.  The
Compact Disc has to communicate two channels of Audio information,
recorded in a form which can be used to reconstruct a Stereo soundfield.
As with most human forms of communication the actual requirements
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would vary from one case to another. For example, some people can hear
sounds at frequencies well above 20 kHz whereas others cannot hear
14 kHz. As a result there is not an �obviously correct� choice for the
required signal bandwidth. We will not consider whether a �better�
specification for the CD system would have produced an audible
improvement. We shall simply examine the system as it has been
implemented.

The CD system has been based upon the assumption that high fidelity
sound reproduction requires a uniform frequency response from below
10 Hz to above 20 kHz and a dynamic range of more than 90 dB. This led
to the decision to sample each of the stereo channels (left and right)
44,100 times per second, and to take 16-bit digital samples.

Typical input
signal (+ dither/noise).

Low-pass

Low-pass

filter.

filter.

Digital
Encode

Digital data

Compact Disc

Low-pass
filter Digital

Decoder
(MHz)

(22kHz)

(22kHz)

stream recorded

Digital data
stream read

Compact Disc

Recovered output
signal

Compact Disc Recording process

Compact Disc Replay
(Signal "Receiver")

(Signal "Transmitter")

Compact Disc as a data communications channel.Figure 9.1

Receiver
Noise

Using 16-bit words, the ratio of the largest possible signal (which does not
go out of range) to the quantisation interval is 1:2  = 1:65,536. This
voltage ratio is equivalent to a power ratio of 96·3 dB, so we can expect the
dynamic range of the CD system to be of this order. The input to a CD
digital recording system is normally dithered in order to suppress
quantisation distortion. From the sampling theorem we can expect that
the chosen sampling rate will allow frequencies up to 44.1/2 = 22·05 kHz
to be recorded and replayed.

16
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If we could be certain that the input signal would never contain any
components at frequencies above 22·05 kHz we could simply amplify the
initial stereo signals to an appropriate level and present them to a pair of
analog to digital convertors (ADCs) to obtain the required stream of
digital samples. Unfortunately human speech and music does occasionally
contain components at nominally inaudible frequencies well above 20
kHz. If these are allowed to reach the ADCs they will produce a
particularly severe form of anharmonic signal distortion called Aliasing.
This problem can be understood by considering the situation illustrated
in figure 9.2.

Figure 9·2 Demonstration that the same set of sampled values
can be produced by different input signals of distinct frequencies.

Sampling
Interval
0·2 Sec.

Sampled points

1 Hz

4 Hz

For the sake of example, the illustration shows the results of sampling an
input 4 Hz sinewave every 0·2 seconds (i.e. the sampling rate is 5 Hz).
Looking at the figure we can see that an input 1 Hz sinewave could have
produced exactly the same sample values as the 4 Hz wave.  When the
samples are presented to a Digital to Analog Convertor (DAC) for
reconversion back into an analog waveform the result will be an output
which looks identical to what we would get if the original input had been
at 1 Hz. The 4 Hz input is said to be an alias of a 1 Hz input since it
produces exactly the same output.

This aliasing effect gives us a serious problem if the input signal is allowed
to contain frequency components at both 1 Hz and 4 Hz. The problem
arises because we have not obeyed the sampling theorem. In order to pass
1 Hz � 4 Hz the input signal bandwidth must be at least  Hz. To
satisfy the sampling theorem we would therefore have to take at least 6

4 − 1 = 3
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samples per second � i.e. use a sampling rate of 6 Hz. The 5 Hz rate
being used simply isn't enough to provide all the information needed to
recognise whether the input was at 1 Hz or 4 Hz. Unless we take steps to
avoid it, aliasing can, therefore, produce significant signal Distortions
causing the output to be very different from the input.

In fact the situation is even worse than the above implies. This is because
the same set of samples could have been produced by an input signal at 6
Hz, or 9 Hz, or 11 Hz, or� When using a sampling rate, , a frequency
component at any frequency,,

f r

f ′ =
nf r

2
± f ... (9.1)

where n is any integer will produce a set of sampled values which are
indistinguishable from those which would be produced by the signal
frequency, f. 

A CD player uses a sampling rate of 44.1 kHz, not 5 Hz, so it isn't likely to
have trouble telling the difference between 1 Hz and 5 Hz! However, it
will have problems if it is presented with input signal frequencies equal to
or above 22·05 kHz. In order to avoid this possible source of signal
distortion it is vital to use a pair of low-pass filters and stop frequencies

 kHz from reaching the ADCs used to encode the CD audio
signals.
≥ 22·05

9.2 The CD encoding process

For the CD system we can define, m = 16, to be the number of bits per
sample and,  = 44,100, to be the number of samples per second taken of
each of the two stereo signals. The required information transmission
rate, I, is therefore

f r

I = 2f r m = 1,411,200  bits/sec ... (9.2)
where the 2 is required because we wish to send stereo information. We
therefore require a channel whose capacity, C, is at least 1·4112 Mbits/s.
To send this information as a serial binary data stream we need a channel
bandwidth, . To minimise the effects of noise without losing any
signal we should employ another low-pass filter to restrict the bandwidth
entering the receiver (the CD's decoder circuits) to 

B ≥ I / 2

B =
I

2
= 705·6  kHz ... (9.3)
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(A bigger bandwidth passes more noise. A smaller one cuts off some
signal.)

We can now apply Shannon's equation to say that, for a channel noise
level of kT per unit of bandwidth, the signal power, S, needed for
information to be successfully communicated will be such that

B Log2 {1 +
S

kT B } ≥ I ... (9.4)

Combining 9.3 and 9.4 we can say that the required signal power will be

S ≥ 3kT B ... (9.5)
Note that S increases with B. This is because the noise power entering the
receiver increases with the bandwidth. 

Consider now what would happen if we tried to employ the same channel
to transmit just one of the pair of stereo signals in analog form. For the
sake of comparison we can assume that the maximum signal power
available for analog transmission is the same as the amount, 3kTB, which
would be just enough for the digital system to work. The receiver filter
could be altered to restrict the received signal bandwidth to a value, W =
22·05 kHz. This would then produce a signal to noise ratio of

( S

N )
ana l o g

=
3kT B

kT W
... (9.6)

i.e.

( S

N )
ana l o g

=
3B

W
... (9.7)

Given B = 705.6 kHz and W = 22.05 kHz, the analog system will provide a
maximum S/N ratio (i.e. a dynamic range) of 3B/W = 96 (19.8dB). The
CD system employs 16-bit samples and can provide a dynamic range of
about 95dB � i.e. 75dB better! This comparison shows that an analog
signal can get through a smaller channel bandwidth, but it is much more
susceptible to noise than a digital signal.

On the basis of the figures given above we can expect that a CD lasting 60
minutes will have to store 1·4112 × 60 × 60 = 5,080 Mbits. In fact, CDs
employ a powerful error detection and correction system � i.e. the codes
used include some redundancy. Although the amount of information on a
60 minute CD remains around 5 Gbits, the number of recorded bits is
much greater. This means that the rate at which data bits are read from
the disc (and the receiver's channel bandwidth, B) must be somewhat
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higher than we've assumed.

The encoding scheme employed for CD is quite complex. Fortunately we
only need to consider its main elements to appreciate how the basic
concepts of information theory have been applied. The explanation given
here is based upon information provided by Philips (who developed the
CD system along with Sony) in a special issue of the Philips Technical Review
(Vol. 40(6) 1982). 

Figure 9.3 represents the CD encoding/recording system. The input data
is initially sampled in the form of a stream of 16-bit digital words. These
words are collected into Frames of 6 consecutive left/right pairs of digital
samples. One frame therefore contains 192 audio bits which are then
treated as a set of 24, 8-bit, Audio Symbols.

1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0

1 0 1 1 0 0 1 1

1 0 0 0 0 1 0 0 1 0 0 0 1 0 x x x+

+

Input data stream of 8-bit bytes.
(Two bytes per 16-bit audio sample.)

One of 24 8-bit bytes.Frame

Cross-Interleaving

Parity bits Parity bits

Eight-to-fourteen conversion

C&D

Sync. bits

Data Bit stream

Channel Bit stream

3 Merging bits

Compact Disc data encoding system.Figure 9.3

These audio symbols are rearranged and some extra parity symbols are
generated using an encoding scheme called a Cross Interleaved Reed-Solomon
Code or CIRC. For our purposes it is sufficient to recognise that CIRC is a
type of block code which generates a specific pattern of parity bits. CIRC
also Interleaves or �rearranges� the sequence of the data bits. The
interleaving process is designed to minimise the effects of momentary data
losses. Some extra Control and Data bits are also added at this stage. These
contain extra information � for example track numbers and running
time � which are of use to the CD player. The result of the CIRC
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encoding stage is to convert each frame from 24 audio symbols into 33
data symbols (each 8-bit, as before, giving a new total of 264 data bits).
The parity bits provide some of the required ability to detect and correct
random errors. 

In practice, much of the data loss when replaying a CD occurs in brief
Bursts  when the player encounters a hole, or a piece of dirt, or when
vibration causes the laser to momentarily miss tracking the data. This
causes a series of successive data bits to be lost, sometimes lasting for a
number of symbols. Interleaving or shuffling the symbols before recording
(and de-interleaving them on replay) helps prevent successive audio
symbols from being lost. It also �spreads out� the data and parity bits to
reduce the chance that both a given symbol and its associated parity bits
will be lost. This interleaving process covers up to 28 frames and as a
result, information from any pair of adjacent audio samples will usually be
spaced some considerable distance apart on the actual CD. The usefulness
of this interleaving process can be understood by considering the analogy
of a piece of paper upon which a message has been typed. In the process
of being passed to the person who wants to read it, the paper is attacked
by a dog which tears it and eats a piece. As a result, when the message is
read about 5% of the text is missing � perhaps because the last few lines
have been torn off. It is likely that any information which was contained by
the missing lines is lost (inside the dog!). 

If the letters of the text had been typed onto the paper in a �scrambled�
order it would be possible to re-arrange the received text back into a
message where occasional words would have a missing letter. (Of course,
in order to do this the scrambling process must not be a random one as
the person receiving the message has to know how to unscramble the text
correctly.) The result would probably be a readable message despite the
loss of letters from some words. This is because of the natural redundancy
of the English language which lets us make sense of text even when there
are mistakes. The CIRC encoding process works in a similar way. Parity
bits are used to add some redundancy, and the message is interleaved
(scrambled) so that any brief breaks in the data stream should only cause
single-bit losses is some samples. These can then usually be corrected
because of the redundancy.

Following CIRC encoding each of the 8-bit data symbols is translated into
a 14-bit Channel Symbol and an extra three Merging Bits are tacked onto the
end of these 14. For obvious reasons Philips refer to this process as Eight to
Fourteen Modulation (EFM). At the end of the frame of channel symbols
another 27 Synchronisation Bits are added to make a total of 588 channel
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bits per frame. The sync bits are a unique pattern which the CD player
uses to locate the beginning of each data frame. The bits are then
recorded as a sequence of Pits cut into the disc. Those parts of the disc
surface where no pit has been formed are referred to as the Land. The
recording is not made on the simple basis that �1�=�pit� and �0�=�land� (or
vice versa). Instead a �1� represents the transition or edge between pit and
land. A �0� means �continue as before� and �1� means �change from pit to
land, or land to pit�.

The specific choice of which 14-bit channel symbol should represent each
8-bit data symbol has been made so as to try and satisfy a number of
requirements. Firstly, a set of 14-bit codes has been selected whose
patterns provide the largest possible Minimum Hamming Distance between
adjacent codes. This helps the CD player recognise and correct occasional
random bit-errors in the recovered data stream. There are 2  = 16,384
possible choices of 14-bit channel symbols of which only 2  = 256 are
required. We can therefore surround each legal pattern with 64 illegal
ones.

14

8

Starting with an m-bit symbol, there are m ways of changing one bit to
produce a new symbol. Any one of these new symbols could also be
altered in m  different ways by a second bit-change. However, this doesn't
mean that we can produce different symbols by changing two bits since
the second change will sometimes simply undo the first. Consider a typical
initial 8-bit digital symbol, . For this example, m  equals eight, so
there are eight ways a one-bit change can produce a new symbol;

, , , etc. (Here, the �~� above a character
indicates that particular bit has been changed.) Symbols with two changes
will be , , ,� , ,� etc.
If we count up the numbers of symbols, , which differ from the
one we started with by q bits, we find that

m 2

ab c d e f gh

a~b c d e f gh  ab
~

c d e f gh ab c~d e f gh

a~b
~

c d e f gh a~b c~d e f gh a~b c d
~

e f gh ab
~

c~d e f gh ab
~

c d
~

e f gh
C {m , q }

C {m , q } =
m !

(m − q )! q !
... (9.8)

As a result, if we allow up to Q bits of a symbol to change we can produce

N {m , Q } = ∑
Q

q = 1

m !

(m − q )! q !
... (9.9)

new symbols which differ from the starting symbol by no more than Q bits.
Now  and , hence, given that we can
typically surround each legal 14-bit symbol with 64 illegal ones, we can

N {14,1} = 14 N {14,2} = 105
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expect to be able to use EFM to correct any single-bit errors and most
double-bit ones.

The second factor which influenced the choice of 14-bit symbols was the
decision to limit the maximum and minimum number of �0�s which can
appear between successive �1�s of the recorded bit stream. This sets a
maximum and minimum distance between successive pit�land edges on
the disc. (Remember that a �1� is recorded as a pit�land edge.) The codes
chosen for CD recording ensure that there are always at least two �0�s, and
not more than ten, in between successive �1�s. However, one symbol which
finishes with a �1� may still need to be followed with another which begins
with a �1�. The pair of symbols would then �clash�, violating the
requirement for more than two zeros between any pair of �1�s. This
problem is overcome by the inclusion of three extra merging bits in
between successive symbols. Now we can simply place three zeros in
between symbols whenever we need to avoid a clash.

The symbols and merging bit patterns are also chosen to ensure that, on
average, the encoded disc appears to the player as consisting of 50% land
and 50% pit. This helps the servo control system in the CD player to
correctly focus the laser spot it uses to read the recorded data.

Finally, the symbols and merging bits are chosen so as to produce a strong
component in the recorded signal spectrum at a predetermined
frequency. This provides a clock reference signal for the CD player. The
player can compare a filtered version of the recovered signal with a crystal
oscillator and use this to adjust the disc rotation velocity.

The encoding process converts an initial 192 bit frame into a recorded
frame of 588 bits. The number of channel bits recorded on a 60 minute
CD is, therefore, around 15·5 Gbits and the channel bit rate will be 4·32
Mb/s. This means that the actual channel bandwidth required must be
over 2·16 MHz, not 0·7 MHz.

The ability of the CD system to withstand errors and disc or replay
imperfections may be summarized in terms of four standard measures.

i) Maximum Completely Correctable Burst Length. (MCL)

= 4,000 data bits (2·5 mm of track length on disc.) This means that
gaps or holes up to 2·5 mm across in an otherwise perfect disc should not
lead to any loss of audio information. This indicates the power of the
combination of the parity bits plus eight-to-fourteen modulation to correct
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the loss of a large number of successive channel bits. 

ii) Maximum Interpolatable Burst Length.  (MIL)

= 12,000 data bits (7·7 mm track length.) Once the MCL has been
exceeded some data will become lost. The interleaving process is,
however, designed to ensure that no two adjacent audio sample values will
be lost until over 12,000 successive channel bits have become unreadable.
The player can �interpolate� the lost data samples.

The values for MCL and MIL quoted above assume that there are no other
imperfections or random errors �near� (i.e. within 28 frames) the error
burst. A high random Bit Error Rate (BER) will degrade the above values.
The effects of a given random bit error rate can be indicated by

Sample Interpolation Rate. 

1 per 10 hours at a BER = 0·0001

1000 per minute at a BER = 0·001

This represents how often random bit errors conspire to overcome the
error protection and make a sample value unrecoverable. When this
happens the CD player can respond by interpolating the lost value from
the adjacent samples. The rapid change in the interpolation rate with BER
indicates a general property of digitised data communication. Given a
reasonable degree of redundancy, a low level of random errors has almost
no effect upon data reception. However, above some particular
�threshold� level the information loss rises dramatically with bit error rate. 

Undetected Error Rate.

Less than 1 per 750 hours at a BER = 0·001

�Negligible� at a BER = 0·0001

This represents the frequency of undetected sample errors, i.e. the
random noise produces a legal symbol and the required, equivalent,
parity, which is not identical to that recorded. When this happens the CD
player can't know that the recovered value is, in fact, wrong and an
audible �click� may result.

Summary

You should now know about the problem of Aliasing and how it can be
prevented by using a filter before a signal is sampled. It should also be
clear that � given enough bandwidth � a digital system can obtain a
higher dynamic range than analog from a noisy channel. It should also be
clear that the combination of a block-parity code (e.g. CIRC) and data
Interleaving provides good protection against data loss due to random
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noise and burst errors due to missing channel data (soup on the CD!).
You should also now know how the pattern of pits on a CD is calculated
from the input signals.

Questions

1) Give an outline explanation of how a CD system encodes musical
information into digital form and records it on a disc. Include an
explanation of how the CD system protects information against random
errors.

2) The CD system uses 16 bit samples and a Sampling Rate of 44,100
samples/second. What Dynamic Range and Bandwidth should this provide?
How many bits of audio information will a 1 hour CD contain? [96·3 dB.
5·08 GBits.]

3) Explain what is meant by the term Aliasing and say what we must do to
prevent it happening.
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Chapter 10

The CD player as a measurement system

The CD player has to recover information from a spiral track of small pits
which have been formed at a nominal Information Layer inside a compact
disc. Unlike the old-fashioned vinyl (or shellac!) analog recordings, the
CD does not have a �continuous' groove and the optical sensor should
never touch the disc. Hence the CD player must locate the required
information without any mechanical guidance about where the data is to
be found. Figure 10.1 illustrates the form of a typical CD surface and the
optical beam used to read data from the disc.

0  0  1  0  0  0  0  1  0  0  1  0  0  0  0  0  1  0  0  0  0

Disc rotationpits
Laser
Spot

Spiral
pitch

Channel bit stream

Replay of CD pit−land pattern.Figure 10.1

Information is recorded on the surface of a CD in the form of a spiral
track of pits, and is read using a laser whose wavelength is around 0·7 µm.
The spiral pitch (distance between adjacent turns) is 1·6 µm and the disc
is rotated so that the position illuminated by the laser spot moves at a
constant linear velocity of 1·25 m/s. 

Analog disc recordings were normally made at a constant angular velocity.
This means that they can be replayed by rotating them at a steady rate.
CDs use a constant linear recording velocity in order to maximise the
amount of information which can be squeezed onto a given disc diameter.
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This means that the angular rate of rotation required to play a CD varies
as the disc is played. Unlike most analog discs, CDs are recorded �from the
middle, outwards�. The optical sensor used to recover data starts near the
middle of the CD with the CD being rotated relatively quickly. As the
music plays the sensor moves outwards and the rotational rate is reduced. 

CDs can be manufactured in various ways. Many of the first discs were
made using photochemical techniques. A light sensitive chemical was
coated onto the surface of a disc of plastic. The required pit�land pattern
was then �photographed� onto the disc. The details of this pattern were
then etched using appropriate chemicals. More recently, faster, cheaper
methods have been developed. For example, many modern discs are
produced by Injection Moulding � forcing plastic into a metal mould, one
wall of which holds a �negative� version of the required pattern of pits and
land. The patterned plastic surface is coated with a thin layer of metal
(usually aluminium, but some expensive CDs use gold instead) to make it
highly reflective. This is then covered with a protective top coating of
transparent plastic.

When using electromagnetic radiation to observe small-scale features, we
wouldn't normally expect to be able to measure anything whose size is
significantly smaller than the chosen wavelength. In the case of a CD the
required bit recovery rate is 4·32 Mbits/s and the the disc velocity is 1·25
m/s. This implies that each bit occupies a track length of just 0·29 µm �
i.e. less than half the laser's wavelength! A number of factors help CD
players to recover information from such a closely packed surface pattern.

• Firstly, the laser beam is tightly focused to produce a spot whose
nominal diameter is typically around 1 µm. This requires an optical
system of very high quality.

• Secondly, the encoding system is designed to help the laser sense the
surface features. Every stretch of pit or land will be at least 3 bits long.
This is a result of the coding requirements that; i) there must always
be at least 2 zeros between adjacent ones; ii) pit�land edges represent
encoded 1's. This means that pit�land edges will always be at least 0·87
µm apart � i.e. the length of each pit or land feature will always be
comparable with the laser wavelength. This means it is possible to
ensure that the laser spot will never illuminate more than a single
edge at a time.

• Thirdly, the optical system employs a highly coherent light source
and the pits are made approximately a quarter-wavelength deep. The
readout beam axis is nominally aligned to be perpendicular to the
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disc plane. When there are no pit�land edges in the spot, all of the
reflected beam will share the same phase. The phase of the reflected
beam will, however, change by 180 degrees when the spot moves from
pit to land, or vice versa. 

When the optical spot traverses a pit�land edge the magnitude of the
beam reflected back into the sensor optics will momentarily dip almost to
zero. The reason for this can be understood by considering what happens
if half the spot energy falls upon land, and half into a pit. The reflected
beam then consists of two portions, equal in magnitude but opposite in
phase. As a consequence the total energy coupled back into the sensor
beam would be zero. Of course, the �missing� energy does not just vanish,
instead it is scattered in some other direction, away from the sensor beam.

Laser

Sensor

Quarter-Wave
Plate

Information layer

Polarising
Prism

Objective Lens
& focus drive

Typical CD replay optical system.Figure 10.2

Although the details vary a great deal from one manufacturer to another,
most players use variations on the system illustrated in figure 10.2. In
principle it would be better to employ some form of Michelson Interferometer
with a pair of detectors. This would enable the player to measure the
phase of the reflected signal as well as its amplitude and distinguish pits
from land. This would improve the S/N ratio achievable with a given laser
power level. However � as will become clear later � the player's optical
system is invariably much more complex than implied by figure 10.2. The
extra complexity is to allow for the chosen focusing/tracking
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arrangements. The use of a full interferometer system would require a
further increase in player complexity. Fortunately, poor signal to noise
ratio need not be a problem with CD players as the manufacturer can
generally obtain solid state laser sources which provide ample power
levels. Hence the use of a full phase interferometer system isn't usually
regarded as necessary. (Although doubtless some manufacturer will
eventually make it's inclusion a �selling point�!)

The system illustrated relies upon detecting the momentary dips in the
observed reflected light level which occur at the pit�land edges. Laser
light is focused onto the disc information layer via a polarisation prism
and a quarter-wave plate. Since this isn't a book on optics we don't have to
get into an explanation of just how these items work. For our purposes it's
enough to know that a polarisation prism will transmit light with one
plane polarisation and reflect light polarised at 90 degrees to the
transmission plane. The quarter-wave plate alters the polarisation state of
light passing through it. As a result, the light reflected back from the disc
is directed onto a sensor, not returned to the laser.

In practice we may find that the reflected energy is not divided exactly
50:50 at the pit edges. The pit depths may also not be exactly a quarter
wavelength. This means that the magnitude of the sensed reflection may
not dip right down to zero. Despite this practical problem, the power of
the replay laser is normally so large that we can obtain a high enough S/N
ratio to determine the locations of pit�land edges with an uncertainty
considerably smaller than a wavelength.

When the system is working correctly, the laser spot is focused on the
information layer which sits in the nominal information layer of the disc
surface. (This layer can be defined to be mid-way between the land and pit
bottom planes.) Light reflected by the disc will return through the system
and be refocused at the required output plane, just in front of the signal
detector (or detectors). 

Any fluctuations in the distance from the objective lens to the information
layer will have two undesirable effects. The beam size at the information
plane will become larger, and the output focal spot will shift along the
beam axis away from its required position. The CD player must, therefore,
be able to continuously adjust the objective lens position to maintain its
position at the correct distance from the disc. It must also ensure that the
spot tracks the spiral pattern of pits.
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Since there is no physical contact, the CD optical sensor system must itself
provide signals which can be used to continuously adjust its position
relative to the disc with sub-micron accuracy � even when playing a disc
which is warped or rotating off centre by over a hundred times this
amount. It must also provide a measurement of tracking velocity with
enough accuracy to enable the player to vary the disc rotation rate and
collect audio data with a channel bandwidth of over 2 MHz. The CD
player must therefore contain a highly accurate and responsive position/
velocity measurement system.

+

+

+
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-

-

Knife Edge Focus Method Dual Prism Focus Method

“Long” focus  —  -ve output

Correct focus  —  no net output

“Short” focus  —  +ve output

“Long” focus

Correct focus

“Short” focus

output output 

CD spot focus mechanisms.Figure 10.3
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CD player manufacturers have used a variety of techniques to control the
optical recovery of information and position the sensor correctly. For the
sake of illustration we can examine four techniques:

i) dual-prism focusing ii) knife-edge focusing

iii) three-spot tracking iv) dither tracking

Figure 10.3 shows the focusing methods we are considering. In each case
the output light level is detected by using more than one sensor. The
systems are arranged so that any alteration in objective-disc spacing alters
the relative levels seen at the sensors. In the Knife-Edge system, an opaque
edge is placed near the output focal spot. This stops some of the light
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from reaching a pair of sensors placed a little further along the beam.

When focused correctly, the output focal spot rests near to the knife-edge
and the amounts of light reaching each sensor of the pair of output
sensors,  and , are reduced by similar amounts. Any change in the
objective-disc spacing will shift the output focal plane along the beam,
producing an imbalance in the amounts of light blockage experienced by
each sensor.

S 1 S 2

The output voltages produced by the pair of sensors can be monitored by
the CD player. The sum of their voltages,  , can be used to provide
audio information. Any difference,  , in their voltages can be used
to indicate a focusing error. The sign of this difference voltage indicates
the direction of the error. When this difference output is zero the system
is ideally focused

S 1 + S 2

S 1 − S 2

The Dual-Prism system employs a pair of prisms placed in front of three
light sensors. The prisms slightly alter the convergence of the beam,
changing the relative levels falling upon three output sensors. The size of
the effect of the prisms depends upon the position of the focal plane of
the incident beam relative to the prism. As with the knife-edge system, we
can use the sum of all the sensor voltages,  , to obtain audio
information. The difference,  , between the central sensor
and the surrounding ones can be used to indicate any focusing error. As
with the knife-edge system a zero difference output indicates when the
system is ideally focused. When this happens we can expect about half the
light power to be falling on the central detector, , and the other half on
the outer pair. This means that about a quarter of the total falls on each of

 and . A focus error in one direction will cause  to rise and
to fall. An error in the other direction has the opposite effect. Hence, as
with the knife-edge system, the sign of the difference output indicates the
direction of the error.

C + S 1 + S 2

C − (S 1 + S 2)

C

S 1 S 2 C S 1 + S 2

However the focusing information is gathered it provides the player with a
focus control signal whose magnitude and sign depend upon the amount
(and direction) by which the objective-disc spacing differs from the
required value. This signal is then amplified and used to drive a motor
which changes the objective lens position so as to reduce the error. The
overall system acts as a form of Servo Control Loop to maintain the required
focus. 
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Figure 10.4 shows the Three�Spot method for obtaining tracking
measurements. In this system the laser beam is diffracted so as to produce
three spots focused on the information layer of the disc. The power
reflected at each spot is directed onto a separate light sensor. The spots
are arranged to lie in a line at a slight angle to the nominal direction of
the information spiral. As a result, when the centre spot is correctly
aligned the front and back spots only partly illuminate the spiral.

Center Spot “on track”

Center Spot “off track”

Three−spot spiral tracking system.Figure 10.4

The CD player monitors the relative levels of light modulation recovered
by all three of the spot sensors. When the system is tracking ideally, the
centre spot will give a relatively large modulation output. When the spots
are slightly off-track the output from either the front or back spot will
increase and that from the centre one will fall. The difference in levels
between the front and back spot sensors can therefore be used to obtain a
measure of any tracking error. As with focusing, any difference signal can
be amplified and used to adjust the position of the objective lens so as to
maintain good tracking.

A disadvantage of this system is that only about one third of the available
laser power will be used to obtain the required audio information. In
principle, the player could recover audio information from all three spot
sensors. A problem with attempting this is that the spots are looking at
different places along the spiral track, and hence at any moment they are
recovering different portions of the recorded data. The spots could, if we
wished, be placed �side by side� to overcome this problem, but they would
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then be physically overlapping and � as a result � the sensors would be
more likely to see light coming from the �wrong� spots. 

The Dither Tracking technique makes a single spot do the work of three by
forcing the spot to hunt back and forth across the spiral track. This can be
achieved by vibrating the objective lens from side to side a very small
amount, or by reflecting the laser-sensor beam off a mirror surface whose
angle is vibrated. Typical systems employ a sinusoidal modulation with a
frequency of a few hundred Hertz. The magnitude of the oscillation is
very small and should only move the spot at the disc information layer by a
fraction of a micron.

Track direction

Dither
Modulation

Spot

Output signal

On track

Left of track

Right of track

Using spot 'dither' to obtain tracking information.Figure 10.5

The effect of this deliberate modulation is shown in figure 10.5. The
output signal mainly consists of a complex signal with frequency
components in the MHz range. When the system is tracking correctly, the
dither produces a slight amplitude modulation of this signal at twice the
dither frequency. Any tracking error will change the shape of this
modulation, producing a shape which contains a component at the dither
frequency.

In an earlier chapter we saw that the digital signal recorded on the CD
requires a channel frequency range up to at least 2·15 MHz to cope with
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the required bit-rate. One of the conditions used to select the coding
system was that there should never be more than ten �0�s between any
successive pair of �1�s in the data stream. This means that the frequency
spectrum of the digital signal won't contain any significant frequency
components below about 2·15/10 MHz ≈ 200 kHz. The digital audio data
is therefore confined to a frequency band from about 200 kHz to 2 MHz.
Since the dither frequency (and twice this frequency) is well below the
digital audio frequency range the CD player has no problem separating
the dither tracking output from the digital audio information. The player
can then compare the magnitudes of the amplitude variations at the
dither and 2 × dither frequency, find the phase of these signals relative to
the dither modulation it is applying, and use the result as a measure of any
tracking error.

The dither technique is, in principle, a very efficient one. Only one spot
and sensor are required, and the magnitude and frequency of dither can,
if we wish, be continuously altered to suit the difficulty of the task (i.e. less
dither on �good� discs and players). Perhaps the main drawback of this
method is that its name makes it easily confused with the (quite different!)
dither �noise� signal used to suppress quantisation distortion. Various
other methods have been devised by manufacturers to recover tracking
information. However, as with the choice of focusing technique, what
finally matters is the quality of the actual CD player design and
manufacture.

Summary

You should now understand how the pattern on the surface of a CD is
formed. You should also know how a CD player is able to �track� and
recover the spiral of pits in the CDs information layer. In particular, it
should be clear how the player can focus and align its laser/sensor system
and adjust the rotation rate to recover the required stream of channel bits.



Information and Measurement - 105 - Free PDF version

Chapter 11

Oversampling, noise shaping, and digital
filtering

11.1 The CD player as a digital signal processing system

The stream of bits recovered from the disc is processed through a series of
stages which reverse the encoding process which occurred when the
signals were recorded. Minor errors can be completely corrected using the
eight-to-fourteen redundancy and parity checking built into the system.
Major errors may result in the unavoidable loss of information, but most
CD players then use a pre-programmed algorithm to �fill in� or interpolate
occasional lost samples. The details of this algorithm for masking
information loss will differ from one player to another. The recovered
stream of digital values can then be passed to two digital to analog
convertors (DACs) for conversion into an output pair of analog audio
signals.

In principle, we could simply use the CD player to recover 44,100 pairs of
digital samples per second and employ a pair of 16-bit DACs to obtain
analog signals. Whilst this approach would have the advantage of
simplicity it may produce an output which exhibits the �staircase�
distortions mentioned earlier. 

Provided the input signal was dithered before sampling, any staircase
distortions can � in theory � be removed by passing the output from the
digital to analog convertors through low-pass filters which reject
frequencies above half the sampling frequency. This is because, in an ideal
system, all the unwanted frequencies produced by the staircase effect will
be above 22·05 kHz. Some of the earliest CD players did employ this
approach, but it soon proved unsatisfactory for a variety of reasons and
has largely been superseded by better methods. Generally speaking,
simply using analog filters to �clean up� the output waveforms works
poorly for two reasons:

Firstly, the CD player (or the information on the disc!) may be imperfect.
For example, any production problems in manufacturing the digital to
analog convertors will alter the form of the staircase distortion and may
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produce unwanted components inside the analog signal's frequency
range.

Secondly, in order to realise the full potential of the CD encoding system
we would require low-pass filters which perform amazingly well. Ideally,
they should pass any signal frequencies up to almost 22·05 kHz without
altering them in any way, but must reject any distortion components above
22·05 kHz by at least 95 dB to prevent them from degrading the potential
dynamic range. Analog filters capable of simultaneously meeting both
these requirements can be made. However, they are difficult to produce as
they must contain a large number of very accurately toleranced
components. This makes them large and expensive. It is also inevitable
that the values of some components will tend to change with age,
temperature, or humidity. This would mean a very expensive CD player
whose performance might deteriorate audibly with use.

To avoid these problems, almost all modern CD players process the digital
data in some way before presenting it to the convertors. The main objects
of this processing are:

• To perform a computation equivalent to low-pass filtering. This is
intended to  reduce the severity of the staircase distortions, easing the
demands imposed upon any analog filters placed after the convertors.

• To help prevent any imperfections in the digital circuits, especially
the digital to analog convertors, from producing other signal
distortions.

The details of this digital processing vary considerably from one type of
player to another. (And, of course, every manufacturer claims to use the
�best� method for their newest models!) Fortunately, all of these processes
are aimed at achieving the same end result so we need only consider one
example. Here we will look at the original system employed by Philips in
their �first generation� CD players using the SAA7030 and TDA1540
integrated circuits. The following explanation has been simplified to some
extent, to make it easier to follow, but contains the essential features of
the process.

This system employed a combination of two techniques, Oversampling, and
Noise Shaping to achieve the desired results. Oversampling means that a set
of sampled values is used to calculate the values we �would have obtained�
at intermediate moments if the original input had actually been sampled
more frequently. Provided the sample values we start with satisfy the



Information and Measurement - 107 - Free PDF version

sampling theorem these extra values don't contain any new information.
This is because there is only one possible waveshape which can fit the
sampled values read from the CD. The first Philips CD players employed

 oversampling, converting an input data stream of 44,100 samples/
second (per channel) into 176,400 samples/second. We can regard
staircase distortion as being an unwanted high-frequency variation which
has been added onto the signal we wish to communicate via CD. By ×4
oversampling we produce the effect shown in figure 11.1. 

×4

Effect of × 4 oversampling.Figure 11.1

5.5 kHz sinewave, sampled 44,100 times/sec.

Four times oversampling the reconstructed waveform.

Input sinewave

Output from DAC

Sampled values

'Oversamples'
calculated by
CD player

For the sake of the illustration we can consider an input signal in the form
of a 5·5 kHz sinewave which is sampled by the CD recording process at
44,100 samples/second. The simplest way to convert these sampled values
back into an analog waveform would be to use a digital to analog
convertor (DAC) which produces an output level appropriate for each
sample and then �holds� this level until it is time to output the next
sampled level. This kind of output is called Sample and Hold and produces
the kind of staircase distortion shown.

The sampling theorem says that, provided a series of samples form a
complete record of the original information, we can use the measured
sample values to calculate the actual signal level at any moment in
between the sampled instants. These calculated values can then be given
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to the DAC in between the �genuine� samples to produce the
improvement showed in the lower waveform of figure 11.1. It is important
to realise that these calculated samples are not �guesses�, but really do
represent the signal level which would have been observed if the input
waveform had been measured at these moments. If the CD recording
process had actually recorded these extra values on the disc the player
would not be provided with any extra information since the original set
already contain a complete record of the waveform information. Hence
the term �oversamples�, which indicates that these extra values � calculated
or measured � don't actually contain any fresh information.

× × × ×

+

+

16-bit input
sample
stream

44.1 kHz clock

carry
hold

2 bits 14 bits

14-bit DAC
Low-Pass

filter

176.4 kHz clock

Analog 
Output

Weighting
Coefficients
(12-bit)

Transverse
Digital
Filter

Schematic diagram of Philips SAA7030 + TDA1540.Figure 11.2

S {n + 1}S {n + 22}S {n + 23}S {n + 24}

The use of × 4 oversampled digital values reduces the staircase effect in
two ways. The basic frequency of the unwanted staircase distortion is
increased by a factor of 4, and its amplitude is reduced by a factor of 4. As
a consequence it becomes much easier to produce analog filters which,
placed after the DACs, will suppress this distortion without significantly
affecting the wanted signal. Figure 11.2 shows a schematic diagram of
(one stereo channel of) the initial Philips processing system. This used
two integrated circuits (ICs), the SAA7030 and TDA1540. The 16-bit
samples read from the disc are clocked through a serial Shift Register
which, in this case, can hold 24 successive sample values. The rate at which
the system processes the data samples is determined by two Clock
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Frequencies, 44·1 kHz and 176·4 kHz, which are supplied to the ICs. These
two clock signals are Phase Locked so that every fourth cycle of the 176·4
kHz starts at the beginning of each 44·1 kHz cycle. In figure 11.2,

 represents the �newest� sample value and  represents
the �oldest�. (It's assumed that n samples have already passed through the
system and have been discarded.)

S {n + 24} S {n + 1}

The 44·1 kHz clock signal is also used to control the rate at which digital
samples are recovered from the CD, hence samples should be presented
to the input end of the shift register at the same rate they are read from
the disc. At the beginning of each 44·1 kHz clock cycle all the sample
values stored in the register locations are shifted along one place. A new
sample is entered into the first register location and the �oldest� sample
value is thrown away from the last register location. The registers are
linked to an array of multiplier circuits. Each of these has a set of four
coefficient values connected to it. These coefficient values are usually built
into the processing IC when it is manufactured, although some modern
CD systems allow the coefficients to be modified by replacing or
reprogramming a ROM (memory) chip.

The 176·4 kHz clock controls the data processing carried out by the
circuit. Each Processing Cycle takes one 44·1 kHz clock period � i.e. four
176·4 kHz clock periods. To see how the system operates we can examine
what happens during each of the four 176·4 kHz clock periods of a
processing cycle.

At the start of the first period all the samples are shifted along and a fresh
sample value is entered at the �newest� end of the line of registers. This
event triggers the start of the processing cycle. Immediately after the
sampled values have been updated they are all multiplied by the first set of
coefficients and the results are added together to produce an output value
which is sent forward to the digital/analog convertor system.

During the second 176·4 kHz clock period the register values are
multiplied by the second set of coefficients, and the results added, to
produce a new output value for the convertor.  The third set of
coefficients are used during the third 176·4 kHz clock period, and the last
set during the fourth and final period of the processing cycle. As a result,
each processing cycle produces four distinct output values which are sent
to the convertor. These have all been obtained from the same 24 input
samples, but used four distinct sets of coefficient values. During the next
processing cycle the input data is shifted along, a new sample is injected,
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and the process is repeated to produce four more output values.

In Chapter 7 we saw how it is possible to recover the signal value at
instants in between samples. Here the action of the IC may be seen as
carrying out a similar task. We could therefore use a set of coefficients
which correspond to the values of the sinc function indicated by the
expressions in Chapter 7. This  would serve to �smooth out� some of the
output signal distortion effects. In practice, however, it can be an
advantage to slightly alter the coefficient values  to obtain a flatter
frequency response, lower distortion, or whatever we require. 

The circuit which carries out this process (an SAA7030 in this case) is
called a Transverse Digital Filter (TDF). By choosing an appropriate set of

 coefficients we can carry out a series of computations which
mimics the effect of a �96'th order� analog filter. The frequency response
of this filter depends upon the values chosen for the coefficients. In
theory we could build an analog filter, using capacitors, inductors, etc, to
achieve the same end. This is because, in principle, identical results can be
achieved by either analog or digital processing of the information. In
reality, of course, the analog equivalent would prove far more difficult to
make, and its properties would be relatively unstable. There are,
therefore, good practical reasons for carrying out this filtering process in
the digital domain.

4 × 24 = 96

One interesting consequence of using a set of samples to compute output
values is that the results have more bits per value than the input samples!
The SAA7030 stores its internal coefficients as 12-bit numbers and the
output values obtained from the TDF therefore emerge as 16 + 12 = 28-bit
numbers. Note that these additional bits don't contain any �new�
information. They are a consequence of the way information is
�redistributed� by the TDF process. In effect, each bit of real data
influences more than one bit of the oversampled results. The oversampled
bits aren't all �independent� of one another.

In an ideal world we might choose to employ a pair of 28-bit DACs after
the filter. Alas, at the time the first CD players were launched Philips were
doubtful that they could mass produce even 16-bit convertors of the
required precision at a commercial price! They could, however, make
good 14-bit convertors able to run at a clock speed of 176·4 kHz. They
therefore decided to use 14-bit DACs in the first generation of CD players.
At first glance it seems that the use of a 14-bit convertor will unavoidably
cause some audio information to be lost. Fortunately, it is possible to
process the data before conversion in a way which can prevent any
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information loss by using a noise shaping technique. As with oversampling
this process may be carried out in various ways. The original Philips design
employed a method which we can understand by looking at figure 11.2.

The 28-bit output values from the TDF are passed through an adder into
another register. The most significant 14-bits are then sent on to the DAC.
The unused, least significant, bits are treated as a �remainder' which is
held for one 176·4 kHz clock period and then returned to the adder to be
combined with the next value. This process is repeated with each
successive value. This has the effect of �carrying forward� any error
between the converted and presented values. To see how this works we
can forget, for a while, the potential ability of the TDF to generate 28-bit
numbers and consider what would happen if we just present a series of 16-
bit values to the noise shaping system. For simplicity, imagine that four
successive values are the same and let F represent the most significant 13
bits of their value. (We'll also assume that we start with a carry of zero
from the last cycle.) The �carry forward� process continued over four clock
cycles then looks like:

16-bit input +Carry 14-bits to DAC Remainder

     00

     F001 F001 F0 01

     F001 F010 F0 10

     F001 F011 F0 11

F001 F100 F1 00

Note that if we add together the four successive 14-bit output values sent
to the DAC we obtain F001 once again. A low-pass filter placed after the
digital to analog convertor will have the effect of suppressing any short-
term fluctuations in the output level. If this filter attenuates frequencies
above half the basic sampling rate (i.e. 1/8th the oversampled rate) it will
tend to produce an output which is much the same as if we had averaged
the four values, producing an output equivalent to that which would have
been produced by a 16-bit convertor.

It is perhaps unfortunate that this process has come to be called noise
shaping as the name implies that the process is somehow �random�. In
reality the process operates by attempting to average away the Truncation
effects produced by the finite number of bits per digital value. It does this
by storing  any truncation errors and using them to adjust later output to
produce a more accurate overall output.
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For the sake of the above explanation we ignored the fact that, using 12-
bit coefficients, the TDF is capable of providing 28-bit output values. Some
manufacturers of CD players have taken advantage of this by employing
DACs which convert 18, 20, or even more bits per sample in an attempt to
produce more �accurate� analog output signals. It is important to realise
that, although this process can provide a �smoother� output waveform it
doesn't magically produce any extra information which wasn't in the
original set of 16-bit samples. In principle, an �ideal� 16-bit DAC and
analog filter would produce the same results as any other �ideal� noise
shaped and oversampled system. Any differences stem from how well the
system is designed and built, not from any inherent theoretical
differences.

Summary

You should now know what is meant by the terms Oversampling and Noise
Shaping. That these are digital signal processing techniques which can be
used to perform functions similar to filtering an analog signal. You should
also now understand how a Transverse Digital Filter works. It should also be
clear that � in theory � the same results can be achieved using systems
which produce anything from one to umpteen bits per value presented to
the output DACs provided  that the digital process is performed correctly.
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Chapter 12

Analog or digital?

12.1 Is the world �analog�?

In general, we can imagine representing information in terms of some
form of analog or digital signal. The digital data stored on a CD will
normally have been produced using analog to digital convertors which are
fed with amplified signals from microphones. The original microphone
signals are obviously �analog� � or are they?�

Modern physics is largely based upon the concept that the world behaves
according to the rules of Quantum Mechanics. One of the axioms of this is
that all forms of energy behave as if quantised. This gives us the well-
known (although not well understood!) �wave�particle duality�.
Statistically, the behaviour of physical processes can be described in terms
of things like waves and continuous functions. Yet, when we examine any
process in enough detail we can expect to see behaviour which it is more
convenient to describe in terms of distinct particles or �packets� of energy,
mass, etc.

When the Compact Disc system was originally launched some people
criticised it on the grounds that, �Sound signals are inherently analog, i.e.
sound is a smoothly varying (continuous) pattern of pressure changes.
Converting sound information into digital form �chops it up�, ruining it
forever.� This view is based on the idea that � by its very nature � sound
is inherently a wave phenomenon. These waves satisfy a set of Wave
Equations. Hence we should always be able to represent a given soundfield
by a suitable algebraic function whose value varies smoothly from place to
place and from moment to moment. Since the voltage/current patterns
emerging from our microphones vary in proportion to the sound pressure
variations falling upon them it seems fairly natural to think of the sound
waves themselves as having all the properties we associate with �analog�
signals, i.e. the sound itself is essentially an analog signal, carrying
information from the sound sources to the microphones. But how can
sound be �analog� if the theories of quantum mechanics are correct?

The purpose of this chapter is to show that the real world isn't actually
either �analog� or �digital�. Analog and digital signals are no more than
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mathematical representations of reality, useful when we want to process
information. In fact we could say the same thing about the �waves� and
�particles� we use so much in physics. Although it's easy to forget the fact,
both waves and particles are mental models or �pictures� we use to help us
grasp how the real world behaves. Although useful as concepts, they don't
necessarily �really exist�. To illustrate this point, imagine a situation where
we are given a working electronic circuit board without being told
anything about it and asked, �Is this an analog or a digital circuit?� How
could we tell? Of course, we could probably decide by looking to see if the
circuit contained any integrated circuits, reading their type numbers, and
looking them up in a book! (We can also guess that if the circuit doesn't
contain any integrated circuits, it's probably not digital�) However for
our purposes, this would be cheating. The real question is, �Can we tell
just by looking at the kinds of electronic signals being passed around
between components on the board?�

If we connect an oscilloscope we can watch how some of the voltage or
current levels in the circuit vary with time. In most cases, the shapes of the
waveforms we'd see on the oscilloscope would quickly show whether the
signal was digital or analog.

Digital signals will often show �square� shapes. The signal voltages tend to
spend most of the time near one or the other of two particular levels,
switching between them relatively quickly. Analog signals sometimes show
no obvious patterns, although in some cases they show a simple
recognisable shape like a sinewave.  As a result we can sometimes form an
opinion about the type of signal by seeing if we can recognise the
waveforms. But is there a more �scientific� � i.e. objective � way of
deciding? Is their an algorithm or recipe which would always be able to
tell us what form a signal is taking?

At first it might seem as if this problem is an easy one. When we look at
them on an oscilloscope, digital signals can look nice and square, analog
ones tend to look like bunches of sinewaves or noise. Unfortunately, when
an information channel is being used to its limits the situation can be less
clear. When a digital signal is transmitted at very high bit-rates, the rising
and falling edges of each level change tend to become rounded by the
finite channel bandwidth. As a result, the actual transmitted voltage
fluctuations may not display an obviously digital pattern. 

In a similar way, some analog waveforms may show fairly square patterns.
For example, the output from a heavy rock band, compressed by studio
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equipment, can have a �clipped� look similar to a stream of, slightly
rounded, digital bits. Also, if an analog channel is being used efficiently
every possible waveform shape will appear sometimes. As a result, the
waveform will sometimes look just like a digital one.

We can't know with absolute certainty, just by examining a real signal
pattern for a while, whether it carries information in either digital or
analog form � although we can be fairly confident in many cases. We use
voltage patterns (or currents, etc) to carry information in various ways, but
the terms �digital� or �analog� really refer to the way we process
information, not some inherent property of the voltage/current itself.

For most purposes this lack of absolute knowledge doesn't matter. But it
serves to make the point that digital and analog signals are idealisations.
Any real signal will have both analog and digital characteristics.

12.2 The �digital� defects of the long-playing record

In the previous section we considered the signals used to communicate
information. But what about the physical processes and sensors we use to
create or collect information? In general we tend to assume that a
measurement system operates in an analog manner. An input is sensed by
some form of detector and produces a voltage or current whose
magnitude varies in proportion with the stimulus. This voltage or current
is then taken as an analog of the input we wish to measure.

Despite this assumption we can expect that any physical process must, at
some level, be affected by the quantum mechanical behaviour of the real
world. In order to see how this influences a real measurement we can
consider the example of a Long Playing (LP) record. This sound
recording system makes a useful contrast to the Compact Disc which we
have already examined. It is also considered by some Hi-Fi audio
enthusiasts  opposed to digital audio as a paragon of �analog virtues�.

Information is stored on an LP in the form of a modulated spiral groove
pressed into its surface. The measurement sensor consists of a stylus which
is placed in the groove whilst the LP is rotated at a constant angular
velocity. An output signal is produced which is proportional to the
instantaneous radial velocity of the stylus The signal is recorded in the
shape of the groove surfaces, or �walls�. The stylus is connected to some
form of electrical generator (usually a coil in the vicinity of a magnet)
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which produces an output voltage proportional to the transverse velocity
of the stylus. In general, sensors which convert one form of energy into
another are called Transducers. In this case some of the rotational energy
of the LP is converted into electronic energy. The combination of stylus
and generator is usually referred to as a �cartridge�. (It can also be called a
�pick-up�, but this term is confusing as it's sometimes used for the arm
which supports the cartridge above the LP record.)

Stylus

Groove

Rotation

Long Playing Record

Conventional view of LP groove and stylus.Figure 12.1

x {t }

For the sake of simplicity we can assume that the LP is Monophonic and that
the nominal centre line of an unmodulated groove would cause the stylus
to move inwards at a constant rate, . We can represent the recorded
signal as illustrated in figure 12.1 by an offset distance, , between the
actual position of the stylus at time, t, and the position it would have if
there were no modulation. The radial velocity of the stylus, , of the
stylus at any instant will be

d r
d t

x {t }

v {t }

v {t } =
d x {t }

d t
+

d r

d t
... (12.1)

In practice the steady spiral velocity, , simply causes the pick-up arm to
move slowly inwards so we can say that the output voltage generated by the
stylus movements will be

d r
d t

v {t } = kv {t } = k
d x {t }

d t
... (12.2)

where k is the appropriate conversion coefficient (the cartridge's Sensitivity
or responsivity) of the cartridge. For a real LP system, k is typically in the
range 0·1 � 1 mV/cm/s. Ideally, we would like to obtain an output signal,
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, which is a faithful reproduction of the required sound pressure
variations. In any real system, however, some problems must be taken into
account. For example, various processes will restrict the dynamic range of
the system. Mechanical problems will place limits on the maximum
possible size of the displacement, , and the maximum achievable

acceleration, . The noise level will also prevent us from observing

changes in displacement smaller than a given size.

v {t }

x {t }
d 2x {t }

d t 2

The record industry adopted a standard level of 5 cm/s (peak velocity for
a 1 kHz sinewave), as the nominal 0 dB Reference Level. A reasonably good
cartridge would have been able to Track (maintain its stylus in the groove)
modulation levels around 20 dB greater than this reference level. For a
sinewave of frequency, f, amplitude, A, the offset displacement will have
the form

x {t } = A Sin {2πf t } ... (12.3)
hence the velocity will be

v {t } = 2πf A Cos {2πf t } ... (12.4)
and the acceleration

a {t } = − (2πf )2 A Sin {2πf t } ... (12.5)
A 1 kHz sine wave recorded at a +20 dB level will have a displacement of
peak value, µm, and a peak acceleration,  km/s/s.
(i.e. a peak acceleration  around 320 times bigger than that due to the
Earth's gravity!)

x pe ak ≈ 80 a pe ak ≈ 3

   

No matter how well they have been made, every cartridge will �mistrack�
groove modulations above a given magnitude. This is usually because the
accelerations and displacements become too large and the stylus either
loses contact with the groove walls or gouges into them, damaging the
record! In other cases the stylus may remain in contact, but the cartridge's
electrical output saturates. Whatever the exact cause, above a given level
the cartridge (sensor) output ceases to be a faithful representation of the
groove modulation. These electro-mechanical problems will limit both the
maximum signal level and the maximum rate of change of the signal level
we can obtain using a given cartridge.

The smallest signal levels we can sense using the cartridge will be partly set
by electronic noise produced in its generator resistance and in the
amplifier used to boost its output. There is also a mechanical limit on the
smallest signal level which will be clearly measurable.
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A 0 dB 1 kHz sinewave corresponds to a peak offset, , of just 8 µm. An
LP record is made from a solid assembly of real atoms and molecules. In
practice, LPs are made of an amorphous polymer, PolyVinyl Chloride
(PVC), to which various other materials have been added. The precise
properties of this material are quite complex and were the subject of quite
a lot of research and development by the music industry (tobacco-ash,
insects, etc, have also been found in LP material!). To avoid the
complexity of the details of PVC's properties we can imagine an LP made
of crystalline carbon (diamond!). It must be admitted that manufacturing
such an LP would be rather difficult!

x pe ak

The walls of the groove of such an LP would be made from layers of
carbon atoms. Each carbon atom has an effective diameter of around half
a nanometre so the thickness of each layer will be approximately 0·5 nm.
The position of the stylus is determined by resting on top of the
uppermost layers of atoms. Hence we can see that the stylus position will
be roughly quantised by the finite thickness of the atomic layers. When
playing a sinewave whose peak size is 8 µm the movement of the stylus
would take place in 1 nm steps. Instead of smoothly varying, the stylus
offset would therefore always adopt one of the set of available levels,

, where m is an integer and  is the thickness of the atomic
layers. The effect is to divide the ±8 µm swing of a 0 dB 1 kHz sinewave
into 32,000 steps � just as if the signal had passed through an ADC!

x {t } = m .∆x ∆x

If we assume that the largest possible recorded signal level is +20 dB (i.e.
µm) and accept that the signal is quantised in 0·5 nm steps

then the diamond LP has a dynamic range, D, of
x pe ak = 80

D = 20. Log10 {2x pe a k

∆x } ≈ 110 dB ... (12.6)

This compares very well with the Compact Disc system which employs 16-
bit digital samples and hence has a dynamic range of about 96 dB. Alas,
the performance of a real LP and stylus may be very different from the
imaginary example!  The actual dynamic range of a real LP is normally
much less than 100 dB! 

PVC is a Polymer. This means its molecules have been grown by joining
together lots of smaller molecules. The results of this polymerization
process will depend upon the details of the process. The average
molecular weights of the polymer chains which are formed can range
from a few tens of hydrogen atom masses to hundreds of thousands. As a
result, the PVC molecules are much larger than carbon atoms. This has
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the effect of producing a material which is �lumpy� with a typical
quantisation size far bigger than a carbon atom. As a result, the value for

 we should have used for the above expressions is hundreds of times
larger than 0.5 nm, producing a much smaller dynamic range.
∆x

The purpose of the above example was to help us recognise that, since LPs
are made from a collection of real molecules, the signals they hold must
be quantised. Fortunately for the LP this usually isn't obvious. The
underlying signal quantisation is usually masked by various effects.

Although the PVC molecules are much larger than carbon atoms they
aren't arranged into a regular crystalline pattern. PVC is usually formed as
a sort of Glass. Molecules nearby one another tend to be approximately
aligned, but the alignments tend to alter slowly and randomly from one
place to another in the solid. The material is a bit like a frozen liquid, or a
liquid with a very high viscosity. The result is as if we had started to built a
crystal, but kept changing our mind about where to put the layers of
molecules. In any small region the groove wall may be quantised, but the
details of the quantisation vary from place to place along the groove. For a
recorded signal this produces an effect similar to dithering a signal before
digital sampling. The randomised quantisation becomes indistinguishable
from random noise. This dithering effect is enhanced by random thermal
movements of the molecules. When playing an LP the effects of this
molecular quantisation therefore appear as noise, not obvious quan-
tisation distortions. 

Another factor working in the LP's favour is that the stylus does not just
touch the groove wall at a single point. Instead it presses against a finite
Contact Area. This means that the force which positions the stylus is
produced by a number of atoms in the groove surface. The contact area of
a good stylus is typically the order of 10 µm square. Hence the stylus rests
upon hundreds or thousands of PVC molecules at any time. The pressure
of the stylus will tend to squeeze the groove surface. This makes it deform
elastically until the total force exerted by all the displaced molecules is
enough to support the stylus. Adding or removing a few PVC molecules in
the contact area would shift the stylus by an amount which is much less
than the size of a single molecule. The finite contact area of the stylus
means that it essentially making a measurement which is averaged over
many molecules. A larger contact area would permit the stylus to resolve
smaller changes in the groove wall by averaging over more atoms. This
averaging process, along with the physical dithering mentioned earlier,
can let the stylus recover signal levels equivalent to changes in the groove
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wall which are smaller than an individual molecule.

A time-varying output signal is obtained by drawing the stylus along the
groove. Hence the frequency of a recorded signal variation is inversely
proportional to its length along the groove. Since the stylus cannot be
expected to respond to surface details which are much smaller than the
width of its contact area, it follows that any improvement in resolution
obtained by increasing the contact area may be purchased at the cost of a
reduction in the available signal bandwidth. Alternately, we could choose
a smaller stylus and sacrifice resolution for a wider bandwidth. The
recorded signal is essentially both quantised and sampled by the atomic
structure of the LP material, although in a way which varies from place to
place on the disc.

High performance LP systems usually employ an Elliptical stylus (or some
other near-equivalent). These styli are manufactured to have a specially
shaped contact area which is shortened along the direction of travel and
elongated perpendicular to it. The modified shape helps the stylus trace
out higher frequencies (shorter groove wavelengths) without reducing the
contact area. This improves the noise/bandwidth/distortion performance,
but it can't entirely overcome the problems mentioned above. The stylus
must have a non-zero contact area, hence the physical problems we've
considered always apply.

It would be possible to go on considering various other factors which alter
the detailed performance of Long Playing records. For example, any
serious comparison of �LP versus CD� would have to take into account the
relatively high levels of signal distortion which commercial cartridges
produce when recovering signals louder than the 0 dB level. Typically,
signals of +10 dB or above are accompanied by harmonic distortion levels
of 10% or more � not a very high fidelity performance! Even at the 0 dB
level, most cartridges produce 1% or more harmonic distortion. The
frequency response of signals recorded on LP are also modified � the
high frequency level boosted and the low frequency level reduced � to
obtain better S/N and distortion performance. This means that an LP
replay system must include a De-Emphasis network to Correct the recovered
signal�s frequency response. Here, however, we are only interested in
considering those physical factors which make the LP less than an ideally
�analog� way to communicate information. These extra factors affect the
performance of an LP but they don't change the basic nature of the
system.
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The above analysis is a simplified one. It leaves out many features of a
practical LP system. Despite that, it does serve to show that even a system
which appears essentially �analog� will still have underlying properties
similar to a digital information processing system. In fact a similar
situation arises with all analog signals in the real world since every physical
process will be found to behave in a  quantised manner when examined in
sufficient detail. Despite this we do not usually observe any structured
quantisation or sampling effects because they tend to be masked by a
relatively high level of thermal noise and the averaging or smoothing
effects of processes like the stylus's finite contact area. In effect, the real
world beat us to the idea of using noise dithering to make quantisation
effects invisible.

An argument similar to the one used to analyse the LP can be applied to
sound waves themselves. The air consists of an enormous number of
molecules whose sizes/shapes/energies/etc are quantised. The physical
interactions between these molecules � i.e. they way in which they
exchange energy and momentum with one another � follow the rules of
quantum mechanics. Hence if we analyse sound waves in enough detail we
should discover quantised behaviour once again. Just as with the LP
groove, however, these effects are on such a small scale that we don't
normally notice them. Usually we can describe sound in terms of the
averaged statistical properties (pressures, mean velocities and
displacements) of relatively large numbers of molecules without noticing
this fact. This allows us to use the classical physics which describes sound
in terms of continuous algebraic functions which satisfy a set of wave
equations. Despite this, the individual molecules know nothing about our
equations. The overall �analog-like� properties of soundwaves arise
because of the dithering/averaging effects of the countless individual
quantised molecule�molecule interactions.

Summary

You should now understand that the terms �analog� and �digital� are based
on idealisations. Real systems and signals will show a mixture of analog
(smooth continuous) and digital (quantised) properties. Although it's
often convenient to assume a signal/system is one thing or the other, this
mixed behaviour is an unavoidable consequence of the way the world
works.
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Questions

1)  A monophonic long-playing (LP) test record is being replayed using a
cartridge (i.e. a transducer) whose Sensitivity  mV/cm/s. The
recording is of a continuous 1 kHz sinewave tone whose level is +26 dB
(referenced to a peak velocity of 5 cm/s). What is the rms value of the
output signal voltage generated by the cartridge?

k = 0·2

[14·1 mV rms.]

2) The test LP mentioned above is made of a material whose molecules
average 10 nm in diameter. The +26 dB tone represents the highest signal
level the transducer can produce without �mistracking�. Assume that the
LP material is crystalline and work out the system's Dynamic Range in dBs.
How many bits-per-sample would be required for a digital system of the
same bandwidth to provide the same dynamic range? Explain briefly why a
non-crystalline material is a better choice for making LPs. [Dynamic range
= 90 dB. 15 bits per sample.]
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Chapter 13

Sensors and amplifiers

13.1  Basic properties of sensors

Sensors take a variety of forms, and perform a vast range of functions.
When a scientist or engineer thinks of a sensor they usually imagine some
device like a microphone, designed to respond to variations in air
pressure and produce a corresponding electrical signal. In fact, many
other types of sensor exist. For example, I am typing this text into a
computer using an array of �keys�. These are a set of pressure or
movement sensors which respond to my touch with signals which trigger a
computer into action. The keys respond to the pattern of my typing by
producing a sequence of electronic signals which the computer can
recognise. The information is converted from one form � finger
movements � into another � electronic pulses.

Every sensor is a type of transducer, turning energy from one form into
another. The microphone is a good example; it converts some of the
input acoustical power falling upon it into electrical power. In principle,
we can measure anything for which we can devise a suitable sensor. In this
chapter we will concentrate on sensors whose output is in the form of an
electrical signal which can be detected and boosted using an amplifier.
However, similar results would be discovered if we examined sensors
whose output took some other form such as water pressure variations in a
pipe or changes in the light level passing along an optical fibre. 

The basic properties of a sensor and amplifier are illustrated in figure
13.1. This shows an electronic sensor coupled to the input of an amplifier.
Note that, so far as the amplifier is concerned, the sensor is a signal
�source� irrespective of where the signal may initially come from. The
amplifier doesn't know anything about people singing into microphones
or fingers bashing keyboards. It simply responds to a voltage/current
presented to its input terminals.

The input to the sensor stimulates it into presenting a varying signal
voltage, , to the amplifier. The amplifier has an input resistance, .
(Both the source/sensor and the amplifier also have some capacitance,
but for now we'll ignore that.) The signal power level entering the

V s Rin
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amplifier's input will therefore be

Pin =
V 2

s

Rin
... (13.1)

Amplifier

Signal Source.

Source − amplifier combination.Figure 13.1

V ′s Rs V s

C s C i n Ri n

Now must be finite and limited by whatever physical process is driving
the sensor. Yet equation 13.1 seems to imply that we could always get a
higher power level from the source by changing to an amplifier with a
lower Input Resistance, . This apparent contradiction can be resolved by
accepting that the voltage, , seen coming from the source must, itself,
depend upon the choice of . The way in which this occurs should be
clear from figure 13.1. The sensor itself must have a non-zero Source
Resistance, , which its output passes through. As a result the signal
voltage at the amplifier's input will be

Pin

Rin

V s

Rin

Rs

V s =
V ′sRin

(Rs + Rin) ... (13.2)

where  is the �internal� voltage or Electromotive Force (emf ) the sensor
creates from the input which is driving it. The value of  only depends
on the input the sensor/transducer is responding to. It is unchanged by
the choice of the amplifier, but the voltage seen by the amplifier depends
upon the source and amplifier resistances so the power entering the
amplifier will be

V ′s
V ′s

Pin =
V ′2s Rin

(Rs + Rin)2
... (13.3)

In order to maximise the signal power entering the amplifier we should
arrange that . A lower input resistance would load the source tooRin = Rs
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much, causing  to fall. A higher input resistance would reduce the
current set up by the signal voltage. In effect, making the source and
amplifier resistance values the same means we can get the biggest possible
voltage�current product at the amplifier's input. Since power = voltage ×
current this ensures the highest possible input power for a given signal
emf, . This result is a general one which arises because the amount of
power generated by a source can never be infinite. All signal sources will
have a non-zero source resistance (or Output Resistance). In a similar way
we can expect all real amplifiers and signal sources to exhibit a non-zero
capacitance. This is called the Source Capacitance for a source/sensor and
the Input Capacitance for an amplifier.

V s

V ′s

From figure 13.1 we can see that these two capacitances,  and  , are
in parallel. For the voltage seen at the amplifier's input to be able to
change we have to alter the amounts of charge stored in these
capacitances. The current required to do this must come through  and

. From the point of view of the capacitors these offer two parallel routes
for charge to move from one end of the capacitors to the other � i.e. they
appear in parallel. This combination of capacitance and resistance means
that the voltage  , seen by the amplifier cannot respond instantly to a
swift change in the source voltage, . Changes in  are �smoothed out�
with a time constant, , where  and  are the parallel
combinations of the input and amplifier values.

C s C in

Rs

Rin

V s

V s ′ V s

τ = RC R C

In some cases these resistances and capacitances are actual components
put in the system. In other cases they are a result of some other physical
mechanisms. In each case their effects can be modelled using the kind of
circuit shown in figure 13.1. Irrespective of whether they're deliberate
additions or �stray� effects, these capacitances and resistances are always
non-zero. Hence it is impossible to change a measured signal level
infinitely quickly. This is another way of stating the basic principle of
information processing that no signal can have an infinite bandwidth (i.e.
reach infinite frequencies). If it did, it would be able to convey an infinite
amount of information in a limited time. Alas, in the real world this is
impossible.

13.2 Amplifier noise

When designing or choosing a measurement system we need to be able to
compare the performances of various amplifiers to select the ones most
appropriate for the job in hand. Various criteria affect the choice, ranging
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from price to gain. When making accurate measurements it is usually
preferable to choose amplifiers which generate the lowest noise level. 

Source
Gate

Drain

Channel

PN Junction Field Effect Transistor (J-FET).Figure 13.2

View from above

Metal 

P-Type Silicon which electrons can't enter.

Electric Field

A wide range of devices have been used to amplify signals. Although their
details differ we can expect that they will operate at a temperature above
absolute zero and, as a result, must produce some thermal noise. Similarly,
for their input and output signals to have non-zero powers, they must pass
some current, hence producing some shot noise. It seems to be one of the
basic laws of Nature (Murphy's Law?) that all gain devices, from MOSFETs
to valves, generate Excess noise � i.e. they all produce more noise than we
would predict from adding together the thermal noise and shot noise. For
the sake of example we can consider the behaviour of a Field Effect
Transistor (FET) amplifier of the sort illustrated in Figure 13.2. The device
shown is a simple N-channel junction FET. This is made by forming a
channel of N-type semiconductor in a substrate of P-type semiconductor.
The channel�substrate boundary forms a PN junction which behaves like a
normal diode. As a result, provided we avoid forward biassing the gate�
channel boundary:

• Almost no current flows between gate and channel

• The charge in the gate (and substrate) repels the free electrons in
the channel and prevents them from coming too close to the walls of
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the channel. This produces Depletion Zones near the walls whose size
depends upon the applied gate potential.

When we apply a voltage between the Source and Drain contacts, electrons
flow through that part of the channel which has not been depleted. We
can think of the channel as a slab of resistive material of length, L, and
cross sectional area, A. For a material of resistivity, ρ, such a slab would
have an end-to-end resistance, . Varying the gate voltage alters
the depletion zones and hence changes the effective cross sectional area,
A, of the channel. As a consequence, when we vary the gate potential the
effective resistance between source and drain changes. The FET therefore
acts as a source�drain resistor whose value depends upon the gate
potential. This description of the operation of an FET is too simple to
explain all the detailed behaviour of a real device but it's OK for many
purposes. In practice the drain-source voltage is usually sufficiently large
that the potential difference between the drain and gate is much greater
than that between source and gate. As a result the depletion region inside
the channel is much smaller at the source end than at the drain � i.e. the
cross-sectional area of the effective channel is quite thin at one end.

R = ρL / A

From the simple description given above we would expect the channel
current to increase in proportion with the applied drain�source voltage.
However there is a tendency for any increase in drain voltage to enlarge
the depleted region near the drain. This reduces the channel area,
limiting any current increase. As a result we find that, for reasonably large
drain�source voltages, the FET behaves more like a device which passes a
drain�source current controlled by the gate potential. Because of this the
gain of an FET is usually given in terms of a Transconductance. This can be
defined as the change in drain�source current divided by the change in
gate potential which causes it.

The gate-channel is normally reverse biassed, so almost no gate current is
required to maintain a given gate potential. As a consequence the input
resistance of an FET is very high, typically 10 MΩ or more. However, to
alter the gate potential we must vary the charge density within the gate.
This means that we have to move some charge into or out of the gate. As a
consequence the gate�channel junction has a small capacitance. For a
typical FET the gate�channel capacitance is a few tens of pF or more.

Noise is generated within the FET by various physical processes. For
example:

i) Shot noise fluctuations in the current flowing through the channel
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ii) Thermal noise in the channel resistance

iii) Thermal motions of the gate charge carriers, producing random
fluctuations in the size and shape of the depletion region � and
hence in the channel resistance.

All of these effects (and others which have been ignored) will vary
according to the bias voltages and currents, details of the semiconductor
doping, device geometry, and temperature. Instead of risking becoming
bogged down in a detailed analysis of these effects (which may be futile as
some of the underlying processes are poorly understood!) we can model
the behaviour of the FET (or any other gain device) in terms of a fictitious
pair of Noise Generators. This approach is very useful when we are mainly
concerned with comparing one amplifier with another and don't want to
bother with the details of where the noise is actually coming from.

Figure 13.3a represents a simple amplifier using an FET. The noise
produced by the real FET and the other components which make up the
amplifier are assumed to come from a mythical Noise Voltage Generator, e ,
and Noise Current Generator, i , connected to the amplifier's signal input.
Figure 13.3b represents the way in which this idea can be generalised to
apply to any amplifier, irrespective of its design. The noise performance of
any amplifier can now be described by the appropriate values of e  and i .
These are normally specified as an rms voltage and current spectral density

� the units of  usually being nV/ , and i  pA/ . Figure 13.4

illustrates the typical manner in which they vary with fluctuation
frequency.

n

n

n n

e n Hz n Hz

13.3a  FET Amplifier

Noise models of amplifers.Figure 13.3
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e n

i n Rin

Amplifier
gain, G

13.3b  General Amplifier

Rs

e n

i n Ri n

A noise producing process which has not been mentioned in previous
chapters is Generation-Recombination Noise (GR-noise). A large number of
electrons do not normally take part in conduction as they do not have
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enough energy to escape their orbit around a particular atom. Every now
and then, however, one of these Bound electrons may interact with a
passing electron or a lattice vibration (i.e. a phonon) and gain enough
energy to escape. This process can be regarded as �lifting� an electron up
into the conduction band and leaving behind it a �hole� in a lower band. 

Sometimes the newly freed electron does not move away swiftly enough to
avoid dropping back into the hole. But if it manages to get away we find
that a pair of extra charge carriers have joined those able to provide
current flow through the material. Eventually, an electron will pass close
enough to the hole to fall into it and the total number of available charge
carriers will return to its original value. This process means that the
current flowing through the channel as a result of an applied voltage will
tend to fluctuate. (Note that this process is different from shot noise.)

There is a difference in potential between the channel and the gate/
substrate. Any new electron�hole pairs generated near the channel walls
will tend to be pulled apart. For an N-channel FET the field will sweep the
�new� electron into the channel and pull the hole back into the substrate.
As a consequence, the random creation of carrier pairs in the region near
the gate�channel junction produces a small, randomly varying, current
flowing across the boundary. This in turn causes random variations in the
size and shape of the depletion region which produces an extra noise
current in the channel. 

en i n

nV/ Hz pA / Hz

noise

white noise
GR noise

frequency frequency

Typical shapes of noise power density

spectra of noise generators.

Figure 13.4

1/ f

From figure 13.4 it can be seen that, at high frequencies, the noise power
spectral density tends to increase with frequency. This is due to GR-noise
produced by quantum mechanical effects. Although energy must be
conserved overall, quantum mechanics permits the energy of a system to
fluctuate by an amount  provided the fluctuation only lasts a time∆E
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 (h being Planck's constant). In a semiconductor whose
energy gap is  this means that electron�hole pairs may be created
without the required specific energy input, , provided they vanish again
in a time . As a result, when we consider periods of time
which are less than this time the density of carriers in the material appears
to fluctuate randomly. 

∆t ≈ h / ∆E
∆E

∆E
∆t ≈ h / ∆E

These short-lived random variations in the number of free charges mean
that the current which flows in response to an electric field also varies. If
we consider shorter periods we are allowed to consider larger energy
fluctuations and an increasing number of electrons, tied more strongly to
their atoms, can briefly join in this process. Hence this effect produces a
noise level which increases with frequency (i.e. with decreasing fluctuation
period). This effect does not create noise power out of nothing. The
initial ∆E is a sort of �loan� which must be repaid since, if we want to
observe a change in the current, we must apply an electric field to drag
the electron�hole pair apart. This field hence does some work in
producing the extra current. 

All gain devices exhibit some amounts of voltage noise, e , and current
noise, i . The precise levels they produce � and their frequency spectrum
� depends upon the type of device, how it is made and operated. When
comparing bipolar transistors with FETs we generally find that bipolar
devices have higher current noise levels and FETs have higher voltage
noise. 

n

n

13.3 Specifying amplifier noise

In practice we are often not told how e  and i  vary with frequency for a
particular amplifier. Instead we are presented with a single value which
indicates the overall amount of noise the amplifier produces. This value
may be specified in various ways. The most common measures are the
Noise Resistance, R , the Noise Temperature, T , the Noise Factor, F, and the
Noise Figure, M. Whilst any one of these values can be useful for
encapsulating the behaviour of an amplifier it should be clear that a single
number cannot contain all the information offered by a detailed
knowledge of the e and i  spectra. They should therefore be used with
care.

n n

n n

n n

Figure 13.5 illustrates a system which amplifies the signal voltage, v ,
generated by a source whose output resistance is R . The amplifier is

s

S
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assumed to have a voltage gain, A , input impedance, , and produces
a noise level equivalent to a combination of a noise voltage generator, e ,
and noise current generator, i , located as shown at the amplifier's input.
A signal source at a temperature, T, will itself produce thermal noise
equivalent to a voltage generator whose rms magnitude is

V R in

n

n

e s = 4kT BRs ... (13.4)
placed in series with the source.

R in

Voltage Gain
A v

V

Amplifier

Rs

Signal source

vs

es
in

en

Source-amplifier coupling.Figure 13.5

E n

For the sake of simplicity we can assume a unit bandwidth (B = 1 Hz) and
that the source does not produce any other form of noise. This means that
the source is as �noise-free� as we can expect in practice. Taking into
account all of the noise generators shown in figure 13.5, the total rms
noise voltage, E , which is output by the amplifier will be such that0

E2
0 = |AV |2 .



{ e nRin

Rs + Rin
}

2

+ { e sRin

Rs + Rin
}

2

+ { i nRsRin

Rs + Rin
}

2


... (13.5)

and the source signal, v , will produce a voltages

V 0 =
AV Rinv s

Rs + Rin
... (13.6)

at the amplifier's output. We can now define the system gain, H, (as
distinct from the amplifier gain, A ) asV

H ≡
V 0

v s
=

AV Rin

Rs + Rin
... (13.7)

Note that this value takes into account both the amplifier's voltage gain
and the voltage attenuation produced by  and  acting as a potential
divider (attenuator) arrangement. Hence this gain will always be smaller
than .

Rs Rin

Av

We can now regard the total noise at the output of the system as being due
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to a single voltage generator, e , which replaces . From the above
definition of the system gain we can expect that

t e s

e t =
E0

H
... (13.8)

which, combining the above expressions, leads to the result

e 2
t = e 2

s + e 2
n + i 2

nR 2
s ... (13.9)

The noise in the system has now been gathered into a single number, ,
whose value indicates the total noise present in the system. From this we
can define each of the noise measures mentioned earlier.

e t

The Noise Factor, F, is defined as

F  ≡  (total noise power) / (source resistance noise power)

i.e.

F =
e 2

t

e 2
s

=
e 2

s + e 2
n + i 2

nR 2
s

e 2
s

... (13.10)

The Noise Figure, M is defined to be the noise figure quoted in decibels

M ≡ 10. Log {F } ... (13.11)
For a perfectly noise-free amplifier e  and i  would both be zero. Such an
amplifier would have a noise factor of unity and a noise figure of 0 dB.

n n

The Noise Resistance, , can be defined by equating the amplifier's
contribution to the total noise to a thermal noise level

Rn

4kT Rn ≡ e 2
n + i 2

nR 2
s ... (13.12)

where T is taken as the physical temperature of the amplifier (normally
assumed to be around 300 K).

Because of the possibility of confusing the amplifier's noise resistance with
its input resistance it is prudent to avoid the use of noise resistance values. 

The Noise Temperature, T , defined byn

4kT nRs ≡ e 2
n + i 2

n R 2
s ... (13.13)

is a more acceptable alternative since it avoids this confusion. Note,
however, that this temperature value is not the physical temperature of
the amplifier!

When comparing amplifiers and gain devices listed in manufacturer's
catalogues we're frequently only given one of the above measures as an
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indication of the noise level. When examining these figures it is important
to compare like with like. All of the above measures explicitly depend
upon the chosen source resistance, R . Furthermore, the frequency
dependence of  and i  will vary from one gain device to another. As a
result two values of a noise measure are not directly comparable if they are
given for different frequencies.

s

e n n

To measure the voltage and current noise levels of a particular amplifier
we can observe the effects of short-circuiting and open-circuiting the
amplifier input terminals (i.e. setting R  to zero and to infinity). When R
= 0 the current noise present cannot produce any observable voltage. The
output noise from an amplifier whose input is shorted is therefore due
only to its input voltage noise generator, . 

s s

e n

When we open-circuit the amplifier input we produce an effective source
resistance of R  = ∞. The noise current generator now produces an rms
voltage  across the amplifier's input resistance. The noise fluctuations
this produces are uncorrelated with those produced by the noise voltage
generator. Hence they combine to produce a total rms noise voltage at the
amplifiers input of  when the amplifier input is open-circuit.

By measuring the amplifier's output noise level in both situations we can
therefore determine values for both  and .

s

i nRin

e 2
n + i 2

nR 2
in

e n i n

Summary

You should now know that all signal sources must have a non-zero Source
(or Output) Resistance and a non-zero Source Capacitance. That all the noise
mechanisms in a system can be simplified into a an equivalent pair of
mythical Noise Generators at the input to the system. A �new� noise
mechanism, Generation-Recombination has been introduced and it's power
spectral density has been seen to increase with fluctuation frequency.

You should also now know that the total system noise can be simplified
into a single generator value and the result may be specified in terms of
various figures � Noise Temperature, Resistance, Figure, or Factor. It should
also be clear that a single figure of this kind can only be used to compare
one amplifier to another when the source resistances are the same. You
should also now know that the current and voltage noise levels of an
amplifier can be measured by recording the output noise level when the
amplifier's input is open- and short-circuited.
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Questions

1) Explain why we can transfer the maximum possible signal power from
source to  load  when the source and load resistances have the same value.

2) An amplifier has an input resistance of  kΩ, and its noise
behaviour can be defined in terms of voltage generator and current
generator Noise Spectral Densities of  V/  and  A/

 respectively. A sensor whose source resistance is 22 kΩ is connected

to the amplifier's input. The sensor is at 300 K and only generates thermal
noise. What is the value of the system's Noise Factor. What is the value of the
system's Noise Temperature? [F = 2·39.  = 419 °K.]

Rin = 50

e n = 5×10−9 Hz i n = 10−12

Hz

T n

3) Explain how you can measure the values of an amplifier's effective noise
voltage and current generators.
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Chapter 14

Power coupling and optimum S/N

14.1 Optimising signal to noise ratio

Sometimes we can alter the physical details of a signal source or use a
transformer to change the source's apparent resistance whilst maintaining
the available signal power. In earlier chapters we found that the amount
of noise and signal power we see coming from a system depends upon the
source resistance. This raises the question � is there a value for the
source resistance which produces an optimum (i.e. maximum) signal to
noise ratio? If so, what is this value? 

Source−Amplifier coupling and power transformation.Figure 14.1

Voltage Gain

AmplifierSignal source Transformer

Voltage Gain

AmplifierTransformed source

Rs

e s

v s

βe s

βv s

e n

e nβ2Rs

i n

i n

Rin

Rin

Av

Av

1:β

Figure 14.1 illustrates the use of an idealised transformer which has a
turns ratio of 1:β. This steps up/down the output signal and noise voltages
produced by the source to  and βe , respectively. The transformer
cannot output any more power than it receives. For an ideal (loss�free)
transformer the input and output powers will be the same. As the output
voltage is a factor β times that generated by the source it follows that the

βv s s
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output current must be 1/β times that flowing through the source.
Consequently, the combination of the source and transformer appears to
any following circuit to have an effective source resistance of . R ′s = β2Rs

Using the same argument as in the previous chapter we can say that the
total noise level for the system is equivalent to an rms voltage, e , such thatt

e 2
t = (βe s)

2 + e 2
n + (i nβ

2
Rs)

2
... (14.1)

A signal voltage, , generated by the source will produce a signal/noise
ratio

v s

=
(βv s)2

e 2
t

... (14.2)S/N

Clearly, this depends upon the choice of β. Whenever possible it would be
preferable to select the value of β which maximises S/N. This is equivalent
to the value which minimises . The optimum choice of β can
therefore be found from

e 2
t / (βv s)2

d

dβ




e 2
t

(βv s)2





= 0 ... (14.3)

i.e.

2βi 2
nR 2

S

v 2
s

−
2e 2

n

β3v 2
s

= 0 ... (14.4)

which is satisfied when

β
2 =

e n

i nRs
... (14.5)

Since the transformed source resistance, , presented to the amplifier is
β R  it follows that the optimum value for this resistance will be

Rs ′
2

s

Rs′ =
e n

i n
... (14.6)

For the above argument it was assumed that the source resistance
presented to the amplifier could be altered using a transformer. In some
other situations we can modify the signal source or replace it with another
and alter the source resistance without altering the available signal power.
Irrespective of how this is done the above result tells us that � for an
amplifier whose noise is represented by a voltage generator, , and
current generator, i  � the maximum possible signal/noise ratio will be
obtained when the source resistance equals .

e n

n

e n / i n
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In the last chapter we saw that the optimum signal power transfer will
occur when we choose a source resistance which equals the amplifier's
input resistance. In general,  does not equal the input resistance of
the amplifier. As a result, the source resistance which provides the best
signal power transfer usually isn't usually the value which gives the best
possible S/N ratio.

e n / i n

Books on electronics tend to recommend that, whenever possible, we
arrange that the source's output resistance and the amplifier's input
resistance should be matched � i.e. have the same value. (The same
approach is recommended when the signal is carried using a transmission
line.) This gives the most efficient transfer of signal power, but may result
in a S/N ratio below the highest possible value. As a result there is often a
conflict and we have to choose either a source resistance which provides
the highest possible signal/noise ratio or a source resistance which
maximises the signal power transferred. 

In practice we are often presented with a source whose properties are
fixed, but we can select which amplifier to use from an available range.
Each amplifier has a particular input resistance, , and a noise level
equivalent to specific e  and i  values. Because of the conflict between
optimum signal transfer and signal/noise ratio there won't usually be a
�perfect� choice of amplifier � unless we're lucky enough to find one
where . Instead, we must usually make a choice based
upon an assessment of the relative importance of these factors for the job
in hand.

Rin

n n

Rs = Rin = e n / i n

14.2 Behaviour of cascaded amplifiers and transmission lines

Figure 14.2 illustrates the use of a pair of amplifiers to increase the signal
from a source. Each amplifier has an input resistance, , and an output
resistance, .

Z I

Z O
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Rs
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Gain Gain

Noise Noise
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transmission
line.

Cascaded amplifiers and connection.Figure 14.2

The signal power input into the first amplifier will be

PI =
V 2

S Z 2
I

(RS + Z I )2
... (14.7)

For a given signal voltage this power will be maximised if . As a
result we should usually try to equate (match) these impedances whenever
it is convenient to do so. A similar result arises when we connect amplifiers
together. Each amplifier views the preceding one as a source having a
particular resistance. Whenever possible we should arrange that the input
impedance of an amplifier should equal the output impedance of the
preceding one. This ensures that signal power is not wasted.

RS = Z I

In the arrangement shown in figure 14.2 the amplifiers are connected by a
length of transmission line of Characteristic Impedance, Z . Co-axial cables,
pairs of wires, microwave waveguides, light fibres, etc, are all examples of
transmission lines. Each can be used to carry signals over long distances.
To understand the concept of characteristic impedance, imagine a signal
source transmitting a signal into an infinitely long transmission line. To
transmit power along a line it has to send both a non-zero voltage (or
electric field) and a non-zero current (or magnetic field) out along the
line. This power then moves away from the source, along the infinitely
long cable, never to return.

C

The amount of current the source has to put into the cable to �drive� a
given voltage will depend upon the type of transmission line. However, so
far as the source is concerned, the power transmitted into the cable is
�lost� just as if the cable were a resistor. The value of the resistor which
would require the same voltage/current ratio is said to be the
characteristic impedance of the line. If we end a finite length of line with
a load whose resistance equals the line's characteristic impedance the
current/voltage ratio of the signal perfectly matches that required by the
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load. Hence all the signal power flows into the load.

In figure 14.2 the load at the output end of the line is the input
impedance, , of the second amplifier. By arranging that  we
ensure that all the signal power passing along the line is coupled into the
second amplifier (this assumes, of course, that the transmission line
doesn't lose any of the power on the way!). So far as the first amplifier is
concerned, it then sees an output load resistance, , since none of the
power it transmits comes back to it. As a result, to efficiently transmit
signal power along the transmission line we should try to arrange that

. 

Z I N Z I N = Z C

Z C

Z I N = Z C = Z O U T

We'll assume the impedances throughout the system have been matched
� although from the previous section it should be noted that this may not
give the highest possible signal/noise ratio. The first amplifier has, when
matched, a noise factor, F , and a power gain, G . The second has, when
matched, a noise factor, F , and power gain, G . 

1 1

2 2

Thermal noise in the source will produce a noise power spectral density at
the input of the first amplifier of

N 1 =
e 2

s

4RS
= kT ... (14.8)

From the definition of noise factor, it follows that this amplifier supplies
the following one with a noise power spectral density of

N 01 = F1G 1kT ... (14.9)
If we were to connect the second amplifier's input directly to a matched
source resistance instead of linking it to the output from the first amplifier
it would supply an output noise power per Hertz bandwidth

N 02 = F2G 2kT ... (14.10)
Since the source resistance would itself be generating a noise power
spectral density, kT, an amount G kT of what we see coming out of the
amplifier would originate in the source, not the amplifier. The noise
power per hertz bandwidth which is generated inside the second amplifier
is therefore .

2

F2G 2kT − G 2kT

The total output noise power spectral density for the arrangement in
figure 14.2 will therefore be

N T = G 2 (F1G 1kT ) + G 2 (F2 − 1) kT ... (14.11)
We can consider the combination of amplifiers as a single �multi-stage�
amplifier whose power gain is G G . This combination can then be1 2
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defined to have an overall noise factor, F , such thatT

N T = FT G 1G 2kT ... (14.12)
Amplifiers connected in this way are said to be Cascaded or chained
together. Combining the above expressions we find that the noise factor
of the two cascaded amplifiers will be

FT = F1 +
F2 − 1

G 1

... (14.13)

When using an initial amplifier whose gain, , is moderately high this
result implies that � unless  is very large compared with  �  the
cascaded pair has a noise factor, . Consider, as an example, a case
where , and . Using expression 14.13 we can
calculate that the cascaded amplifiers will have an overall noise factor of

, i.e. even though the second amplifier is relatively noisy the
overall system's noise factor is almost entirely due to the first amplifier.

G 1

F2 F1

FT ≈ F1

F1 = 1⋅5,  F2 = 2 G 1 = 100

FT = 1⋅501

This result arises because the signal level presented to the second
amplifier is much larger than that presented to the first. Hence the
second amplifier would have to generate a considerable amount of noise
to significantly degrade the overall signal/noise ratio. For this reason we
usually only need to ensure that the first amplifier in a chain has a low
noise factor. However, it should be noted that this may not be true if the
transmission line which connects the two amplifiers is imperfect.

Any real transmission line will lose some of the signal power it is given to
convey. For example, a co-axial cable will dissipate some power due to the
resistance of its metal conductors. The transmission line will change
(attenuate) the signal power by a factor, α, i.e. an output power, P,
supplied by the first amplifier will provide a power, αP (where ), to
the second. 

α ≤ 1

In many cases α will be close to unity. Under these circumstances the
combination of the first amplifier and transmission line have an overall
power gain, , and we need only worry about the first noise factor, .
However, if the transmission line is long enough and α is low enough for

 to become comparable with (or less than!) unity, we find that the
signal power reaching the second amplifier is not significantly larger than
that reaching the first. Under these circumstances the noise factors of
both amplifiers become important. 

αG 1 F1

αG 1
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The above argument for two cascaded amplifiers can be extended to
situations where three or more are chained together. For example, for
three amplifiers in a chain the overall noise factor (neglecting
transmission line losses) would be

FT = F1 +
F2 − 1

G 1

+
F3 − 1

G 1G 2

... (14.14)

Summary

You should now know how the S/N ratio we can obtain from a signal
source depends upon the choice of source resistance. It should also be
clear that � in general � the best possible S/N ratio requires a different
source/amplifier resistance than the Matched values which maximise the
power transfer. You should now know how the noise performance of a
Cascade of amplifiers and connections depends upon their gain and noise
performance. In most practical cases it is sensible to use a �low noise
preamp� to boost a signal being fed to later amps whose noise
performance is less important.

Questions

1) A source of resistance, , is connected to an amplifier whose input
resistance is  via a transformer which has a Turns Ratio of 1:β. The
amplifier's noise is specified in terms of a pair of noise voltage and current
generators, . Derive an expression for the value of β which
provides the highest possible signal-to-noise ratio.

Rs

Rin

e n  and  i n

2) An amplifier has an  kΩ,  V/ ,  A/

. It is connected to a 10 kΩ source via a transformer. What

transformer's turns ratio value would provide the highest signal to noise
ratio? What would ratio would provide the greatest signal power transfer?
[Best S/N from 1:2. Best signal power 1:3·16.]

Rin = 100 e n = 4×10−9 Hz i n = 10−13

Hz

3) The amplifier described in question 2) has a voltage gain, .
It is connected to the source via a transformer which provides the
optimum signal to noise ratio. Assuming that the source noise is purely
thermal and its temperature is 300 K, what is the value of the noise power

Av = 1000
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spectral density (in microvolts per root Hertz) at the amplifier's output?
(Hint, look at section 13.3 again.) [18 µV/  ]Hz

4) A signal is amplified by a cascade of two amplifiers. The impedances
throughout the system are Matched. The first amplifier has a power gain of

 and a noise factor, . The second has a power gain
 and a noise factor . What is the value of the cascade's

total noise factor? [1·25]

G 1 = 10 F1 = 1·1
G 2 = 1000 F2 = 2·5
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Chapter 15

Signal averaging

15.1 Measuring signals in the presence of noise

When measuring a small but steady signal in the presence of random
noise we can often improve the accuracy of the result by making a number
of measurements and taking their average. This approach has the great
advantage that it is easy to do � given enough time � but it cannot
overcome all of the practical problems which arise when making real
measurements. In particular, there are two sorts of problem which simple
averaging copes with rather poorly: 1/f-noise, and the presence of
Background effects.

When considering the merits of various signal processing systems we're
primarily interested in comparing the signal/noise ratios they can offer.
It's this ratio which largely determines how precise a measurement can be.
A low signal level can always be enlarged if we can afford a suitable
amplifier. However, this won't lead to a more accurate result if the
measurement was already noise limited because we'll boost the noise level
along with the signal.

Note that the following arguments assume the power gain, G, of an
amplifier (or filter) is simply equal to  where A is the voltage gain. This
is only really true when the amplifier's input resistance is equal to the
output load resistance it drives. Similarly, it is assumed that the power, P,
at any point is simply equal to , where V is the rms signal voltage. This
is only correct for a load resistance of unity (one Ohm). These
assumptions make some of the mathematical expressions a bit simpler and
don't change any of the conclusions. In practice, when working out the
properties of a real system these factors have to be taken into account.

|A|2

|V |2

15.2 Problems of simple averaging

To illustrate these problems, consider the system shown in figure 15.1. A
source, S, produces a response from a detector which is then amplified,
and passed through an analog Integrator to a voltmeter. The integrator is
made using an operational amplifier, resistor, and capacitor.
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A normal operational amplifier has two signal input terminals, generally
called the Inverting and Non-Inverting inputs (shown by the ��� and �+� signs
on the diagram). The output voltage the op-amp produces is proportional
to the difference between these two input levels. This arrangement allows
the op-amp to be used as the heart of a Feedback arrangement. The voltage
gain of a typical op-amp is very large (usually over 100,000) so a
reasonable output voltage only arises when the voltages at the inverting

 and non-inverting (+) inputs are almost identical. For example, if the
output voltage is 1 V and the gain is 100,000 then the two inputs will only
differ by 10 µV.

(�)

s

b

source

background

Detector
Pre-amp

R

C

Switch

+

_
Vin

Op-Amp

Vo

Integrator

Analog integrator used to collect detected signal level.Figure 15.1

In the circuit shown in figure 15.1 the non-inverting (+) input is
connected directly to 0 Volts. The inverting input (�) is connected via a
capacitor to the amplifier's output. The simplest possible state of this
arrangement is when both input voltages, and the output voltage, are all at
0 V. We can therefore imagine the system starting off in this state.

When we apply an input voltage, , to the resistor a current,
, will begin to flow through it as the other end of the resistor is

initially at 0 V. This current starts flowing into the amplifier, stimulating a
change in its output voltage. Because the signal is being presented to the
inverting input the output voltage this produces will have the opposite
sign to the input.

V in

I = V in / R

Any change in the output voltage will have to alter the amount of charge
in the capacitor, C � i.e. a current will be drawn through the capacitor. As
a result we find that most of the current flowing through the resistor
passes on through the capacitor as the output voltage changes. Since the
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op-amp's gain is very large only a relatively tiny amount of the input
current needs to actually enter the op-amp to generate the output voltage
this process requires.

The small current, i, flowing into the op-amp's input will be the difference
between the input and capacitor currents

i =
V in

R
+ C

d V O

d t
... (15.1)

As the amplifier gain is large we can expect that  so we can
reasonably assume that it is virtually zero and re-arrange 15.1 as

i ≪ V in
R

d V O

d t
=

−V I N

RC
... (15.2)

Having begin with an output voltage, , at a time, , we can
therefore say that the output voltage at some later time, , will be

V O = 0 t = 0
t = T

V O {T } = ∫
T

0

−V I N

τ
 d t ... (15.3)

where τ ≡ RC  has the units of time and is called the Time Constant of the
integrator. In effect, the system behaves as if all of the input current, I, is
collected into the capacitor and the arrangement functions as an
integrator, the output voltage being proportional to the time-integral of
the input.

In practice the capacitor can be initially shorted by closing the switch
connected across it. This sets the output voltage to zero. When a
measurement commences the switch is opened and integration begins.
For a steady input signal voltage, v, the output voltage after a time, T, will
simply be proportional to vT. Hence the integrator performs the useful
function of �adding up� the signal voltage, v, over a period of time. As a
result we need not actually take a series of voltage readings and calculate
their average. Instead we can use an integrator, read  after a time, T,
and define the average input signal voltage, , during this period to be

V O

〈v 〉

〈v 〉 =
−V Oτ

T
... (15.4)

Any real integrator will be built using an op-amp powered from voltage
rails which supply some specific fixed voltages. As a result, we cannot allow
the circuit to go on integrating a signal voltage for an indefinite time as,
eventually,  will reach the rail voltage and integration must then stop.
To overcome this problem we may repeatedly read the output voltage, ,

V O

V O
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after a moderate time interval, t, and reset the integrator output to zero by
briefly closing the shorting switch before allowing another integration
over another period, t. The resulting set of readings for  can then be
added together to obtain the voltage which would have been reached if
the circuit had been able to integrate successfully over the whole period.
Many practical systems combine the use of an analog integrator with this
method of repeated reading and resetting.

V O

The effect of noise on an integrated result can be understood in terms of
the integrator's effective Power Gain at any frequency, f . At any frequency
the noise can be represented by a �typical� input of the form

V N = AC Cos {2πf t } + AS Sin {2πf t } ... (15.5)
For real noise the values of  and  will vary randomly from moment to
moment. This is because the phase of the signal is unpredictable. Their
values at any instant are therefore independent, i.e. we can't predict one
from knowing the other. However, on average, we can expect their
magnitudes to be the same. We can therefore say that the time averaged
power of this �noise like� input will be

AC AS

Pin =
〈AC 〉2

2
+

〈AS 〉2

2
= A2 ... (15.6)

where expression 15.6 essentially defines A to be the mean amplitude of
each individual component. The factors of 1/2 appear because we are
averaging sin2 quantities over a number of cycles.

Since the actual amplitudes of the sine and cosine components of the
noise are statistically independent we can expect their contributions to the
noise level at the integrator's output to also be independent. Their
combined effect at the output will therefore equal the sum of the powers
they individually produce. Integrating the effects of the two contributions
over a period, T, we obtain two voltages. These must then be squared
separately and then added to obtain the total output noise level

Pout =



1

τ ∫
 T

0

A Cos {2πf t }  d t




2

+



1

τ ∫
 T

0

A Sin {2πf t }  d t




2

=
A2 Sin2 {πf T }

(πf τ)2
... (15.7)

We may define the integrator's power gain to be the ratio,  .
Comparing expressions 15.6 and 15.7 we can therefore say that

G ≡ Po ut / Pin
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G {f } =
Sin2 {πf T }

(πf τ)2
... (15.8)

Having discovered the integrator's power gain we can now say that the
total output power produced, after integration, by an input white noise
power density, S, will be

N = ∫
 ∞

0

S G {f }  d f = ∫
 ∞

0

S Sin2 {πf T }
(πf τ)2

=
S T

2τ2
... (15.9)

The output signal power produced by integrating a steady input level, v,
over a period, T, will be

Ps = V 2
O =

v 2T 2

τ2
... (15.10)

Combining this with the result for noise we can therefore say that, when
accompanied by an input �white� noise power spectral density, S, we obtain
a final signal to noise ratio of

Ps

N
=

2v 2T

S
... (15.11)

This result is a very important one. It tells us that the signal to noise ratio
of a measurement obtained using an integration method can increase
linearly with the integration time, T. In practice this means we can often
expect to improve the accuracy of a measurement by integrating for
longer. The integration process is mathematically equivalent to making a
series of measurements and adding them together. We can therefore
generalise this result. If we make p measurement, each integrated over a
period, t, and add them we obtain a result whose signal to noise ratio will
be

Ps

N
=

2v 2pt

S
... (15.12)

What matters here is the Total Measurement Time, , not the choice of each
individual period, t. Note also that the choice of the integrator's time
constant value, τ, does not affect the signal to noise ratio. In a real
measurement situation we should simply choose a τ value which provides a
convenient output level after each sample integration period, t. Provided
that we avoid voltages which are too large or too small to measure reliably
with the voltmeters, etc, we're using the value of τ has no effect on the
signal to noise ratio � and hence the accuracy � of the final result.

pt

In practice we're often interested in obtaining a value proportional to the
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signal voltage (or current) level instead of the power. The integrated
output signal voltage increases linearly with pt. However it is the output
noise power which increases linearly with time � i.e. the typical output
noise voltage increases as . Hence the accuracy of a measured voltage

will increase in proportion with the square root of the measurement time.

pt

White noise plus a small d.c. level

Integrated version of the above

Integrated signal
plus noise

Integrated signal
without noise

Integrating a steady signal with some superimposed noise.Figure 15.2

Figure 15.2 illustrates the effect of integrating an input which consists of a
combination of a steady �d.c.� level plus some white noise. In this case the
magnitude of the input d.c. voltage is a quarter of the rms noise voltage. It
can be seen that the integrated result allows the steady level to �grow�
linearly with time whilst the effects of noise only change relatively slowly. 

The analog integrator is a convenient way to obtain a result averaged over
a period of time. In principle we could use a simpler method. For
example, we could regularly note down the reading on a voltmeter, then
add up all the readings. The result would be a �piecemeal� value for the
level summed or integrated over the period of the readings. Provided that
the readings were taken often enough to form a complete record we'd get
the same information as if we'd used an analog integrator. No matter what
method we use for �adding up� measurements over the time period the
result would be the same. When measuring a signal in the presence of
white noise we get a final S/N power ratio which improves linearly with
the measurement time (i.e. the signal/noise voltage ratio increases with
the square root of the time taken for the measurement).

Although we won't attempt to prove it here, a similar result arises when we
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look for other signal patterns in the presence of white noise. From an
information theory viewpoint a steady (d.c.) level is just one example of a
specific signal pattern. Any other pattern can be searched for in the
presence of noise. Although we would have to process the signal+noise
patterns differently we will discover the same basic result. When the noise
is white the final accuracy of a measurement improves with time just as the
above example.

The above conclusion applies for a white noise spectrum. A different
result arises when 1/f noise is present. Consider, for  example, a case
similar to the above but where the noise has a NPSD

S {f } =
e

f
... (15.13)

The effective noise power observed at the output of the integrator will be

N = ∫
 ∞

0

S {f } G {f } d f = ∫
 ∞

0
( e

f ) Sin2 {πf T }
(πf τ)2

 d f ... (15.14)

To see what this integral implies it simplifies things to make a change of
variable to . We can then write thatz ≡ πf T

N =
e T 2

τ2 ∫
 ∞

0

Sin2 {z}
z3

 d z =
e T 2

τ2
 ×  I ... (15.15)

where I represents the integral in z. Taking the same signal as before the
integrated measurement therefore has an effective signal/noise ratio of

PS

N
= ( v 2

e I ) ... (15.16)

Note that the integration time does not appear in this expression. This
means that we cannot obtain a more accurate result in the presence of 1/f
noise simply by integrating over a longer period. Worse still, the value of

the integral, I,  turns out to be infinite!

The integral �blows up� in this way because we have assumed that the noise
power spectral density → ∞ as f → 0. In reality we wouldn't notice the
noise components at frequencies  as fluctuations. They would
look like a fairly steady level during the particular observation time we've
used and become indistinguishable from the signal. This simply confirms
that we can't get rid of the effects of 1/f noise by integrating or adding
together lots of measurements.

f ≪ 1 / 2T

In practice the noise present in a measurement system will have both
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white and 1/f components. The total noise spectrum can then be
represented as a NPSD, , equal toS t

S t = S  +  
e

f
... (15.17)

Provided the total measurement time, , we won't observe any
significant effect from the 1/f  noise as the measurement would be
dominated by the white noise. Under these circumstances we can expect
to obtain an improvement in measurement accuracy by increasing pt.
However, once , the effect of the 1/f noise becomes significant and
any further increase in pt will produce little or no improvement of the
measurement accuracy.

pt ≪ S
e

pt ≥ S
e

A similar analysis can be carried out for other forms of signal filter and
signal summing or integration systems. Although the details will depend
upon the choice of system the consequence is much the same. There is a
practical limitation � set by the existence of 1/f noise � to the
improvement in measurement accuracy we can obtain simply by averaging
or summing over ever longer periods of time. In order to obtain any
further increase in accuracy we must, instead, devise some measurement
technique which avoids the effect of 1/f  noise.

Another serious problem which can arise when making simple, direct
measurements is due to the presence of any unwanted background signals.
Consider as an example the case illustrated in figure 15.1 where we are
using a sensor to detect the output from a faint source of light. If we place
the source and detector in an ordinary room we find that some of the
light striking the detector does not come from the source we wish to
measure. Instead it comes from the room lights, or in through the
windows of the room. Hence the output we observe from the detector is
partly produced by an unwanted �background�.

One way to deal with this problem is to try and reduce the background
level, ideally to nothing. We can, for example, switch off the room lights
and place opaque covers over the windows to produce a dark room.
Although this means we tend to fall over the furniture it will reduce the
unwanted background level. Unfortunately, some background light will
remain. This is because the room will be at a temperature above absolute
zero. To avoid freezing its inhabitants the room temperature will probably
be somewhere around 280 K to 300 K. Hence all of the surfaces in the
room will emit some thermal radiation. Unless we totally enclose the
detector in a box cooled to absolute zero there will always be some
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background radiation falling upon it. (And, of course, if we totally enclose
it in a box, we can't get the signal onto it!)

Since all sensors and detectors respond to energy or power in one form or
another a similar result occurs in every measurement system. We may
therefore expect that there will be always be an unwanted background
level falling upon any detector. In many cases we can reduce this
background until it's low enough to be ignored, however it is impossible
to really reduce it to zero. 

As an alternative to trying to get rid of the background we can set out to
measure it in the absence of the actual signal and then subtract its effect
from the final measurement of interest. This approach, called Background
Subtraction, is widely used to deal with the problems of measuring very
small quantities in the presence of an unwanted background. 

Summary

You should now know how an Integrator works, and how it can be used to
improve the S/N ratio of a measurement of a steady signal in the presence
of noise. It should be clear that � when the random noise is �white� � the
S/N ratio we can obtain is proportional to the total time devoted to the
measurement. That the precise choice of the Time Constant of an analog
integrator doesn't normally affect the final result. Remember that, since
the S/N power ratio improves in proportion with the time, the accuracy of
a voltage measurement increases with the square root of the measurement
time. You should also now realise that integration doesn't always provide
an improvement in the measurement's S/N. In particular, integration
does not help us overcome the effects of 1/f noise. 

Questions

1) Draw a diagram of an Analog Integrator and explain how it works. Define
the integrator's Time Constant in terms of the component values.

2) An analog integrator is constructed using an op-amp, a 100 kΩ resistor,
and a 10 µF capacitor. What is the value of the integrator's time constant?
What is the value of the integrator's Power Gain at 5·25 Hz when used for a
10 second integration? [ 1 second.  = 0·003676 or  dB.]G −24·4
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3) The integrator described in question 2 is used to determine a steady
d.c. level. The input noise spectrum is white and has a NPSD of 10 nV/

. What input d.c. level would be detectable with a 1:1 signal/noise

ratio by averaging together 20 measurements, each lasting 5 seconds?
(Remember that the expressions in this chapter were simplified by
assuming that the effective impedances everywhere all equalled 1 Ohm.)
[0·7 nV.]

Hz
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Chapter 16

Phase sensitive detection

The Phase Sensitive Detection (PSD) technique is widely used to deal with the
problems caused by 1/f noise and unwanted background levels. Figure
16.1 represents a typical PSD system, designed to provide a measurement
of the signal level produced by a faint light source, . The technique
works by arranging for the signal level to be �switched on and off� in a
controlled way. This helps the measurement system distinguish the (now
varying) signal from any steady background level.

S 1

Rotating chopper ‘wheel’

S1

S2

b

Mirror

Detector

a.c. amp. Bandpass
filter

Av

Ap

Ap

+

−

R

C

V Vin

Vout

Vp

Phase reference

Phase sensitive detection system.Figure 16.1

Sometimes we can manage to switch a signal source on and off directly by,
for example, controlling its power supply. More generally, however, this is
not possible. In some cases the source will behave poorly (or fail!) if we
keep turning it on and off. Sometimes the source we are interested is a
natural one (e.g. a star) which we find rather difficult to control!
Therefore most PSD systems employ some form of signal Modulator or
Switch which periodically stops the signal from reaching the detector.
When making an optical measurement this modulator can take the form
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of a Beam Chopper which alternately blocks and unblocks the light path
between source and detector. Figure 16.1 illustrates one common type of
modulator called a Chopper Wheel. This is a disc which has a series of Blades
cut around its periphery. (Sometimes a series of holes are cut around the
edge of the wheel to produce a similar effect.) The wheel is placed so that
its edge covers the beam and is rotated during the measurement. As the
chopper wheel turns, its blades pass between source and detector,
alternately blocking and clearing the signal path. If we use a symmetric
wheel with n blades, rotating x times per second the source signal
reaching the detector will be appear as a fluctuating level, varying
periodically with a Chopping Frequency, . f = nx

The chopper acts as a form of Frequency Conversion system. A light power
level which was steady or slowly varying, now produces a chopped signal at
some higher frequency. The signal power has been converted from one
frequency (about d.c. or 0 Hz) to another, f. For the sake of example we
can imagine rotating a 16-bladed chopper 20 times a second to produce a
chopping frequency of 16 × 20 = 320 Hz. This can be amplified using an
a.c. amp and passed through a filter arranged to reject signal fluctuations
at frequencies below, say, 200 Hz. 

Any 1/f noise produced in the detector and amplifiers will usually be at
frequencies around 100 Hz or less. The filter will stop this low frequency
noise from passing through the system. Note we are talking about the
frequencies of fluctuations of the signal not the optical frequency of the
light itself. The signal we're talking about here corresponds to the
voltage/current levels produced by the light power falling upon the
detector. To avoid confusion it is customary to refer to the fluctuation
frequency produced by modulation as the Modulation or Chopping
frequency. We could now determine the brightness of the light by
measuring the size of the signal fluctuations at the chopping frequency
emerging from the filter. In this way we can use the PSD system to make a
measurement largely unaffected by the 1/f noise. 

Some further advantages can be obtained by recognising that a periodic
alternation has a specific phase as well as a frequency. The PSD technique
makes use of this fact to obtain some further improvements over simple
direct measurements. The best way to understand the  behaviour of the
PSD system is to begin by considering what the detector observes when the
chopper is blocking the signal path.  It's important to realise that the
�source blocked� level is rarely zero. In the simplest optical systems the
chopper is painted black or is made of a material which absorbs light. As a
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result, when a chopper blade blocks the detector's view it sees thermal
radiation emitted by the chopper surface. The amount of radiation
produced will depend upon the material and its temperature. 

Figure 16.1 illustrates the use of a reflecting chopper made of a shiny
material. When its blades block the signal beam the detector will see light
reflected by the surface of the chopper. In the system shown another
mirror is used to direct light from a second source, , onto the detector
via reflection from the chopper surface. The system is arranged so that
both sources are seen against the common background level, b.

S 2

V

Signals in correctly phased PSD system.Figure 16.2
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If we define , , and b to be the power levels produced by the two
sources and the background, a detector whose responsivity is α V/W will
produce an output voltage

S 1 S 2

V 1 = α (S 1 + b ) ... (16.1)
when the signal path to  is clear, and a voltageS 1

V 2 = α (S 2 + b ) ... (16.2)
when one of the reflecting blades fills the detector's field of view. The
magnitude of the alternating signal, V, output by the detector will
therefore be
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V = α (S 1 − S 2) ... (16.3)
These voltages, and the others in the PSD, are illustrated in figure 16.2.

Provided that the background level remains the same no matter which
source the detector sees, the magnitude of the alternating voltage, V, is
unaffected by the background. The system hence suppresses the effects of
any common background level as well as producing an alternating signal.
In principle we need not actually employ a second source. If it is omitted

 the magnitude of the output voltage will simply be .
As will become clear later, however, it can often be a good idea to employ
a second source.

( S 2 = 0 ) V = αS 1

In practice the background levels against which the two sources are seen
may not be identical. Even when the process producing the background is
physically the same in both cases, its level may change with time, making it
different during the times when  and  are being observed. Hence we
cannot expect to completely suppress any effects due to the background.
We can, however, usually arrange to dramatically reduce the influence of
background power upon the measurement � provided the system is
carefully designed and operated.

S 1 S 2

In figure 16.1 the output signal from the detector is passed through an a.c.
amplifier whose voltage gain is  and a bandpass filter which only passes
a range of frequencies around the modulation frequency, f. The filtered
signal, , then passes through an arrangement whose voltage gain can
be switched to be either +  or . The setting of the switch which selects
the sign of this gain is controlled by a reference signal, taken from the
chopper, which indicates whether the detector can see  or  at any
moment. Ideally, the system will be set up so that the signal modulation
and the reference signal are in phase. This means that the gain will be
switched to  while the detector can see  and to  while it can see

 and the output switch operates as the chopper blades move in/out of
the detector's field of view. 

Av

V in

Ap −Ap

S 1 S 2

+Ap S 1 −Ap

S 2

Provided the chopper's teeth and gaps cover an area much larger than the
detector's field of view we can assume that the modulated output from the
detector will be a square-wave of frequency, f, and peak-to-peak amplitude,
V. Now a square-wave of frequency, f, and peak-to-peak amplitude, ,
can be regarded as being the sum of a series of sinewaves of the form

V pt p

V = (2V pt p

π ) . (Sin {2πf t } +
1

3
Sin {2π (3f ) t } +

1

5
Sin {2π (5f ) t } ...)
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... (16.4)
Hence, if we assume that the filter passes signals at a frequency, f, without
loss but totally rejects signals at frequencies of 3f and above, the signal,

, which emerges from the filter will just beV in

V in = (2αAv

π ) (S 1 − S 2) Sin {2πf t } ... (16.5)

The reference signal will also vary periodically at the modulation
frequency, f. Since both this reference signal and the modulation of the
input are produced by the movement of the same device � the chopper
� these two signals will have a fixed phase relationship, i.e. the signal and
reference are coherently related or phase locked to one another. In the
example illustrated in figure 16.2 we have assumed that the signal and
reference are in phase. In this situation the effect of the switched-gain
section is just as if the input were full-wave rectified and amplified by ,
to produce an output

Ap

V p {t } = |(2αAvAp

π ) (S 1 − S 2) Sin {2πf t }| ... (16.6)

In the illustrated system this voltage is passed through an RC time
constant. Provided  this time constant circuit will smooth out the

half-cycle fluctuations in  to produce an output voltage, , which will
settle at a mean voltage

RC ≫ 1
f

V p V o ut

V out =
1

T ∫
T

0

V p {t }  d t ... (16.7)

where . (This integral gives the right value because each cycle of

is the same as all the others. As a result, the average voltage over many
cycles is identical with the average voltage over just one cycle.) Putting
16.6 into 16.7 we get the result

T = 1
f V p

V out = ( 2

π)
2

(S 1 − S 2)αAvAp ... (16.8)

 represents the mean (i.e. time-averaged) voltage level of the output
produced by the PSD. The time constant performs the task of allowing this
mean level through to the output meter whilst rejecting any voltage
fluctuations at frequencies around the modulation frequency, f, or above.
When viewed overall, the PSD system converts a steady (or slowly varying)
input to an alternating signal at a modulation frequency, f. It then
amplifies and filters the signal before reconverting it back into a steady
voltage for measurement. The manner in which this is done allows us to
largely suppress unwanted background effects and avoid 1/f noise

V o ut
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generated in the detector and amplifiers.

Provided we know α, , , and , we can determine the light power
level, , by measuring  with a d.c. voltmeter. However, any errors in
these quantities will produce a corresponding error in our measurement
of . For this reason a better approach is use what is known as a Nulling
measurement technique. To do this we need to choose a controllable source
for . The PSD system illustrated in figure 16.1 compares the light power
levels  and  and provides an output signal voltage which varies in
proportion with the difference between the two levels. Given a
comparison source, , whose output may be varied in a well defined
manner we can adjust its output until . From expression 16.8 this
can only arise when , no matter what the values of α, , and

 (assuming, of course, none of them are zero!). Hence, if  and
we know , we can simply say that  without needing to know any
of the amplifier gains or the detector responsivity. 

Av Ap S 2

S 1 V o ut

S 1

S 2

S 1 S 2

S 2

V o ut = 0
S 1 − S 2 = 0 Av

Ap V o ut = 0
S 2 S 1 = S 2

Nulling techniques are very useful when we need to make accurate
measurements. They permit us to avoid many of the systematic errors
which arise when the behaviour of the amplifiers and sensors are not well
known. The technique does of course require us to have a well defined,
controllable, reference against which to measure. However in principle all
measurements are comparisons � direct or indirect. The nulling
measurement simply brings as much as possible of the chain of
comparisons within a single system.

Thus far we have assumed that the chopped signal and the reference
output share the same phase. This may not always be the case. Consider
the situation when, for some reason, the signal and reference waveforms
differ in phase by an amount φ. If we define the time, t, such that
corresponds to a moment when the chopper moves out of the detector's
field of view then we can show that the output from the switched gain
circuit, , will be

t = 0

V p

V p {t } = (2αAvAp

π ) (S 1 − S 2) Sin {Θ − φ}   Sin {Θ} > 0when

 =  − (2αAvAp

π ) (S 1 − S 2) Sin {Θ − φ}    Sin {Θ} ≤ 0or when

... (16.9)
where .Θ = 2πf t
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Effect of various phase errors on PSD signals.Figure 16.3
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Using expression 16.7 we can therefore expect that the smoothed voltage,
, this presents to the voltmeter will beV o ut

V out = ( 2

π)
2

αAvAp (S 1 − S 2) Cos {φ} ... (16.10)

i.e. we find that the magnitude of the smoothed output voltage will vary in
proportion with the cosine of the phase error, φ. The effects of various
phase error values are illustrated in figure 16.3. This result has two
implications. Firstly, it is clearly important to ensure that the PSD is
�phased up� correctly � i.e. we should adjust the system to ensure that the
wanted signal and the reference share the same phase � otherwise the
magnitude of the signal output will be reduced by . The second
implication concerns the system's ability to reject noise or any other
signals at frequencies which differ from f. 

Cos {φ}

The noise produced in the detector, amplifiers, etc, can be regarded as a
spectrum of components at various frequencies. If we were to observe the
noise voltage generated during some specific period of time it could then
(from the sampling theorem arguments) be described as a spectrum of
the general form
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V n = ∑
N

i = 1

 ∆V i Cos {2πf i t + Φi} ... (16.11)

where the  and  values vary unpredictably from one noise
observation period to another. From the statistical properties of noise we
can expect the average value of  to depend upon the mean noise
power level. The phases can take any values. Since there is a bandpass
filter in the system we need only worry about noise components at
frequencies similar to the signal chopping frequency, f. We can therefore
consider two situations. Firstly, consider the noise component at the
chopping frequency. The above description of the observed noise can be
re-written as

∆V i Φi

∆V 2

V n = ∑
N

i = 1

Ai Cos {2πf i t } + B i Sin {2πf i t } ... (16.12)

where

Ai = ∆V i Cos {Φi}      ;      B i = ∆V i Sin {Φi} ... (16.13)
i.e

V 2
n = A2

i + B2
i ... (16.14)

when considering noise at the signal frequency . From the
behaviour of phase sensitive detection only the in-phase portion of the
noise, , will have any effect upon the output. The
quadrature portion, , will produce no output. Since the
noise phase varies at random we find that, on average, .  This
means that, on average, ; i.e. only half the input noise power
has an effect upon the output. As a result, the PSD has the effect of
rejecting that half of the input noise at the signal frequency which is In
Quadrature with the signal. This means that the system gives a better
signal/noise ratio than we would've obtained if we'd simply measured the
size of the chopped a.c. signal with an a.c. voltmeter.

f = f i

Ai Cos {2πf i t }
B i Sin {2πf i t }

A2
i ≈ B2

i

A2
i = ∆V 2

i / 2

Consider now a noise component whose frequency, , differs from the
chopping frequency by an amount,  � i.e. the noise component can be
written as

f i

δf

∆V i Cos {2π (f + δf ) t + Φi} ... (16.15)
Looking up trig identities in a suitable maths book we can find this is
equivalent to

∆V i [Cos {2πf t } Cos {2πδf t + Φi} + Sin {2πf t } Sin {2πδf t + Φi}]
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... (16.16)
Because of the action of the PSD only the Cos part of this has an influence
upon the output. In effect, it is equivalent to an input

∆V i ′ Cos {2πf t } ... (16.17)
where

∆V i ′ = ∆V i Cos {2πδf t + Φi} ... (16.18)
i.e. the noise component produces an output which varies sinusoidally at
the Beat Frequency or Difference Frequency, . This effect is
illustrated in figure 16.4. Here the signal/reference and the noise
component �beat in and out of phase� with each other and produce a
smoothed output level which varies roughly sinusoidally. For example, if
we are using a chopping frequency of f = 1000 Hz, noise at  1001 Hz
will cause the output to vary sinusoidally at 1 Hz. Note that noise at 999 Hz
will also produce output at 1 Hz when the chopping frequency is 1000 Hz.

δf = |f i − f |

f i =

Effect of signal and reference frequencies not being the same.Figure 16.4
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Now the output resistor-capacitor time constant acts as a low-pass filter. It
will only pass signal or noise fluctuations in the frequency range from d.c.
(0 Hz) up to  Hz, where  is the time constant value of the filter.
For example, a 1 second time constant (perhaps made with a 10,000 Ω
resistor and a 100 µF capacitor) will only pass unattenuated frequencies
below 0.159 Hz. This means that the output level will only be affected by
signal noise in the frequency range 0.159 Hz either side of the chosen

1
2πτ τ = RC
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chopping frequency. In effect, the output time constant acts just like a
very narrow bandpass filter to block noise at frequencies which differ from
the signal we're interested in. In theory the same result could be obtained
using a very narrow-band filter. In practice using the output time constant
has two advantages. Firstly, it is possible to build time constants (or
integrators which produce a similar result) with time constants of many
seconds. To achieve the same results when using a 1 kHz chopping
frequency we would have to build a bandpass filter with a bandwidth of
much less than 1 Hz at 1 kHz. Although not impossible, this would be
much harder to make. 

Secondly, the output time constant does not mind if the chopping
frequency should alter slightly for any reason. The speed of the chopper
might slowly drift as its motor warms up. If we used a narrow bandpass
filter we'd have to ensure that the chopping frequency doesn't drift so far
as to shift the signal frequency outside the filter's passband. Otherwise the
signal will be lost! Since the PSD switch is controlled by the chopper, any
change in chopping frequency will be cause the switching action to alter
so as to take the change into account. For these reasons, plus the PSD's
ability to reject quadrature noise, the majority of the noise filtering action
of a PSD is performed by the output time constant or integrator. 

This being the case it's sensible to wonder why we should bother to
include a bandpass filter at all. There are two reasons for including it.
Firstly, sometimes the total input broadband noise power may be much
larger than the signal power. Unless we filter away some of this noise it will
limit the amount of amplifier gain we can use because, otherwise, it will
saturate or clip the amplifiers. Secondly, if we go through the same analysis
as above but with a frequency which is an odd harmonic (3f, 5f, etc) of the
chopping frequency, we find that the switching action causes these to
produce output at frequencies low enough to pass through the output
time constant. Hence noise at these frequencies won't be blocked by the
output filter. The bandpass filter stops detector and amplifier noise at
these frequencies from reaching the output.

PSDs are used in many forms for measurement and information
processing tasks. They are an example of a Heterodyne system. Similar
techniques are used in radios, TVs, and radars. Radioastronomers use a
technique called Dicke Switching and optical astronomers use Sky Chopping
or Telescope Nodding to achieve the same results. The method is useful
whenever we wish to alter the signal frequency to avoid noise, make the
information more easily handleable, or suppress background effects. The
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special technique of Nulling is also one of the most reliable ways to make
very accurate measurements.

Summary

You should now know how Phase Sensitive Detection (PSD) systems work.
That they can be used to avoid 1/f noise in detectors and amplifiers and
can be used to subtract the effects of a steady background level. You
should also now understand that the PSD is an example of a Heterodyne
technique which uses Frequency Conversion. You should also know that a
Nulling measurement technique is useful because it means we don't have
to know exactly the sensitivity or gain of our detectors and amplifiers
when making accurate measurements.
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Chapter 17

Synchronous integration

 17.1 �Boxcar� detection systems

Phase sensitive detection systems are ideally suited to dealing with signals
which have a steady, or relatively slowly varying, level. In many situations,
however, we need to measure the details of a signal which varies quite
swiftly in a complex manner. The signal may also not last very long. In
order to measure brief, rapidly changing signals a different approach is
required. Synchronous Integration is a technique which allows measurements
to be made on complex signal patterns which have powers well below the
general detector or amplifier noise level. The technique can be employed
in various ways provided two basic requirements are obeyed. Firstly, the
signal must be repeatable so we can produce a series of nominally
identical pulses or Signal Cycles. Secondly, we must obtain an extra Trigger
signal � similar to the phase reference signal required for a PSD � which
can be used to tell the measurement system when each signal cycle begins.
Although it's usually convenient to arrange for signal cycles to occur with a
steady repetition rate, this isn't absolutely necessary provided we know
when each cycle starts.

Light
Source

Clock

Delay Set Pulse
Width

Detector Amplifier
Switch

Integrator

R

C

Analog synchronous integration (boxcar) system.Figure 17.1

These requirements are often satisfied by using some form of clock which
regularly initiates the signal and provides the trigger information.
Alternatively, the signal generating process may, in itself, provide some
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information telling us when each signal cycle begins. For the sake of
illustration we can concentrate upon a situation where we wish to measure
how the output light intensity of a pulsed laser varies with time during
each output signal pulse. The techniques described in this chapter can,
however, be applied to measure the shape of any repetitive signal pattern.

Some electrical gas discharge lasers can be arranged to produce a series of
light pulses when connected, via a suitable circuit, to a steady power
supply. Each burst of light output is accompanied by an abrupt drop in
the voltage across the gas tube. Under these circumstances we could use
the sudden fall in voltage to trigger the measurement process. More
generally, however, we will have to provide some kind of clock signal to
initiate light output. Figure 17.1 illustrates a typical system designed to
measure how the output intensity of a pulsed laser varies with time. In this
case we have arranged for the system to be controlled by a clock which
both �fires� the laser and triggers the measurements.

T

Clock Pulses

Delayed Clock

Controlled Width

Light Pulses
triggered by
the Clock

Switch "Gated"
Light Signal

Control and data waveforms in ‘boxcar’ integrator.Figure 17.2
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V {t }
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For the sake of simplicity we can assume that the clock which starts each
cycle of  light output has a period, T. This means that the resulting signal
cycles will occur at the rate, 1/T. Each clock pulse immediately starts a
signal cycle. The clock also controls the operation of a switch which can
connect the amplified signal to an analog integrator. The switch is only
closed for a brief Sampling Interval, δt, which begins after a time delay, ∆,
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following the appearance of each clock pulse.

Synchronous integration works on the basis that all the signal cycles are
similar to one another. We can then define the shape of each individual
pulse in terms of the same function, , where t represents the time
from the beginning of each signal cycle. Figure 17.2 illustrates a typical set
of pulse and signal patterns we might see in a working system of this kind.
The output voltage from the detector is amplified to produce a signal
voltage, , which is presented to the switch. Since the switch is only
connected for a brief period, δt, after a delay, ∆, following the start of each
clock pulse, the signal presented to the integrator looks like the waveform,

, shown in figure 17.2. This can be defined as

v {t }

V {t }

V g {t }
V g {t } ≡ V {t }     ∆ ≤ t ≤ ∆ + δtwhen

  V g {t } ≡ 0 ... (17.1)otherwise

We can now start with the integrator (capacitor) voltage set to zero and
allow the system to operate for n signal cycles. In the absence of any noise
this will produce an output voltage

V o {∆, δt } = nK ∫
 T

0

V g {t }  d t = nK ∫
  ∆ + δt

∆
V {t }  d t ... (17.2)

where

K =
−1

RC
... (17.3)

and R and C are the values of the resistor and capacitor used in the analog
integrator. The minus sign is present because an analog integrator
normally reverses the sign of the signal (see Chapter 15). Provided δt is
sufficiently small, the signal level will not change a great deal between the
times, ∆ and ∆+δt, and we can approximate the above integral to  say that

V o {∆} = nK V {t } δt ... (17.4)
i.e., , is proportional to the signal voltage, , which arises at a
time, , following the start of each pulse. The output is also
proportional to , hence we may increase the magnitude of  by
operating the system for more clock cycles, increasing the value of n. In
effect the system adds up the contributions from a series of pulses to
magnify the output signal level.

V o {∆} V {t }
t = ∆

nK δt V o {t }

In practice, the required signal will always be accompanied by some
unwanted noise voltage, , which � being random � will differ frome {t }
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one pulse to another. This will contribute an unpredictable amount 

Eo = K ∑
n

i = 1
∫

  ∆ + δt

∆
e {iT + t }  d t ... (17.5)

to the integrated output voltage, where  represents the noise
voltage during the i th pulse at a time, t, from its start.

e {iT + t }

Unlike the signal, these noise voltages which occur during each cycle are
not all identical. As the noise is random in nature we can't say what value
this error voltage will have when we make a particular measurement. As
with all random quantities we can only predict the average, typical, or
likely properties of the noise. Taking the simplest example of a �white�
noise input spectrum whose noise power spectral density is S . We can use
the arguments presented in section 15.2 to say that the mean noise power
added to a single integration will be . (This result comes
from considering expression 15.9 and recognising that, in this case, the

integration constant .) This means that the voltage produced
by each individual sample integration will typically differ from the next by
a rms amount 

N i = K 2S δt / 2

K
2 ≡ 1 / τ2

εn = N i = K
S δt

2
... (17.6)

The noise power spectrum of a real white noise source can never extend
over an infinite frequency range. (If it did, its total power would be
infinite!) For a practical noise source we can therefore say that the input
total noise power will be , where  represents the Noise
Equivalent Bandwidth of the input noise spectrum. Here we can assume
that this means that the noise covers the frequency range from around
d.c. (0 Hz) up to a maximum frequency equal to . The input will
therefore exhibit an input noise voltage level equivalent to an rms voltage
of .

N in = S Bn Bn

Bn

e n = S Bn

Combining these expressions we can therefore say that the input and
output rms noise voltage levels will be such that

εn = K e n
δt

2Bn
... (17.7)

This expression links the rms noise level, , at the integrator's output to
the input level, . We can now use this expression to determine the
accuracy of a measurement using the synchronous integrator, although it
is worth remembering that, in general, the precise relationship between

εn

e n
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 depends upon the details of the input noise spectrum. A more
detailed analysis would show that expression 17.7 is only strictly true for a
noise spectrum which has a uniform noise power spectral density over a
frequency range,  to  where  and . 

εn  and  e n

f m in f m ax f m in ≪ 1
2δt f m ax ≫ 1

2δt

As the actual noise level varies randomly from one measurement to
another we can say that typical measured levels after n signal cycles will be

V o ′ {∆} = nK V {∆} δt ± εn n ... (17.8)
The unpredictability of the noise means we can't predict a precise value
for V. Instead, expression 17.8 indicates the most probably result, plus or
minus the probable range of uncertainty. Here the prime indicates a
typical measured value which may not exactly equal the result we might
predict using expression 17.4. Combining expressions 17.4, 17.7 and 17.8
we can obtain

V o ′ {∆} − V o {∆} = ± K e n
nδt

2Bn
... (17.9)

In effect this shows the probable difference between the values we would
measure with and without random noise. 

From expression 17.4 we could expect � in the absence of any random
noise � to find the input signal voltage level,  at a time  from
the expression

V {t } t = ∆

V {t } =
V o {∆}
nK δt

... (17.10)

unfortunately, the inevitable presence of some noise means that a typical
measurement leads to the actual result

V ′ {t } =
V o ′ {∆}
nK δt

... (17.11)

Combining expressions 17.9�17.11 we can say that our measurement of
the input voltage at any time will be

V ′ {t } = V {t } ±  e n
1

2nBn  δt
... (17.12)

From 17.12 we see that the accuracy of  measurements of the input signal
level will tend to improve as we increase the number of signal cycles we
integrate over. Two points about this result are worth noting. Firstly, both
the total input noise level and the frequency range it covers affect the
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accuracy of the measurement. This can be understood by imagining a
situation where a given fixed total input noise power is �stretched out� to
cover a wider frequency range. The effect of such a change would be to
move some of the noise power up to higher frequencies which find it
more difficult to pass through an integrator. Hence the fraction of the
noise which influences the output will fall if  is increased while  is
kept constant. Secondly, the above result indicates the relative sizes of the
measured signal and noise voltages. When considering the performance
of a signal processing system in terms of S/N ratios we normally consider a
power ratio. Since the voltage accuracy obtained above varies as  we
can expect the output S/N (power) ratio provided by a synchronous
integration system to improve with  � i.e. in proportion with the
number of signal cycles integrated.

Bn e n

δt n

δt n

In order to measure the overall shape of the signal waveform � and
hence the way the laser intensity varies with time � we can now proceed
as follows:

Firstly, set ∆ to a particular value, zero the integrator voltage, and perform
an integration over n clock cycles. Note the integrator output level,
increment ∆ by an amount, δt, and rezero the integrator. Integrate again
for n cycles, and note the new output level. Repeat this process until a
series of  values have been gathered which cover the whole of the
signal cycle. Then use expression 17.11 for a set of times, , to
determine the shape of the input signal with an accuracy which can be
estimated using expression 17.12.

V o ′ {∆}
t = ∆

This form of measurement system is called a synchronous integrator
because we perform integrations on samples which are synchronised with
the signal cycles. Many of the earliest system employed an output time-
constant instead of an integrator. The time delay, ∆, was then slowly swept
continuously over the range 0 to T and the smoothed output displayed on
an oscilloscope or drawn on a plotter. These systems came to be called
�boxcar� integrators because the switch control pulse looked on an
oscilloscope like an American railroad waggon running along a track.

Synchronous integration systems are very effective at recovering
information about weak pulses when the noise level is quite high. As usual,
however, there is a price to be paid for this improvement in the measured
S/N ratio. The total measurement for any particular delay, ∆, takes a time
nT since we have to add up the effects of n clock cycles. Hence when we
improve the S/N ratio by increasing n, the measurement takes longer. A
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drawback of the method considered so far is that most of the time the
output integrator is disconnected from the input! Only that fraction, δt/T,
of the pulses which occur while the switch is closed contributes to the
measurement result. As a consequence, to measure all the details of the
pulse shape we have to repeat the measurement process up to T/δt times
for each ∆ value. Hence the time required to measure the whole signal
shape will be . If n is large and δt small, this can turn out to be
quite a long while!

nT 2 /δt

To improve the S/N ratio without increasing the total measurement time
we could chose to increase, δt, the duration of each sample. Unfortunately
we can't expect to observe any signal fluctuations which take place in a
time-scale less than δt because they will be smoothed away by the
integrator. When using a synchronous integrator we can only clearly
observe details of the pulse shape which persist for a time . We can
therefore reduce the total measurement time by increasing δt, but this
may mean that we can no longer see all of the fine details of the signal.
Any real signal will only contain frequency components up to some finite
maximum frequency, . From the arguments outlined in chapter 2
(section 4) we can expect that we will only be able to see all the details of
the signal when 

≥ δt

f m ax

δt ≤
1

2f ma x

... (17.13)

In practice, therefore,  usually represents the optimum choice for δt.

A smaller value increases the required measurement time, a larger value
prevents us from observing all the details of the signal.

1
2f m ax

17.2 Multiplexed and digital systems

The system we have considered so far isn't a very efficient one since, in
general, most of the signal power was ignored because it arrived when the
switch was open. This problem can be dealt with by employing a
Multiplexed arrangement. 
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Input

Multiplexed array of synchronous integrators.Figure 17.3

S1 S2 S3 S4S0
V {t }

V o {0} V o {δt } V o {2δt } V o {3δt } V o {4δt } V o {T − δt }

Figure 17.3 illustrates a multiplexed analog synchronous integration
system. This works in a similar way to the one we have already considered,
but it contains a �bank� of similar switches and integrators. In this system
the first switch, S0, is closed during the periods when , S1
when , S2 when , etc. By using an array of M
such switches and integrators, where , we can arrange that at
any time during each pulse one or another of the switches will be closed
and the signal is being integrated somewhere. At a time, t, during each
pulse the j th switch will be closed, where j can be defined as the integer
value (i.e. the �switch number�) such that . Each
switch/integrator provides a separate sampling and integration channel. 

0 < t ≤ δt
δt < t ≤ 2δt 2δt < t ≤ 3δt

M = T /δt

jδt ≤ t < (j + 1)δt

The simple system we considered earlier had just one channel and could
only look at a small part of the signal pulse at a time. The fully
multiplexed version has  channels and covers the whole signal cycle.
The system essentially produces a series of integrated output voltages,

, , etc, and gathers information about all the pulse features
�in parallel�. The advantage of this arrangement is that all of the
information from each signal cycle is recorded by the bank of integrators.
No signal information is wasted. As a result, the multiplexed system is
much more efficient at collecting information than the single-channel
version. Using this arrangement we don't have to keep repeating the
integration process as ∆ is varied. 

T /δt

V o {0} V o {δt }

Although multiplexing means that measurements can be made more
quickly and efficiently, wholly analog systems of this type are now rarely
used. This is partly because it can be difficult (and expensive) to arrange
for a large number of nominally identical switches and analog integrators,
but it is also because digital information processing techniques have
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advanced rapidly over the last few decades. Modern synchronous
integration systems often use digital techniques to obtain, relatively
cheaply, a level of usefulness it would be difficult to match using analog
methods. As usual in information processing we can build various types of
digital and analog systems to perform a given function. The system shown
in figure 17.4 makes use of a circuit known as a voltage to frequency convertor
(VFC) to implement a digital synchronous integration system. This is a
device which produces an output square wave (or stream of pulses) whose
frequency or �pulse rate� is proportional to the input voltage. At any time,
t, we can therefore expect the VFC to be producing pulses at a rate

f {t } = k f V {t } ... (17.14)

Signal
Source

Voltage to
Frequency
Convertor

Counter

Computer

Memory

Data &
Control
Bus

Example of a digital system for performing multiplexedFigure 17.4
synchronous integration of a repetitive waveform.

V {t }

f {t }
r

R0

R1

R2

R3

where  is a coefficient whose value depends upon the details of the VFC
circuit being used. The operation of this system depends upon how we
have programmed the computer. At the start of a measurement the
computer should �clear� (i.e. set to zero) the numbers stored in the parts
of its memory which it will use for data collection. The computer then
waits until it receives a trigger from the clock which is initiating the pulses
to be measured (this can, if we wish, be the computer's own internal
clock). The computer then proceeds as follows:

k f

Firstly, the counter reading is zeroed. It is then allowed to count pulses
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coming from the VFC for a time, , and the resulting number, , is
added into a memory location at some address, . The counter is then re-
zeroed, allowed to count for another period, , and the new result, ,
added into a memory location, . This process is repeated over and over
again until the whole signal cycle time, T, has elapsed. After one signal
cycle the system will have stored a set of binary numbers, , , etc, in its
memory. Each number will be approximately equal to

δt r 0

A0

δt r 1

A1

r 0 r 1

r j = k f ∫
 (j + 1)δt

jδt

V {t }  d t ... (17.15)

i.e. each number is proportional to the input voltage integrated over a
short period of time. We can now repeat this process n  times to obtain a
stored set of numbers,  , which, in the absence of any noise,
will approximate to

R0 ,  R1 ,  �

R j = N r j = nk f ∫
 (j + 1)δt

jδt

V {t }  d t ... (17.16)

In effect, these stored numbers are proportional to the integrated signal
voltages at various times from the start of each signal cycle. They contain
the same information about the signal pattern as we could have collected
with an analog synchronous integration system. As with the analog system,
if we arrange for  to be small enough we can approximate the above
integral to

δt

R j = nk f δt V {t j} ... (17.17)
where . We can therefore use the collected  values to determine
the signal voltage at various times during each signal cycle.

t j = j δt R j

The counted values are a digital equivalent of the voltages collected at the
output of a bank of analog integrators. Equation 17.17 is the �digital
equivalent� of expression 17.4 for an analog system. Each count is
proportional to the input at the appropriate moment, . V {t j}

This digital approach has a number of advantages over the analog
technique. One particular advantage of the digital approach is that it is
relatively easy to buy and use a large amount of computer memory. For
example, we can imagine buying and using a single digital memory chip
capable of holding 128 kilobytes of information. If we allocate 16 bits (i.e.
two 8-bit bytes) to hold each  we can store a set of values which
represent integrated level measurements of the input signal shape at 64 ×
1024 = 65,536 moments during each pulse. As a result, one cheap digital

R j
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memory chip can replace over 65 thousand separate analog integrators!

Summary

You should now understand how Synchronous Integration allows us to
recover the details of a weak, transient phenomenon by adding together
the information from a synchronised sequence of similar transient events.
That a Multiplexed system allows us to avoid the signal information losses
we get with a �single integrator� system which tends to ignore most of the
signal most of the time. That we can build either analog or digital systems
to perform synchronous integration. You should now also see that the
combination of a Voltage to Frequency Convertor and a Counter act as a form
of integrator.



Information and Measurement - 175 - Free PDF version

Chapter 18

Data compression

Up until now we've considered systems which always try to preserve all the
information content of a message. For example, the CD digital system
attempts to digitally encode information in a way which accurately
represents all the nuances of any input audio waveforms that fits within a
20 kHz passband and a 95 dB dynamic range. To do this for two channels
(stereo) we record and replay 2 × 16 × 44,100 = 1,411,200 bits per second.
However, as we discovered in an earlier chapter, some messages aren't
very surprising (or interesting) and therefore don't contain much �real�
information. This raises two questions:

i) Can we re-code a signal into a form which can be sent or stored 

using fewer bits or bytes without losing any real information?

ii) Do we have to carry all the details of a signal � or can we

discard details which are trivial, or �uninformative�? 

The answers to these questions are important because, if we can reduce
the amount of  bits required, we can send or store useful messages with
equipment which has a lower capacity (i.e. cheaper!). The term Data
Compression has come into use to indicate techniques which attempt to
�Stuff a quart into a pint pot�. Unfortunately, this term is used for a variety
of methods which actually divide into two distinct classes. Genuine data
compression methods attempt to cut down the amount of bits required
without losing any actual information. Other techniques, which I'll call
Data Reduction or Data Thinning, seek out and discard information which
they judge �unimportant�. Data thinning does throw away some real
information, but if it works well the lost information isn't missed! In this
chapter we'll look at Lossless data compression. We'll consider data
thinning in the next chapter.

18.1 Run-length encoding

If you use a computer very often you'll eventually encounter the problem
of running out of �space� on the discs you're using to store files of
information. Given the cash, this can be solved by buying another box of
floppies or getting a larger hard disc. A popular alternative is to use some
kind of �file compression� technique. These often let you squeeze about
twice as much onto a disc before it fills up. Various techniques are used
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for this and some work better than others. Here we'll look at a simple
example based on the way computers often store pictures and use it to see
the features all true data compression techniques share.  

Broadly speaking, computers can store information about images
(pictures) either as a set of Objects or as a Pixel Map. Although object-based
techniques tend to give better results we'll look at pixel methods since
they provide a clearer example of how data compression can work. Pixel
mapping divides the image up into an array of rectangular or square
�picture elements�. The colour of each pixel is stored as a number in the
computer's memory. The amount of information (details, range of
colours) the picture can contain is then determined by the number of
pixels in the image and the range of numbers we can store to indicate the
colour of each pixel. 

32 × 32 pixel
16 colour
image. ‘Zoomed in’ view

of the top-left corner.

‘Bit-map’ of the top part of the
zoomed in section of the image.
(15 = black; 7=grey; 0 = white.)

Example of a ‘bit-mapped’ image.Figure 18.1
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Figure 18.1 shows an example of a bit-mapped image. For the sake of
simplicity, we've limited the range of possible colours to just 16 and
chosen an image which is only 32 × 32 pixels in size. (Note that, for
computers, �colours� include black, white, and shades of grey.) In fact,
modern computers can usually cope with �24-bit� pixel maps. These
represent the colour of each pixel as 3 × 8-bit numbers � one 8-bit byte
each for the red, blue, and green levels. However, here we're just using
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four bits per pixel and only using the values to indicate the �greyscale
level� (i.e. how dark the pixel is). This makes the explanation easier, but
the following arguments also apply to full-colour pixel-map systems.

In the image shown, the darkness of each black/grey/white pixel is stored
as a number in the range 0 � 15  or %0000 to %1111 in binary. 0 means
white, 15 black, and 7 a middling grey. (Note we're using a leading �%� to
indicate a binary number.) We only need half an 8-bit byte to store the
information about each pixel. Since there are 32 × 32 pixels, each
requiring 4 bits, we need a total of 32 × 32 × 4 = 4096 bits or 512 bytes to
specify all the details of the image as a bit-map. There are various ways we
could record this information on a floppy disc or transmit is over a digital
signal link. For example, we can start in the top-left corner and group the
pixel values together in pairs to get a string of 8-bit bytes. 

The first pair (furthest top-left) of pixel colour numbers are 7 and 7
(%0111 and %0111). Grouping these bits together we get %01110111 =
119. Moving to the left, the next pair of colour numbers are 0 and 0
(%0000 and %0000) which group to produce 0. The next left pair are 0
and 15 (%0000 and %1111) which group to %00001111 = 15. The next
pair are 15 and 15 (%1111 and %1111) which group to %11111111 = 255.
And so on... having finished the top line we can repeat the left-to-right
grouping process line by line down the image. We can therefore store,
record or transmit information about the picture's pattern as the series of
bytes; 119, 0, 15, 255, etc� The number of bits or bytes required is
determined by the �size� of the picture. To represent any 32 × 32 pixel, 16
colour pattern we use 512 × 8-bit bytes. This sort of coding is called Fixed
Length because the number of bits/bytes required is fixed by the number
of pixels and doesn't depend upon the actual picture pattern. A blank
(boring) screen � all �0�s or all �15�s � requires as many bytes as a pretty
(interesting) picture.

So, can we store or send all the picture information using fewer bits/bytes?
The answer is, yes, sometimes we can by using a different way to code or
represent the information. The technique we'll use here is called Run-
Length Encoding. This is based upon only storing information about where
in the picture the colour (darkess/brighness in this case) level changes.
To illustrate this process let's assume that the small array of numbers in
figure 18.1 is the whole image we want to store or communicate. As
shown, this pattern is just 16 pixels wide and 3 pixels high. So we would
require 16 × 3 × 4 = 192 bits (24 bytes) to store or send it using the fixed
length method described above.
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Looking at the example in 18.1 the 16 × 3 bit-map corresponds to the
series of byte values: (first line)119, 0, 15, 255, 255, 255, 255, 255; (second
line) 119, 0, 15, 0, 0, 0, 0, 0; (third line) 0, 0, 15, 0, 0, 0, 0, 0. To run-length
encode this information we proceed as follows: Begin with the �first� value
(the top-left byte). We note its value � 119 � and then note how many
successive bytes have this same value � in this case just 1. We then note
the next byte value � 0 � and note how many times it appears in
succession � again 1 in this case. We keep repeating this process and
generate the values: 119, 1 time; followed 0, 1 time; 255, 5 times; 119, 1
time; 0, 1 time; 15, 1 time; 0, 7 times; 15, 1 time; and 0, 5 times. (Note that
we ignored the locations of the line ends/starts and just treated the
numbers as one long sequence of bytes.)

This process has produced the series of byte values: 119, 1, 0, 1, 255, 5,
119, 1, 0, 1, 15, 1, 0, 7, 15, 1, 0, 5. Note that this list is only 18 bytes long,
yet � provided we know the details of the run-length encoding process �
we can use it to reconstruct all of the original 24 bytes of picture
information. We have managed to squeeze 24 bytes of information into
just 18. At first sight this process seems suspiciously like magic. But it
works! We often find that this type of encoding can reduce the number of
bits or bytes required to store all the details of a picture. Similar (but more
complex) methods can be used to reduce the number of bytes needed to
store various sets of information.

The reason this magic trick is possible can be understood by considering
two �extreme� examples of pictures. First consider an image which just
consisted of a single black pixel in the middle of a 32 × 32 16-colour bit-
map. Recorded as a series of pixel-pair bytes this would be something like:
0, 0, 0, � (about 255 times), 15, then 0, 0, 0, (about 255 times), i.e. 512
bytes consisting of a string of zeros with just one 15 somewhere in the
middle. Run-length encoded the same picture information would be
something like: 0, 254 times; 15, 1 time; 0, 255 times � just six bytes!

Now consider a picture where every pixel is a different colour to its
neighbours. As a plain fixed length series this might be 512 bytes with a
pattern something like; 127, 203, 96, 229, etc� Run-length encoded it
becomes; 127, 1 time; 203, 1 time; 96, 1 time; 229, 1 time; etc. The run-
length sequence now contains 1024 bytes � twice as many as the plain set
of values! This is because we had to dutifully include an extra byte after
every pixel value to confirm that the value only appears once before a
different one occurs. We can make two general points from these
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examples:

• The encoding �doesn't always work� � i.e. it sometimes produces
an output series of values which is longer than the fixed length
original.

• The degree of compression (or unwanted extension!) depends
upon the details of the picture.

Before run-length encoding any 32 × 32 pixel × 16 colour image would be
512 bytes long. After encoding, some images are shorter, some are longer.
We've turned a fixed length input string  of symbols or bytes to a variable
length output string. In fact, if we were to repeat the encoding process for
every possible, randomly chosen, picture pattern we would discover that
on average the compression technique produces an output which is about
the same length as the fixed length input. For a randomly chosen message
the process shuffles the values but leaves us with the same number of bits
to store or communicate. However, most real picture patterns aren't
random! Provided we only use the run-length method for pictures which
contain  many regions where the colour is the same from pixel to pixel the
result will be a reduction in the number of bytes. The image shown in 18.1
has a number of large areas of white, so it compresses reasonably well
using the run-length method.

18.2 Huffman coding

Although I won't attempt  to prove it here, data compression methods all
exhibit the feature that they successfully compress some types of patterns
but expand others. On average, they don't (unless they're badly
designed!) make randomly chosen �typical� patterns either smaller or
bigger. However, most pictures, text files, etc, aren't really �random�.
There are patterns which aren't of any value. For example, the text
character sequence, �qgsdxf ftfngt zdplsdesd xotr� isn't very likely to occur
in written English. An information storage system which devotes as much
storage space to it as to, �Old Fettercairn tastes great�, is being wasteful.
Similarly, some characters or symbols occur more often than others or
convey less information.

The usefulness of compression techniques comes from matching the
technique to the types of pattern you actually want to compress. It
essentially removes the redundancy required to encode �daft� or
uninformative patterns. (The daft patterns are then the ones that would
come out longer than the original when encoded.) For this reason a
variety of compression techniques have been developed, each having its
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own good points. Here we'll consider a system called Huffman Coding after
it's inventor. For the sake of illustration we'll use the ancient written
language of �Yargish�. Although it's now rarely used it was once popular
amongst the Yargs � a tribe who lived in the hills of Dundee and worked
in the tablet mines. (OK, I'm making this up!) The language consisted of
just 8 characters � six letters, a �space�, and a punctuation mark. Here I'll
represent these characters as, , , � , � . By examining lots of
Yargish books we find that the relative frequencies or probabilities with
which each of these characters occurred were, , , � , � . From
chapter 5 we can say that the average amount of information (in bits) in a
typical Yargish message N characters long will be

X 1 X 2 X i X 8

P1 P2 Pi P8

〈H 〉 = −N ∑
8

i = 1

Pi log2 {Pi} ... (18.1)

where the angle brackets  are used to indicate that we're talking about an
average or typical value. The actual amount of information in a specific
message which contains  of the  character,  of the  character, etc,
will be

〈〉

A1 X 1 A2 X 2

H = − ∑
8

i = 1

Ai log2 {Pi} ... (18.2)

An analysis of Yargish reveals that the relative probabilities of the
character occurrences are: , , , ,

, , , and . A typical 16-character
(i.e. N = 16) message would therefore contain 38·48 bits worth of
information. However, to be able to indicate 8 distinct symbols we would
expect to have to allocate 3 binary bits per symbol to give us the require
range of possibilities (2 = 8). This means that, using a simple fixed-length
code like, , , , � , we have
to send 3 × 16 = 48 bits to communicate a 16-character/symbol message.
We've already encountered this basic problem. The fixed length coding
scheme is inefficient. It contains redundancy which could be used to help
detect and correct errors, but slows down the communication process. 

P1 = 0·125 P2 = 0·5 P3 = 0·05 P4 = 0·06
P5 = 0·055 P6 = 0·01 P7 = 0·17 P8 = 0·03

3

X 1 = %000 X 2 = %001 X 3 = %010 X 8 = %111

This arises because the symbols/characters used aren't all equally
probable. From the above values we can say that the amount of
information provided by each individual character's appearance is
typically:

  bits worth for each occurrence of an ,h 1 = − log2 {P1} = 3 X 1

 bit for each ,h 2 = − log2 {P2} = 1 X 2
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and similarly, , , , , ,
and .

h 3 = 4·32 h 4 = 4·06 h 5 = 4·18 h 6 = 6·64 h 7 = 2·26
h 8 = 5·05

From this result you can see that characters which appear more often only
convey a relatively small amount of actual information per occurrence.
For example, 's which, typically, make up half the symbols in a message
only provide 1 bit's worth of information per appearance despite using 3
bits to code. You can also see that rare symbols provide a relatively large
amount of information. 's typically only occur about once in a hundred
symbols, but when they appear they provide 6·64 bits worth of
information. This result is interesting because it shows that the fact that a
symbol or character might be coded using three binary bits doesn't mean
that it always carries just three bits worth of actual information. (However,
if all the symbols were equally probable they would each have a P value of
0·125 and an h value of 3. Then the actual number of bits used to
represent each symbol would equal the amount of actual information per
appearance.)

X 2

X 6

It is this difference between the actual information content (in bits) and
the number of bits required for fixed-length representation � where
every symbol is represented by the same number of bits (3 in this
example) � which allows us to compress data using the Huffman method.
Huffman coding represents each character or symbol by a string of bits
whose length varies from character to character. Highly probably
characters (like ) are represented by short strings. Rare characters (like

) are represented by long strings. 
X 2

X 6

The way Huffman codes are produced is shown in fig 18.2. First we list all
the codes,  to , along with their relative probabilities. We identify the
two symbols which have the lowest probabilities and bring them together,
adding their probabilities together. We then treat the gathered pair as a
fresh symbol and repeat this process over and over again. In this way we
reduce the number of �branches� by one as we move �down� from each
level to the next. Eventually we will have brought all the symbols or
characters together and reached the base of the tree where there's one
combination with an accumulated probability of 1. (Assuming, of course,
that we haven't missed anything!) The resulting tree will then have as
many levels as we have different characters or symbols � 8 in this case.

X 1 X 8

In principle we may find that three or more candidates at a given level
share the lowest accumulated probability values. If this happens we just
pick two of them at random and go on. The branch pairs which link a pair
of locations on one level with a single location on the one below can be
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called Decision Pairs. We label the two branches of each decision pair with
a �1� and a �0�. 

X 1 : 0·125
X 2 : 0·5

X 3 : 0·05

X 4 : 0·06
X 5 : 0·055

X 6 : 0·01

X 7 : 0·17
X 8 : 0·03

X 1 : 0·125

X 2 : 0·5

X 3 : 0·05
X 4 : 0·06

X 5 : 0·055

X 6X 8 : 0·04
X 7 : 0·17

X 1 : 0·125
X 2 : 0·5

X 4 : 0·06

X 5 : 0·055

X 3X 6X 8 : 0·09
X 7 : 0·17

X 1 : 0·125

X 2 : 0·5
X 4X 5 : 0·115

X 3X 6X 8 : 0·09

X 7 : 0·17

X 1 : 0·125
X 2 : 0·5

X 4X 5X 3X 6X 8 : 0·205

X 7 : 0·17

X 1X 7 : 0·295

X 2 : 0·5

X 4X 5X 3X 6X 8 : 0·205

X 1X 7X 4X 5X 3X 6X 8 : 0·5

X 2 : 0·5 X 1X 2X 3X 4X 5X 6X 7X 8 : 1

1

1

1

1

1

0

0

0

00

Huffman �Tree� for Yargish.

‘leaves’

‘base’

Termination Nodes. Direct connections

X 1 = 111 X 2 = 0 X 3 = 1001 X 4 = 1011

X 5 = 1010 X 6 = 10001 X 7 = 110 X 8 = 10000

Codes generated from the above tree.

Example of the use of a Huffman Tree.Figure 18.2

1

0

1

0

To work out the Huffman code of a given character or symbol we start at
the base and follow the branches back up the tree until we find the lowest
level where the character appears by itself. The points we arrive at in this
way are the Terminal Locations (or Terminal Nodes) of the characters. Note
that there is just one terminal node for each character. The Huffman
code can be created by noting in turn the �1�/�0� values which label each
of the deciding branches where we have to choose which of two ways to
proceed �up� the tree. The Huffman codes for Yargish are shown in figure
18.2. You should be able to see how these codes are produced by working
your way up the tree for yourself and using the above recipe. As you can
see, the Huffman code for the most commonly occurring code ( ) is the
shortest, having just one bit. The least common codes ( ) are
the longest at five bits each. The codes, , which occur with a
probability whose value almost equals the value we would get for equi-
probable codes (1/8 = 0·125) have 3 bits each � i.e. the same number as
we need for an equal-length coding system. Consider a specific but fairly
typical 16-character Yargish message;

X 2

X 6 and  X 8

X 1 and  X 7

X 4X 2X 2X 1X 2X 3X 5X 2X 2X 8X 2X 7X 2X 1X 2X 7
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Using a plain fixed-length digital code, , ,
, etc, this produces the result;

X 1 = %000 X 2 = %001
X 3 = %010

%011001001000001010100001001111001110001000001110

which is 16 × 3 = 48 bits long. Using the Huffman code we worked out in
figure 18.2 the same message becomes;

%1011001110100110100010000011001110110

which is only 37 bits long.

Using equation 18.2 we can work out the actual amount of information in
this particular message. There are 2 × 's, so ; 8 × 's, so ;
similarly, ; ; ; ; and . Using
these values and the probabilities given earlier we get a total information
content of  bits. We worked out earlier that a �typical� Yargish
message 16 characters long would convey 38·48 bits worth of information,
so this specific message is slightly on the boring side of typical! Note that
the actual number of bits required for Huffman coding is quite close to
the actual information content. The equal length coding version, 48 bits
long, has about 10 redundant bits in it.

X 1 A1 = 2 X 2 A2 = 8
A3 = 1;  A4 = 1 A5 = 1 A6 = 0 A7 = 2 A8 = 1

H = 36·74

Huffman coded messages are slightly more difficult to decode than
conventional equal length systems. When we receive an equal length
coded message we can immediately chop it up into parcels of so many bits
per symbol. Then we just look up each section in a code table. For
Huffman codes we have to proceed as follows.

Begin with the first bit by itself (�1� in the above example). Ask, �Is this one
of our legal Huffman codes?�. If it is, write down the appropriate character
and throw the bit away. If not, take the next bit and put it next to one we
have. In the example we're using �1� isn't a legal code, so we join the next
message bit to it and get �10�. Is this a legal code? No, so take the next
message bit and join it on to get �101�. No, so take the next and get �1011�.
This is a legal code, for , so we now know that the first character of the
message is . Having discovered a legal code we throw away the bits we've
accumulated and go on. The next message bit is a �0� � the legal code for

. So we know the next character is . Having discovered this, throw the
accumulated bit away and find, etc, � . We decode the message by taking
the bits in order and accumulating them until we discover a legal pattern.
We then recognise that character, throw away the accumulated bits, and
continue along the message string until we've accumulated another
recognisable legal pattern. In this process we're essentially �working our
way up the tree� until we reach a termination location and we've identified

X 4

X 4

X 2 X 2
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the character sitting at the top of that branch. We then start at the base of
the tree and work our way up again.

Many modern data compression schemes are Adaptive. The above example
worked out its Huffman tree codes using the overall probabilities � i.e.
using the frequency with which each Yargish character occurs in the whole
Yargish language. Given a long specific message we can often do a bit
better by using the numbers of times the characters appear in that
message. Consider the example of a message which consisted of 16 's.
Using the above coding this would become 

X 8

%10000100001000010000100001000010000100001000010000

100001000010000100001000010000

which is 16 × 5 = 80 bits long! In one sense this seems fair, such an
unusual/surprising message is likely to carry a lot of information.
However, if we'd worked out our Huffman tree using just this message for
the probability values we would have said, �No 's, 's, � 's, and 16
out of 16 places are 's, so , and if we
just consider this message and ignore the rest of the Yargish language. On
this basis we'd have coded  as %0, and all the other characters with
longer codes. The coded message would then have been 

X 1 X 2 X 7

X 8 P1 = P2 = � = P7 = 0 P8 = 1

X 8

%0000000000000000

i.e. only 16 bits long. By adapting the coding process according to the
message's details we have dramatically improved our ability to compress
the number of bits. However, this process has a snag � without the
original message how does the receiver of the signal know that a �0� means
an ?X 8

The advantage of basing the coding on the overall probabilities of various
symbols means that all message senders and receivers can agree in
advance what coding they're going to use. The adaptive system means
each coding system is created specially for that particular message. For it
to be decoded we need to provide the receiver or decoder with a �key�.
This is usually done by providing a Header Table before the main part of
the message. This lists the details of the coding used for this specific
message in a pre-agreed form (i.e. not encoded in the special-for-this-
message form). Since this part of the message can't be compressed in an
adaptive way, and it must give details of all the code patterns, it can be
fairly long. As a result, for a short message like the 16�character one we're
considering it can end up being longer than the �main message� itself!
Because of this, adaptive encoding is usually pointless for very short
messages. Similarly, very long messages tend to use symbols or characters
about as frequently as we would expect from their general probability, so
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adaptive methods may sometimes be a waste of time with long messages. 

The main advantage of adaptive compression arises when we have to
compress different types of data which have different symbol probabilities.
For example, when using a computer we might want to compress both text
(ASCII) files and pixel image files. Although both types of file store
information as strings of 8-bit bytes the frequencies with which different
byte values occur are different for English text and for pretty pictures. A
coding scheme fixed to be ideal for text would do a poor job with images,
and vice versa. Adaptive encoding means we can use the same computer
program to compress/expand all types of files and generally get good
results. 

Summary

You should now understand how we can use Data Compression to remove
redundancy from messages and store/transmit them using fewer bits. You
should also understand how Run-Length and Huffman codes are generated
and used. You should also know that Adaptive coding is useful when we
want to compress various types of data, but that it may be better to use a
non-adaptive system for specific data types � e.g. text.

Questions

1) Explain the difference between true Data Compression and Data
Reduction. 

2) Explain how Run�Length Encoding can be used to compress pixel data
�picture� files. What characteristic of pixel data makes this a suitable
system for this type of information? When will files encoded in this way
come out longer than the initial picture files?

3) A code system consists of four symbols, A, B, C, and D. These typically
occur in messages with the relative probabilities, , ,

, . How many bits per symbol would be needed to
send messages using a Fixed Length code system? Use a �tree� diagram and
derive a Huffman Code for the symbol set.  Calculate how many bits a
typical message, containing 512 symbols, would require if encoded in this

PA = 0·2 PB = 0·05
PC = 0·22 PD = 0·53
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way. A specific message contains 256 �A�s and 256 �D�s. How many bits are
required to send this message in Huffman coded form? [2 bits/symbol.
Average of 880·64 bits for typical message. 1024 bits for the specific
message.]
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Chapter 19

Data thinning

In the last chapter we saw how it's possible to compress data in order to save
on data storage space or send information more quickly and efficiently.
True data compression reduces the number of bits or symbols in a message
without losing any information. Sometimes data compression still leaves us
with an amount of data which is inconveniently large. In such cases it may
be necessary to throw away some of the �less important� information in
order to produce a message small enough to communicate or store.
Public relations and sales executives don't like to admit this kind of thing,
so systems which do this still tend to be called �data compression� in
advertising literature. However, they are more honestly called Data
Thinning or Data Reduction systems. To see how they work we will use two
examples. The first is the JPEG format for photographic images, the
second is the ATRAC format used to compress audio data on MiniDiscs.
Both of these compression systems � and many others � make use of a
specific type of transform called the Discrete Cosine Transform. It is therefore
a good idea to start by explaining what this is and how it works.

19.1  The Discrete Cosine Transform

Fourier Transformation has already been described at the beginning of
Chapter 7. Data thinning is based on an assessment which decides that
some details of the data are nominally more or less �important� than
others. For audio or visual data this judgement will depend upon the
details of human perception. The rules for this are complex and do vary
to some extent from one person to another. However experiments have
shown that one of the most effective ways to proceed is to convert signals
into some form of frequency spectrum and then discard those frequency
components that are �too small to be missed�.

The Discrete Cosine Transform (DCT) is a particular form of Fourier
Transform that happens to be convenient in situations where we wish to
deal, quickly, with data that is in the form of a long stream of integer
values. To understand how it works, and why it is convenient in practice
we can begin by considering the example shown in figure 19.1. 
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The lower part of figure 19 shows a digital stream of data of the kind we
might expect to be produced from digitising an audio signal. Using the
arguments presented in Chapter 7 we could, if we wished, take the entire
data stream and Fourier Transform it to obtain a representation of the
same information as a series of numbers that indicate the frequency
spectrum of the audio pattern.

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Figure 19.1 Splitting a long set of samples into discrete ‘chunks’

An entire audio recording may contain many millions of sample values,
and represent a sound pattern lasting for an hour or more. Fourier
Transforming an entire recording of this length would take quite a long
time even using a powerful computer. In addition, the transformation
process could normally not begin until all the data from the recording
had been loaded into the computer�s memory. This would also be likely to
take a significant time.

Long delays of this kind might be annoying enough in a recording studio,
but would be completely unacceptable in a domestic audio player. It is
unlikely that a device like a CD or MiniDisc player would ever have
become popular if a disc had to be pre-loaded a half an hour or so before
the music could be heard! However, breaking the data up into chunks
gives us a double advantage. Firstly, each chunk now contains a relatively
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small number of data points, and hence can be transformed and
processed relatively quickly. Secondly, each chunk can be processed
without having to wait until later samples have been read. As a result, the
processing only produces a short delay as the data is streamed through the
processing systems. An additional practical advantage is that the amount
of temporary storage (memory) required to hold intermediate values
during the calculation will be reduced, thus reducing the complexity and
cost of the system. For these reasons it is therefore convenient in practice
to break up the data stream into brief, manageable chunks and process
these one after another.

A conventional Fourier Transform will take a series of input values and
compute two sets of results. Depending on how we wish to represent the
process these are either in the form of pairs of amplitude values,  and

, or magnitude and phase pairs. If we use the same approach as
described at the start of Chapter 7 we can say that the  values represent
the Cosine contributions to the signal pattern and the  values represent
the Sine contributions. Cosine waves are �even� or �symmetric� patterns �
i.e. all Cosine waves have the property that

An

Bn

An

Bn

Cos {x} = Cos {−x } ... (19.1)
whatever the value of . In a similar way, Sine waves are always �odd� or
�antisymmetric� and are such that

x

Sin {x} = − Sin {−x } ... (19.2)
The DCT transform differs from a conventional Fourier Transform in two
ways. The first difference is that the input and output values of a DCT are
generally in the form of integers, nor real or floating point values. The
second is that the DCT only computes and uses the Cosine components.

The symmetric properties of Cosine waves means that the DCT can only
record or represent the symmetric part of an input pattern. Any
antisymmetric patterns or components of the input will be ignored since
we have neglected the Sine components which are required to represent
them. However, if we look at the typical patterns of the chunks shown in
figure 19.1 we can see that the chunks aren�t all nicely symmetric shapes.
To avoid any unwanted information loss we must therefore do something
to the data before performing the DCT in order to take this into account.

The simplest approach is illustrated in figure 19.2. We assume that the
origin of the time axis for each chunk is at the start of the chunk. A copy is
taken of the chunk pattern (i.e. of the sample values). The copy is then
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�reflected� in the time axis and joined to the start of the pattern. The
result is a new pattern which is symmetric about time zero for that chunk.
Hence each of these modified patterns now only requires a set of cosine
components to describe its Fourier Transform.

Chunk 1

Chunk 2

Chunk 3

etc...

Figure 19.2 Converting chunks into symmetric form

Origin

0 0

copy
Reflected

When we now take the DCTs of the modified chunks we find that haven�t
lost any information by ignoring the sine components of the transform.
This is for two reasons. Firstly, the added reflections mean that we have
forced any sine components we tried to calculate to always be zero, hence
the values are known without having to work them out. Secondly, the new
patterns have more sample points than the initial chunks so we have to
compute more cosine values to take them all into account. The result is
that the DCT generates just as many values as a conventional Fourier
Transform, but in a different form. We haven�t lost any data by using the
DCT, just produced it in a form that may be more convenient.

An alternative way to view the difference between the DCT and a basic
Fourier Transform is in terms of the normal assumption, explained in
Chapter 7, that the signal pattern is �periodic�. For the basic transform,
this means we assume that the signal�s spectrum can be fully described in
terms of just the frequencies that will fit an integer number of cycles into
the total length (interval) of the set of samples. By adding the reflected
copy we now have an extended set of samples, twice as long as the original.
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Making the same �periodic� assumption for this extended set means we
now choose a set of frequencies that fit an integer number of cycles into
the longer interval covered by the extended set of samples.. This means
the frequencies used to specify the spectrum now have an integer number
of half-cycles in the original signal interval � i.e. we get �twice as many
frequencies� in the required bandwidth. This doubling of the number of
frequency components replaces the �ignored� Sine components to make
up the complete amount of data required to represent all the details of
the signal.

19.2  JPEG compression

The above explanation assumes a �linear� stream of data similar to that
which we might obtain for a musical signal. JPEG files store data about 2
dimensional still images, usually colour pictures. The name �JPEG� is an
acronym for �Joint Photographic Experts Group�. Strictly speaking, an actual
image file should be referred to as a �JFIF� (JPEG File Interchange Format),
but it has become conventional to name the files after the group of people
who devised the system. It is also worth noting that there is no single
format for JPEG images. Instead the JPEG process is more like a menu of
options that may be selected and used as preferred. Here we will just
outline a typical JPEG thinning process.

Chapter 18 has already explained how an image can be represented in
terms of a bitmap that records a set of values that specify the brightness
and colour of a pattern of pixels. A monochrome (black and white) image
only requires one number for each pixel since it only records a brightness
pattern. A colour picture has to record extra data to indicate the hue of
each pixel.

The simplest way to record the colour and brightness information would
be to have three values, R, G, and B, that indicate the levels of red, green,
and blue for each pixel. This approach works but turns out not to be very
efficient for a number of reasons. For example, the human eye is much
more sensitive to changes in the intensity of green light than either red or
blue. In addition the eye has a lower resolution for colour changes than
for changes in brightness.

To exploit these human characteristics, the JPEG (along with many other
image processing or communication systems) defines the brightness and
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colour of each pixel in terms of three specific values. One is the luminance
defined as

Y ≡ R + G + B ... (19.3)0·3 0·59 0·11

This is the equivalent of the �brightness� of each pixel. The levels of red
(R ), green (G ), and blue (B ) are weighted with differing factors. This is
to make the resulting value more sensitive to changes in the green level
than to the other colours. Hence the luminance value takes the eye�s
behaviour into account and gives the optimum performance for a given
range of data values.

The other two values are colour difference signals which we may define as

C B ≡ B − Y  ;  C R ≡ R − Y ... (19.4 & 5)
Since we still have three values ( ) we can expect to still be able
to convey any trio of ( ) values so no information is lost. In
principle, all we have done is converted one set of thee numbers per pixel
into a different set that represents the same information. However, this
new set has some practical advantages which become apparent during the
JPEG creation process.

Y , C B,  C R

R ,  G ,  B

R11,  G 11,  B 11 R12,  G 12,  B12 R13,  G 13,  B13 R14,  G 14,  B14 ...

R21,  G 21,  B 21 R22,  G 22,  B22 R23,  G 23,  B23 R24,  G 24,  B24 ...

R31,  G 31,  B31 R32,  G 32,  B32 R33,  G 33,  B33 ...

R41,  G 41,  B 41 R42,  G 42,  B42 ...

...

Y 11,  C B11,  C R11 Y 12 Y 13,  C B13,  C R13 Y 14 ...

Y 21,  C B21,  C R21 Y 22 Y 23,  C B23,  C R23 Y 24 ...

Y 31,  C B31,  C R 31 Y 32 Y 33,  C B33,  C R 33 ...

Y 41,  C B41,  C R 41 Y 42, ...

...

Input set of colour pixel values

Generated luminance and colour difference signal values

Figure 19.3 Converting colour pixel values into 4:2:2 format

The JPEG format includes two requirements regarding the size and layout
of an image. Firstly, images cannot be be more than 65,536 pixels wide or
high. Secondly, the colour difference values must have half the horizontal
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resolution of the luminance.  We can use fig 19.3 to see what this means.

The figure represents part of the colour pattern of an initial image in
terms of an array of red, green, and blue values. These are then converted
into a generated set of luminance and colour difference values. The
luminances for each pixel are simply obtained using equation 19.3 and a
value is generated for each pixel. The colour difference values obtained
using expressions 19.4 and 19.5 are averaged over pairs of input pixels
that are horizontally adjacent to one another. This means that some of the
original image data is lost and the horizontal colour resolution is reduced
by a factor of two. 

Since the human eye tends to recognise shapes in terms of brightness
changes this loss in colour information usually has surprisingly little effect
upon the appearance of the image. It does, however, mean that we have
already discarded 40% of the data without significantly degrading the
perceived image. This arrangement where we have halved the number of
colour values in this way is said to be in �4:2:2� format. This arrangement is
required for the input to standard JPEG compression.

The luminance and colour difference values are now divided into three
separate sets, for , and processed separately. Each set of
values is DCT processed. Since the process is similar for each of the three
sets of values we can now just use the luminance set as an example.

Y m n ,  C Bm n , C Rm n

Since we wish to perform a DCT we have to ensure that the pattern is
symmetric. Unlike the audio data considered earlier, the data is 2
dimensional, so we have to perform a 2 dimensional transform and start
with a pattern that is symmetric in 2 dimensions. This means we have to
�reflect� the data in both the horizontal and vertical directions. We also
have to split the total image into 2 dimensional chunks of 8 × 8 values. In
practice, this means we have taken a 16 × 8 chunk of pixels from the
original image and then will have two side-by-side 8 × 8 luminance chunks
and a pair of colour difference chunks to process.

For a given chunk we can represent the luminance data as a set of values,
, where . The DCT values can then be

computed using the expression
Y m n 1 ≤ m ≤ 8,  1 ≤ n ≤ 8

Z i j =
C iC j

4 ∑
8

m = 1

∑
8

n = 1

Y mn Cos {πim

8 } Cos {πjn

8 }
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... (19.6)
The  values represent the �spatial frequencies� of variations in the level
from pixel to pixel. Here each of these integers can take values from zero
to seven to cover all the expected data. As a result we can obtain as many

 values for our output 2 dimensional spectrum as there are data points
in the original image block. Hence we can expect to obtain a set of
spectral values which contain all the information. In practical terms, the

 values indicate the number of half-cycles of fluctuation in luminance
across the block in the horizontal and vertical directions for each
component in the spectrum. So, for example,  represents the
amount of uniform brightness across the block � i.e. the �d.c.� level of the
data.

i ,  j

Z i j

i ,  j

i = j = 0

The coef�cients, , are chosen so as to normalise the results correctly.
This means that  if  and  otherwise, and similarly
for . It is worth noting that the actual calculation specified by equation
19.6 does not actually need to use the �extra� values which the reflection
process creates. We already �know� these values and, by symmetry, they
simply increase the amplitudes of all the frequency components we are
calculating by a factor of four. Hence we don�t actually need to spend time
including them in the computation!

C iC j

C j = 1 j = 0 C j = 1 / 2
C i

Having divided the image data into blocks and performed the DCT to
convert the information into spectral form the next step is to actually �thin
out� the data. To see how this is done, consider fig 19.4. This shows a
typical array of  values which we wish to process.Z i j
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Spectrum Threshold Limited Zig-Zag

Figure 19.4 Thinning the image spectrum data.

Here we start with the spectrum component values which have been
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obtained from performing a DCT on a block taken from an image. The
values shown in the figure are chosen purely for the sake of example. We
next choose a Threshold level and set any values whose magnitude is less
than the threshold to zero. Provided that we choose a high enough
threshold this will produce a result where many, if not most, of the values
are zero. We can then turn the 2-dimensional pattern into a string by
reading through the values along a Zig-Zag path. For the data given in the
example, this produces a set of 64 values

121, -81, 70, -65, -31, 58, 0, -59, 41, 39, 0, 0, 0, 0, 0, �… etc …

We can now compress this by using a method such as Run-Length Encoding.
The result is a set of values

1, 121, 1, -81, 1, 70, 1, -65, 1, -31, 1, 58, 1, 0, 1, -59, 1, 41, 1, 39, 7, 0, 1,
36, 1, -39, 45, 0.

Note that this new set only requires 28 numbers to describe the contents
of the entire 2-dimensional pattern. By setting a suitable Threshold and
taking a Zig-Zag path we have created a set of data that typically contains
large runs of identical values (i.e. zeros), hence we can compress the data
from 64 to 28 symbols (integer values in this case) by using Run-Length
Encoding.

In most photographic images of natural scenes there is a tendency in most
areas of the image for the low frequency components to have significantly
greater amplitudes than the higher frequencies. The above process
therefore tends to remove the high frequency details of the image.
However it only does this in blocks of the image where the high-frequency
data is small enough to fall below the chosen threshold. If a block contains
large high-frequency components � e.g. at the edge of some artificial
object in the picture like a building � these will be above the threshold
and will be preserved in the compressed data. 

The Zig-Zag path means we tend to cluster together the low-frequency
(top left of the spectral pattern as shown) and high-frequency (towards
the bottom or right as shown) to mean that we can get the longest
possible runs of zeros when we follow the path. 

The method therefore tends to adapt itself in a way that allows high-
frequency (and hence small-scale �sharp� details) to be preserved in parts
of the image where there are important sharp details, but remove them
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where the small details have low contrast. As a result the main features of
the image are preserved in detail whilst less obvious (to the human eye)
details are discarded. Although not explained in detail here, the JPEG
process also includes an extra step. This weights the spectral components
and emphasises some frequencies before the threshold is applied. The
purpose of this is to take into account the tendency of the human eye to
be more sensitive to some frequencies than others. The effect is to
optimise the appearance of the result when it is reconstructed from the
JPEG data for a given amount of data thinning.

We may now summarise the JPEG/JFIF creation process in terms of a
series of steps

1 Arrange the initial image data into 2-dimensional blocks of integer
values.

2 Convert the  values into  valuesR ,  G ,  B Y ,  C B,  C R

3 Perform a 2-dimensional DCT on each block of values

4 �Weight� the values and then apply a Threshold to set the lowest
values in each block to zero

5 Convert the 2-dimensional pattern into a Run-Length Encoded
series by following a Zig-Zag path.

6 Save the resulting string of values as a JPEG/JFIF file.

The resulting set of data has been Thinned by applying the chosen
Threshold level. The higher the level, the more image data we will have
lost. This is often under the control of the user. A typical program for
performing JPEG/JFIF compression will often provide some form of
�quality setting� to allow the user to make a choice. The higher the chosen
Threshold, the smaller the resulting JPEG file will be, and the more detail
will have been discarded. The final process is the Run-Length Encoding
that packs the remaining information reasonably efficiently by exploiting
the runs of zeros that the Threshold tends to create.

19.3 ATRAC audio compression

When compressing or thinning audio data rather than photographic
images we may have different criteria for deciding what information might
be �unimportant� and hence may be discarded. However, once this is
done, we can apply similar DCT methods to those described in the last two
section to process the data. We can therefore concentrate here on the way
in which information is selected for thinning or being preserved. As with
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the JPEG/JFIF there are a number of differing detailed schemes for
thinning or compressing audio data.

Here we will tend to concentrate on the ATRAC system (Adaptive
TRansform Acoustic Coder)which was developed by Sony for their
�MiniDisc� digital recording/replay system. It is worth noting that, in
general terms, the systems developed by Philips and others for other
applications employ similar methods but differ in detail. As with the JPEG
what follows is just an outline explanation designed to explain how the
data thinning process works.

As indicated by the previous sections of this chapter, the incoming data is
first divided up into short chunks for processing by DCT. However, the
process is a modified approach, hence often referred to as MDCT
(Modified Discrete Cosine Transform). The incoming stream of digital
values is pre-processed by passing the data through a digital filter. This
separates the information into three distinct data streams, each containing
only the information about a specific frequency band. (Remember that
the signal is likely to be stereo audio, so this means two input channels
have been pre-processed to obtain six streams of digital data.)

The bands chosen for ATRAC are, 0 - 5·5 kHz, 5·5 - 11 kHz, and 11 - 22
kHz. Each band is then MDCT processed to obtain the spectrum it
contains. The division into these three bands is a specific feature of
ATRAC. It is designed to exploit the fact that the human ear responds
differently to high, medium, and low frequency signals and means each
band can be processed separately to try and achieve optimum results.

The MDCT process uses �overlapping� chunks � i.e. each chunk of data
samples includes some sample values from the adjacent chunks. This
means that each of the resulting chunk spectra contains duplicate copies
of some data from the earlier and later chunks. The extra data is then
removed to avoid wasting storage space. Although not strictly necessary
from the viewpoint of information theory, this process of overlapping and
discarding means the results provide a smoother result when thinned data
is reassembled.

The reason why MDCT overlapping is useful for musical and speech data
can be understood by considering what happens when a sudden transient
sound occurs at a time that happens to make it fall across a chunk
boundary. The front edge of the transient is processed and thinned by
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processing one chunk spectrum. The tail of the transient is processed and
thinned by processing the next. Since the spectra of the two parts of a
quickly changing event are likely to be different there may well be an
abrupt change in the pattern which is reconstructed from the thinned
data. By making chunks overlap we can ensure that any sudden change in
the waveform will always appear in the main part of one chunk. Thus we
can avoid discontinuous changes in the way such events are stored and
reconstructed. This property is quite important as human hearing is very
sensitive to the nuances of brief transient events and changes.
Experiments show that these features are a critical part of our ability to
recognise sounds and determine their direction of arrival. Overlap is
therefore very useful in improving the perceived quality of sound patterns
reconstructed from the thinned data, although in strict information
theory terms it is not required.

A second feature of ATRAC is that the chosen block lengths for the data
chunks is varied depending upon how complex (and loud!) the signal is at
any time. When the signal is a simple, periodic pattern large blocks are
collected and transformed. When the signal is complex and rapidly
changing, the blocks transformed and processed are much shorter. By
dividing the input into the three bands it becomes possible to choose their
block lengths independently. This tends to help the system optimise the
amount of compression (thinning). In practice, the data blocks
transformed can be as short as 1·45 ms, or as long as 11·6 ms, depending
upon the details of the signal.

Having obtained a set of spectra (one for each band of each audio
channel) the next step is to thin the actual data. For ATRAC recordings
the data rate must be reduced to 292 kbits/second. This is significantly
less than the 1·4 Mbits/second used by conventional audio CDs. As with
images the approach is designed to exploit the behaviour of human
senses, so we need to consider the properties of human hearing to
understand what takes place.

ATRAC encoding (and other forms of audio compression/thinning)
makes use of the fact that most musical/spoken signals consist largely of
periodic or coherent signals which can be relatively easily described as a
combination of a modest number of sine/cosine wave frequency
components. It also exploits two characteristics of human hearing called
Masking and the Threshold level. Masking is the effect where a loud sound
tends to overpower or �swamp� our ability to hear a quieter tone at a
similar frequency. The Threshold represents the lowest sound level which
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can be heard. 

In principle, any sound components which are masked or below threshold
can�t be heard. Hence we can seek to exploit these effects to discard some
frequency components without the perceived sound being altered when
the resulting thinned spectrum is used to reconstruct the audio waveforms
when the recorded music is replayed. In reality, of course, hearing varies
from person to person so it it is open to question how effective this may be
in a given case. That said, the results when using a modern ATRAC (or
similar) system are generally quite convincing and impressive given the
large degree of data thinning that has occurred.

Hearing threshold of
a typical healthy young adult.
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The left-hand graph of figure 19.5 shows the lowest sound intensity which
can be heard by a typical healthy young adult. (A male, aged 15�25.
Females tend to have have slightly better hearing, older people often have
worse hearing.) The line indicates the quietest sounds at various
frequencies which are just on the limit of being audible. The sound
intensities are quoted in dBs referenced to a level of 10  W/m  which is
about the limit of hearing at 2 � 3 kHz. The right-hand graph illustrates
Masking. In this example a tone of 60 dB (10  W/m ) at 500 Hz makes
another tone of 30 dB (10  W/m ) at 700 Hz �inaudible�. (Note that in
reality, normal human hearing is rather better than the above values
would apply. The values given here are purely for the sake of
explanation.)
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The spectrum of each channel band block is divided into a set of sub-
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bands as illustrated in figure 19.6. The encoding circuits examine the
signal's frequency components in each sub-band. In sub�band 1 the only
component, �A�, is below the threshold of audibility, so the ATRAC
encoder ignores it. Similarly, there's nothing detectable in sub-band 2. In
sub-band 3 there are two signal components, �B� and �C�. If �B� were
absent �C� would be above threshold so the encoder would send
information about it on to the recording. However, by comparing the two
components the encoder decides that �C� is masked by the presence of the
signal �B�. So the encoder decides to ignore �C� but sends information
about �B� on to the MiniDisc.
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Some sub-bands of the frequency spectrum.Figure 19.6

In sub-band 4 the signal component, �D�, is high enough for the encoder
to decide it is above the threshold and the masking level set by �B�, so
information about it should be sent to tape. In sub-band 4 the component
�E� is above threshold, so information about it should be preserved for
recording. The ATRAC system scans through all the sub-bands in this way
and identifies those signal components which can safely be ignored
because they are below the threshold/masking level. The components to
be ignored are assigned zero values. Hence as with the JPEG example, if
we choose a high enough threshold we can thin out a significant amount
of the data and obtain a pattern which will compress efficiently.

The encoder has been programmed to assemble a specific number of
output bits per data block which it can use to describe the spectrum of the
signal during that frame period. It carries out a process of allocating some



Information and Measurement - 201 - Free PDF version

output bits to each of the �audible� components which are then used to
describe their amplitudes, phases, and frequencies.  This is a requantising
process where we can, again, reduce the number of bits required by
lowering the precision of components the system judges to be of lesser
importance. The most powerful components tend to be allocated more
bits so that they can be specified more precisely. 

As with CD, ATRAC/MiniDisc recorders also employ data interleaving,
Eight-to-Fourteen Modulation, parity bit error detection and correction,
CIRC encoding, etc, to try to avoid problems due to data bits being lost
during replay. Although some details are modified, the MiniDisc is similar
in many ways to CD. Here we can ignore these similarities as we are only
interested in using it as an example of data thinning.

The success of the thinning system can be seen at the most simple level in
the fact that, despite the similarities, the actual MiniDisc is physically
much smaller than a normal CD. A MiniDisc typically thins the number of
bits which have to be stored by approximately a factor of five whilst
preserving a sound quality broadly similar to the uncompressed CD.
Indeed, some modern MiniDisc recorders use ADC/DACs with more than
16 bits/sample (typically 20 bits/sample) so in some ways they can be
argued to be better than a conventional CD.

Summary

You should now know how the JPEG and ATRAC systems for Data
Reduction or Data Thinning work. That each exploits features of the
situation where it is applied � the properties of human vision and
hearing � to identify and discard information that is judged to be
relatively �unimportant�. That each optimises its output in an adaptive way
to the signal details. You should now also understand that data reduction
techniques can be useful provided that the process of deciding which
parts of the signal to discard is performed in a manner appropriate to the
context � i.e. it depends upon the nature of the signal and the use to
which it is to be put. It should also be clear that the success of data
thinning depends critically on how well the system avoids removing
information about signal details which do, in fact, matter!
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Chapter 20

Chaos rules!

Engineers generally prefer to use circuits and systems which behave
predictably. For example, when designing digital logic they tend to use
circuits that perform well-defined functions like AND, OR, or NOT. A
careful search through the catalogues of chip manufacturers won't
uncover any PROBABLY, SOMETIMES, or WHYNOT gates! Similarly,
when we buy a new watch we expect it to keep �good time�. The hands
should move or the displayed number change at regular intervals. A clock
whose hands moved unpredictably faster or slower, perhaps even
sometimes going backwards, wouldn't be much use � except perhaps to
someone producing a railway timetable�

Most of the simple signal generators used in engineering and science
produce periodic output patterns like sinewaves or squarewaves of a well-
defined frequency. We also tend to analyse more complex signals in terms
of combinations of sets of periodic signals � e.g. Fourier analysis which
represents signals as patterns of sinewaves. Despite this, there are signals
which vary in a very different way.

The most familiar non-periodic signals are random noise, and we spent
some time considering noise and its effects at the beginning of this book.
In this chapter we'll consider a new sort of signal and signal-source called
Chaotic. Both random noise and chaotic signals/oscillators have important
uses in special applications like secret or Encrypted messages. We'll be
examining secret messages in the next chapter. First we need to discover
some of the basic properties of chaotic signals and the systems which
create them.

20.1  Driven nonlinear systems and bifurcations

For a system to be able to produce a chaotic signal it has to exhibit some
kind of Nonlinearity in its behaviour. A simple example of a nonlinear
electronic device is a diode. The current passing through a diode isn't
simply proportional to the voltage across it. Diodes do not obey Ohm's
Law, unlike resistors they have a nonlinear current�voltage relationship.
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Another requirement for a system to behave in a chaotic way is that it has
to have some kind of �memory� built into it so that it's behaviour now
depends upon what happened to it a while ago. Note that although these
general conditions are required, they don't guarantee that a system will
show chaotic behaviour.

One of the simplest kinds of electronic system which fits the bill is
illustrated in figure 20.1. The resistors,  and , inductors,  and ,
and capacitor, , in this circuit make what RF and microwave engineers
would called a Lumped Element Network version of a very short length of
Transmission Line. (Here the term, �lumped element�, means �made from a
set of distinct components� rather than an actual length of cable or line.)
The network connects a Varactor Diode to a pair of signal sources,  and

. A varactor is a capacitor whose capacitance varies with the applied
voltage. For reasons we won't bother with here some diodes, when reverse
biassed, have this property. Hence diodes of this type are called varactor
diodes. In general, the varactor's capacitance tends to fall rapidly as the
applied voltage is increased.

R1 R2 L1 L2

C

V ac

V d

+
−

V a c

V b

R1 R2L1 L2

C
I 1 I 2

V c V

Varactor
diode.

Varactor diode driven via a simple RCL circuit.Figure 20.1

An inductor will store energy in the magnetic field set up by the current
flowing through it. Similarly, a capacitor will store energy in the
electrostatic field between its plates when charged by an applied voltage.
The above circuit has two inductors and two capacitors (including the
varactor), hence it contains four elements which are able to store some
signal energy. This ability to store patterns of energy gives the system its
�memory� of what has happened in the recent past. In effect, the system
can �remember� four values � two inductor currents and two capacitor
voltages � which are a record of what has been happening recently.

In this system the nonlinearity is provided by the capacitance/voltage
behaviour of the varactor. Unlike a normal capacitor, the capacitance of a
varactor can be specified in two ways. To see why, let's go back to the basic
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definition of capacitance. For a fixed-value capacitor we can say that an
applied voltage, V, will cause the capacitor to store an amount of charge

Q = V C ... (20.1)
where C is the value of the capacitance. Alternatively, we can say that
changing the applied voltage by a small amount, , will alter the stored
charge by an amount

∆V

∆Q = ∆V C ... (20.2)
We can use either of these expressions to define the capacitor's value.
Equation 20.1 gives us the Static capacitance value. Equation 20.2 gives us
the Dynamic or Small Signal capacitance value. For a normal capacitor
these values are identical, so can use the two equations and values
interchangeably. However, the static and small signals values are usually
different for a varactor as we can see from the following argument.

Consider now what happens when we change the applied voltage on a
varactor from a level, V, to . We can say that the change in the
stored charge will be

V + ∆V

∆Q = ∆V C {V } ... (20.3)
where  is the varactor's small signal (dynamic) capacitance at the
voltage V. (We'll assume  is very small so .) We
can work out the total charge stored in the varactor when the applied
voltage is V by starting at zero volts and integrating expression 20.3 up to V
volts. This gives us

C {V }
∆V C {V + ∆V } ≈ C {V }

Q {V } = ∫
 V

0

C {V }  d V ... (20.4)

From the static definition of capacitance we can say that the varactor's
static value at V will be

C ′ {V } ≡
Q {V }

V
=

1

V ∫
 V

0

C {V }  d V ... (20.5)

This result gives a static capacitance value of  which generally
differs from  when the capacitance varies with the applied voltage.
When considering varactors it is therefore important to keep this
difference between the small signal and static (d.c.) values in mind. Most
data on varactor diodes show how the small signal capacitance varies with
the applied voltage since this is what most rf/microwave engineers are
interested in. We'll therefore use the small signal or dynamic value unless
otherwise specified.

C ′ {V }
C {V }
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The behaviour of the varactor + circuit system depends upon the choice of
component values and the details of the applied signals. Real varactors
have very small capacitances � typically less than 100 pF � so for our
example we'll use �artificial varactor� shown in figure 20.2a. This circuit
mimics a varactor, but has a much larger small-signal capacitance whose
voltage dependence is shown in figure 20.2b. (Anyone who wants to know
more about this is welcome to read Electronics World, June 1991, pages 467�
72, but you don't have to read it to understand this chapter!) This lets the
system work at �audio� frequencies rather than at RF/microwave
frequencies. 

0·14

0
2 V

C {V }

Voltage

C {V } =
d Q

d V

1µF

++
−−

1N4148's
4k7

741 741

µF
C {V }

20.2a  ‘Artificial’ varactor.

20.2b  Voltage dependence
of the capacitance of the
circuit shown in 20.2a.

An example of a circuit which provides aFigure 20.2

nonlinear voltage−capacitance relationship.

0·94 µF

For our purposes, the precise details of how this artificial varactor
arrangement works don't matter. We can just concentrate on what
happens when we apply an input signal to the network of

V d + V ac Sin {2πf t } ... (20.6)
which is a combination of a d.c. level, , and a sinewave of amplitude,

, and frequency, f. 
V d

V ac

For our illustration we'll choose f = 1300 Hz and  V, and use
component values of  mH,  mH, Ω,
Ω, and C = 2·03 µF. There is nothing �magic� about these odd values.
They're simply the values of the components picked out of the boxes
when this circuit was soldered together! Slightly different values would
give slightly different results, but the same overall pattern of behaviour.

V ac = 3·5
L1 = 3·24 L2 = 3·38 R1 = 105 R2 = 4



Information and Measurement - 206 - Free PDF version

We can now examine what this nonlinear system does as we slowly increase
the applied d.c. voltage, starting at . Figure 20.3 illustrates the
results of doing this. The top graph of figure 20.3 shows the input
sinewave. The graph immediately below it shows how the resulting voltage
across the varactor varies with time when the d.c. level is zero (i.e.

). Comparing these top two patterns we can see that their shapes
are very different, but that both waveforms repeat with a period, .
The next graph down shows the varactor voltage waveform when we apply
a small d.c. level,  V, which is added to the input sinewave. Now
the period of this �output� wave, , is twice that of the input. Increasing
the d.c. level slightly, to  V, increases the period of the output to

.

V d = 0

V b = 0
T = 1 / f

V b = 0·08
T 0

V b = 0·11
T 0 = 4T

V ac

V ac
V

V

V

V

time

1 loop

2 loops

4 loops

T = 1 / f

T 0 = T

T 0 = 2T

T 0 = 4T

Effects on output waveform of varying the d.c. input level.Figure 20.3

V b = 0

 VV b = 0·11

 VV b = 0·08

This process is called Period Doubling for fairly obvious reasons. If we
explore the behaviour of the circuit carefully we find that it occurs at a
series of well-defined Threshold voltages, , etc. When

, ; when , ; when
, ; when , ; etc� As a

result, when we apply a d.c. level great enough for n period doublings to
have occurred, we find that the output waveform shape only repeats itself
after a period, .

V 1,  V 2,  V 3

0 ≤ V b < V 1 T 0 = T V 1 ≤ V b < V 2 T 0 = 2T
V 2 ≤ V b < V 3 T 0 = 4T V 3 ≤ V b < V 4 T 0 = 8T

T 0 = 2nT
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As a result of these doublings the output signal can have a repeat period
which is much longer than the period of the Driving or Pump signal (the
input sinewave). For example, when we raise  to get 20 period
doublings, an input at a frequency of 1300 Hz (  milliseconds)
will produce an output waveform which only repeats itself every

 minutes!

V b

T = 0·769

220 × 0·769 milliseconds = 13·4

Consider now the voltage intervals between successive doubling
thresholds. If it is always true that  then the
doublings become more and more closely spaced as we increase the
voltage. When this is the case it becomes possible to pass through an
infinite number of doublings while  remains finite. This is called a
Cascade to Chaos. The output signal now only repeats itself after a time
interval of , i.e. the output waveform shape never repeats itself. It
is therefore a non-periodic waveform. Such an output is said to be Chaotic.
Just like random noise we can't predict what it will do later unless we know
all the details of the system which is producing it.

|V n + 2 − V n + 1| < |V n + 1 − V n |

V b

2∞T = ∞

Systems which are behaving chaotically exhibit a property called Sensitivity
to Initial Conditions. Although their behaviour is Deterministic � i.e. we
know the rules or equations which determine the behaviour from moment
to moment � we can't say what they will do in the far future unless we
know with absolute accuracy all of the component values, voltages, and
currents at some time. Any errors in our values, however small, will
eventually mean our predictions are totally wrong. For the same reason it's
impossible to make two chaotic systems which behave identically since we
can never find pairs of resistors, etc, which are absolutely identical. The
processes which generate weather are chaotic, hence the impossibility of
making good long range forecasts!

20.2  Chaotic oscillators

The system we've looked at so far is driven with a combination of a d.c.
level ( ) and an input sinewave. Figure 20.4 shows how it is possible to
make the system's chaotic oscillations self-sustaining without the need for
an input sinewave. This Chaotic Oscillator consists of the nonlinear system
we've already considered plus an extra LC section and a Schmitt Trigger.
The output from the trigger circuit is then fed back to the input of the
system and used to drive it's behaviour. The Schmitt trigger acts as a high-
gain amplifier which produces a �squared off� version of the voltage on .

V b

C 3
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The Schmitt circuit also distorts the signal (more nonlinearity!) and
exhibits Hysteresis. For our purposes the details of how a Schmitt trigger
works don't really matter. We'll just look at what happens when we build
and use the above circuit.

Chaotic ‘phase shift oscillator’.Figure 20.4

Varactor
diode.
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V b
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V 3

-
+

Circuits of the same general form as 20.4 are often used as �clocks� or
oscillators to produce regular � i.e. periodic � waveforms. If we replace
the varactor with an ordinary fixed-value capacitor the system becomes a
conventional Phase Shift Oscillator. As an illustration of this, figure 20.5
shows how the voltage on  would vary with time if we make all three
capacitors  have the same fixed values. (i.e. we replace the varactor with an
ordinary capacitor.)

C 3

V 3

time

Output from a conventional phase shift oscillatorFigure 20.5
(i.e. with a fixed-value capacitor replacing the
varactor shown in figure 20.4).
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The voltages and currents then oscillate in a simple periodic way, with a
periodic time set by the values of the inductors and capacitors we've used.
However, using our varactor as the middle capacitor, the circuit shown in
figure 20.4 produces output of the general form illustrated in figure 20.6.

V 3

time

Output observed during some time interval.

Output observed during a later time interval.

Output from chaotic phase shift oscillator (i.e. with varactor).Figure 20.6

Now the oscillations can be seen to �jitter� or vary unpredictably from cycle
to cycle. Although from time to time the oscillation appears to settle down
into a repeating pattern, it eventually changes into a pattern we've not
seen before. The voltages and currents in the circuit vary chaotically from
moment to moment. The behaviour of the system depends upon the exact
values of the components used. The waveforms shown in figure 20.6 were
produced by a system whose varactor components are as shown in figure
20.2, and  Ω,  Ω,  kΩ,  kΩ,  kΩ,

 mH,  mH,  mH,  µF,  µF,
 V, with a Schmitt Trigger whose output is ±3·5 V.

R1 = 130 R2 = 4 R3 = 10 R4 = 10 R5 = 10
L1 = 3·24 L2 = 3·38 L3 = 3·5 C 1 = 2·03 C 3 = 2
V b = 0·1

Many different types of circuit have been developed which behave as
chaotic oscillators. They all have to provide the same set of basic features:
the system must contain one or more nonlinear elements; there must be
some gain to boost the signal and counteract any losses; and feedback is
applied so that the boosted output is used to drive the system into further
oscillations. It is common for systems to employ hysteresis because this
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produces a �folding� action where one input level can give either of two
output levels depending on the system's recent history. (This is another
�memory� mechanism as well as a source of extra nonlinearity.)

20.3 Noise generators

It is surprisingly easy to make a digital �random number� generator. Figure
20.7a shows an example of a Maximal Length shift register circuit which
can be used to produce an apparently randomly varying sequence of
output �1�s and �0�s.

1 2 3 4 nm

Exclusive-OR Gate

Shift Register

1 2 3 4 nm

Stream of ‘random’

output bits.

Maximal length digital pseudo-random noise generator.Figure 20.7a

2·5 V

+
-

Analog
‘noise’
output

Analog noise generator based on a digital process.Figure 20.7b

In the analog systems we've looked at up until now signal information/
energy was held by capacitors and inductors. The pattern of current/
voltage values remembered at any moment is said to be the system's State
at that instant. In the digital examples shown in 20.7 information about
the state of the system is stored as a pattern of bits in a shift register n bits
long. The feedback and nonlinearity are both provided by an Exclusive-OR
gate which takes its inputs from two of the register locations and drives the
�lowest� or first location. If we now repeatedly step the bits along the
register we generate an apparently random sequence of output digits.
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Systems like this are often used as simple noise generators. As illustrated
in figure 20.7b they can also be used as part of a circuit which produces an
analog voltage which varies in an apparently random manner.

Although often regarded as noise generators, these digital systems cannot
actually produce true random noise. This is because � like all digital
systems with finite memory capacities � they are Finite State Machines.
Given n-bit storage patterns we can only store  patterns of information
(or states). As a result, if we drive the shift register with a shift clock whose
period is  we find that the output pattern must repeat after a time of, at
most, . This is because the system will have then �cycled
through� all the possible bit patterns it can store and must then repeat a
previous state. The digital system therefore behaves like an analog system
which has undergone a finite number of period doublings. We can
increase the repeat period, , by using a longer register but we can't
ever make the repeat period infinite.

2n

T
T 0 = 2nT

2nT

In fact there's always at least one �inaccessible� state. For a shift-register
system of the type shown this is the �All bits 0� state. If the system starts in
this state it gets �stuck� there and never moves on to any other. Since the
system's step-by-step behaviour is reversible this also means it can never
reach this state if it is oscillating. There are therefore only
accessible states for the shift register to pass through during its �random�
sequence, so the maximal length of time is strictly , not

. It is important in practice to ensure that the system isn't in the
inaccessible state when it is switched on, otherwise the oscillation process
�won't start�. This is another reason why the analog system illustrated in
figure 20.4 includes a Schmitt Trigger. The trigger prevents the system
from sitting in the �all currents and voltages zero� state when it is switched
on.

(2n − 1)

T 0 = (2n − 1)T
2nT

Some typical register length and Tapping values (the values of m and n)
are:  (7; 6) giving , (15; 14) giving ,
and (31; 28) giving . This last choice would mean
that driving the 31/28 system with a clock rate of  = 1 millisecond
produces an output which only repeats itself after 24·8 days! As a result, if
we only observe or use the sequence of values this system produces for a
day or two, it's output can be regarded as �indistinguishable from random�
for most practical purposes.

(m ; n ) = T 0 = 127T T 0 = 32,767T
T 0 = 2,147,483,647T

T

Nonlinear analog systems which have undergone a finite number of
period doublings can be said to oscillate in a semi-chaotic manner and
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produce a semi-chaotic output signal. Just like the maximal-length digital
system their output can appear random if it's only observed over a time
interval less than . However, when observed for longer than this, the
repetitive non-random noise behaviour becomes clear. These repetitive
properties mean that finite state and semi-chaotic systems produce what is
called Pseudo-Random Noise. It looks a bit like noise, but reveals its periodic
behaviour if you wait long enough.

2nT

True chaotic systems can make ideal noise generators since their output
never repeats itself. A random sequence can be generated in various ways.
For example, we can present the �squared-off� output from the Schmitt
Trigger to a counter/timer circuit. This repeatedly measures the time
taken for the chaotic signal to oscillate through a given number of cycles
(e.g. 32 cycles). Since the chaotic signal oscillation jitters unpredictably,
the sequence of time values produced vary in a random manner, hence
giving us an output series of random numbers. In the next chapter we'll
see how sequences of random numbers like this can be used for
information encryption.

Summary

You should now know that nonlinear systems can be used to produce
either Chaotic or Semi-Chaotic output signals. That chaotic signals share
with natural noise the property that they are unpredictable and never
repeat themselves. You should also now see the relationship between
digital Finite State Systems which generate Pseudo-Random output and semi-
chaotic oscillations � both of which do repeat after a specific time. You
should now understand that chaotic oscillation requires the system to
include a combination of Nonlinearity, Feedback, and some way for the
system to store information/energy patterns which depend upon the
system's State at previous times.

Questions

1) Draw a diagram of an example of an analog Chaotic Oscillator and say
what features are essential for it to be able to behave chaotically.

2) Explain the term Period Doubling. What is the essential difference
between Semi-Chaotic and Chaotic behaviour? Draw a diagram of a digital
pseudo-random number generator. Why is it impossible for such a system



Information and Measurement - 213 - Free PDF version

to generate �true� random noise? 

3) A digital system uses a 22-bit shift register and an Exclusive-OR gate to
generate a maximal length pseudo-random bit sequence. The system is
clocked at 100 kHz. How long is the time interval before the sequence
repeats itself? [41·9 seconds.]
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Chapter 21

Spies and secret messages

21.1 Substitution codes

Usually we want to transmit information as quickly and efficiently as
possible. This means using systems which are simple and don't waste
channel capacity. There are, however, times when the priorities are
different. These arise when we're concerned with the Secure transmission
of information. This requires us to devise methods of encoding and
transmission which prevent information from �falling into the wrong
hands�. Alternatively, we may find ourself in the situation of needing to
discover information which the sender doesn't want us to have. We then
have to set about decoding a message which has been encoded in manner
designed to make our task virtually impossible!

Espionage and counter-espionage provides some excellent (and very
interesting!) examples of the basic methods of encryption and how codes
can be �broken� by various means. One of the most common systems
during the 20th century uses five-digit Code Groups.

The system relies upon some form of Code Book which lists all the words
which are likely to be needed. Each word in the book is linked to a five-
digit number, and (of course)  the numbers in the book are in a suitably
randomised order. Using this system we might encode a message 

     THE RAIN IN SPAIN   as

     24397 34651 50904 18253

This is a simple Substitution Code where each word is replaced by a specific
Code Group of five digits. We could now send the signal 24397 34651 50904
18253 to represent the message in an encoded form. Using another copy
of the book this stream of digits could be Decoded back into plain text by
the person receiving the signal. To anyone else, the signal just looks like a
stream of numbers.

Now, in the English language, the letter �e� is far more common than �q�,
and �th� is a lot more common than �zq�. Similarly, the word �the� is more
common than �zebra�, and combinations like �nice day� are more common
than �tree fish�. Hence, given a reasonably long encoded message, an
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eavesdropper could attempt to unravel the code simply by seeing which
groups of numbers occurred most often and by looking for patterns. This
use of relative probabilities is called Entropic Attack because the expressions
for the amount of information per symbol are linked to symbol
probabilities by expressions similar to those used for Entropy in
thermodynamics. (Have a look at the equations in Chapter 5 and compare
them with ones for �real� entropy in a thermodynamics book.)

In a case like the British listening to German transmissions during the war,
or GCHQ listening during the �cold war� to the USSR's embassy in
London, a large number of code group strings can be collected. Using
entropy and relative probability methods based on the ideas outlined in
earlier chapters it would only be a matter of time before a simple
substitution code was �broken� and messages would become easily
readable by the eavesdropper. The only way to prevent entropic attack on
encrypted messages from being successful it to keep changing the code
book. For example, �The� might equal �24379� one week, and then be
changed to �19935� in the book used for the next week's messages.
Regular changes in the chosen code groups make it difficult for a
codebreaker to collect enough messages using the same code for entropic
attack to work. Unfortunately, even a single long message may be enough
to identify many of the most common words. Its surprisingly easy to break
substitution codes � especially if you have some idea of the kinds of
things which are likely to be in the message.

21.2  One-time pads

In order to ensure that entropic methods can't succeed it's necessary to
�change the code book� after EVERY code group � i.e. after every word.
This results in a string of code groups which are essentially random in
appearance and makes entropic analysis useless. The only problem with
this method is that the information become so well encrypted that it may
be a problem ensuring that the intended recipient is able to decode the
message!

For spies, the traditional method for achieving this �randomised�
encryption was the One-Time Pad. This consists of a pad of paper sheets.
Each sheet has printed on it a string of five-digit random numbers. For
security only two copies of any pad of numbers are printed. One is given
to the �spy� and the other to whoever is meant to be receiving his
messages. 
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The sender (i.e. the spy) first encodes the message as before into a string
of five-digit code groups. These are written, in order, on the top sheet of
the pad. The first code group is added to the first random number, the
second code group added to the second random number, and so on to
the end of the message. The numbers are added without performing a
carry forwards. (This ensures all the results are also just five digits long.)

Using the example given above this gives something like

    THE RAIN IN SPAIN    the message 

    24397 34651 50904 18253    from code book

    47656 23311 93705 49910    from pad

    61943 57962 43609 57163    combination

The codes transmitted are 61943, 57962, etc. If the numbers on the pad
are a random sequence then the transmitted code groups will be truly
randomised. After being used just once the sheet of the pad must be
destroyed and the next sheet used for the next message. Entropic analysis
will be unable to  decipher the encrypted series of digits unless the
codebreakers have some information about the numbers on the pad. 

Used correctly, the one-time pad system is unbreakable as the transmitted
numbers are genuinely randomised. To decode a message you must know
the random sequence used to encode it. The weaknesses of the one time
pad system are a direct result of the method it uses to ensure message
security. Firstly, every message requires a new sequence of randomly
varying numbers.  Secondly, a copy of this random sequence has to be
delivered to the sender without being intercepted (and copied) by anyone
else. For a spy this system also has the additional unpleasant disadvantage
that being caught with a pad of such random numbers has, in itself, often
been used as proof that the possessor is a spy!

The drawbacks of the one-time pad system become a real nuisance when
you want to use it to send a large number of frequent, long, messages.
During the second World War and afterwards the USSR used one time
pads for virtually all of their �secure� messages. This required vast numbers
of pads to be shipped around, each pad being destroyed after just one use.
During the war it was particularly likely that pads would be destroyed or
copied in transit. To ease these problems they decided to use each pad
more than once. As a result, although the numbers in any individual
message would seem random, those of a collection or Ensemble of messages
could be analysed to reveal a pattern. This lead to western intelligence
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agencies being able to break the encryption of a number of Russian
messages.

21.3 Mechanical �randomising� algorithms

The problems of one-time pads have been known for many years and an
alternative method had been available since the 1920s. This replaced the
pad with a mechanical system which modern information theorists would
describe as providing an Algorithm to generate a string of codes which act
as if they were random. In this mechanical system, each letter was replaced
by a different one according to the positions of a set of Encoding Wheels in
a coding machine. After each letter one or other of the wheels is rotated
by a set amount to change or �scramble� the code. 

A
B

C
D

E

F

G

H

1 2 3

First arrangement — Input ‘B’ leads to an output ‘D’.

Wheel ‘1’ rotated one step — Now an input ‘B’ leads to an output ‘F’

A
B

C
D

E

F

G

H

1 2 3

Reflector
plate

Code wheels

Mechanical encryption system.Figure 21.1

This system is the one used by the German forces during the second
World War. The British operation to break this code is the, now, much
fabled Ultra story. The German code machines were called Enigma.
Messages based upon the use of these code machines can be broken using
entropic methods. This is because the codes are not truly random as the
rotation (and patterns) of the wheels progress in a set way. Given a
reasonable number of long messages (in the jargon of codebreakers, this
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is called �having enough traffic�) it is possible to break the code. The basic
structure of an Enigma code-machine is shown in figure 21.1. Here we'll
use this example to show how a Deterministic system can produce
apparently randomised, encrypted signals. Note, however, that the
following description has been simplified to bring out the main points.
The actual system was rather better and more complex than it might seem
from what follows. 

The machine contains three wheels or �rotors� with a set of metal contacts
around each side near the rim. Each contact on one face is wired to
another on the opposite face, but the connections are made in a fairly
randomised way. The above example shows three rotors with different
patterns of connection. Wires are taken from the keys of a typewriter to
contacts which touch those of one side of the �first� rotor. Similarly, wires
connect the rotors together.

The signal from a particular key (e.g. the �B� shown) passes through the
rotors and wiring to emerge on one of the wires touching the �far� face of
the third rotor. Here there are a set of wires which make jumbled
connections between pairs of rotor contacts. This �reflects� the signal back
through the series of wheels and hence has often been called a reflector
plate. The signal then passes back through the rotors by a different path,
and emerges on the wire connected to a different letter. (In the case
shown above, �B� emerges as �D�.) 

If the rotors were not allowed to move, the encoded message would be
easily broken. However, the machine is arranged to move a rotor after
every letter. Here, after encrypting our initial letter (�B� as a �D�) the rotor
#1 is rotated by one step. If the next letter in the message is also �B� it is
NOT coded as another �D� but as �F� because the wiring has changed due
to the rotor movement. After each letter the rotor is moved and we have a
�new� code for every letter. When the first rotor has made a complete turn
the second rotor is moved one place and then left whilst the first makes
another rotation, and so on�

By using a Reflector Plate we can double the number of wheel connections
each signal must pass through. At first glance this may seem to provide a
considerable increase in the amount of jumbling produced, but this isn't
really true. Take the illustrated example using three wheels. The signal
passes through a total of six wheel connections, but the jumbling
produced by the fourth is related to that produced by the second as it is
physically the same wheel. Similarly, the second is related to the fifth and
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first to sixth. This doesn't matter if we are sending messages which are
only a few letters long. However, as we keep rotating the wheels for a
longer message we will begin re-using connections which have already
been used in the other direction. 

If each rotor has, say, 32 contacts we appear to have 32 × 32 × 32 possible
codes. (Since this represents the total number of physical arrangements
we can find for a given set of wheels, this number can't be increased by
using a reflector plate.) Hence we could expect to send a message
containing 32,768 letters (including spaces, commas, etc, as letters) before
having to repeat a code setting. In English this is equivalent to a message
around 8,000 words long. This number can be increased if we have some
spare code wheels which we can use to replace our initial trio when we
approach 32,000 letters.

In effect, we have a machine which can replace the one-time pad and
mechanically recode each letter of our message in a different way. This
system is very easy to use. It also has the property of being Self-Inverse � i.e.
if we set up an identical machine and feed in the �DF� of the encoded
message we get the output �BB�. The same machine can therefore be used
both for encrypting and reading the messages! The machine, with a
particular set of starting positions for the rotors, gives us a mechanical
version of a particular one time pad. We can �change the pad� by changing
the rotors or altering their starting positions. During the 2nd World War,
the Germans added a few extra gadgets to make the encryption more
complex, but the basic system remained as described. Each rotor had a
ring attached to it which was inscribed with the letters of the alphabet.
These rings could be slid around to take various orientations with respect
to a mark on the rim of the rotor. The machine was then used as follows:

The operator would look up in a standard book which rotors were to be
used on that day. The book would also tell him which ring letter to align
next to the mark on each rotor rim. The receiver operator would use
another copy of the book and set his rotors and rims in the same way. The
transmitting operator would then choose for himself the starting positions
he wished to use for his rotors when sending the bulk of the actual
message. This was necessary to avoid all the messages on a given day
having the same encryption algorithm. However, the transmitter now had
to indicate to the receiver which starting positions he had chosen. This
need for an Indicator in the message is necessary unless the codes are to be
totally pre-determined by a book or table of instructions (copies of which
may fall into the �wrong hands�). It is a potential source of weakness.
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In the German system, the operator could identify the starting positions
chosen for the message by telling the receiver which ring letters could be
seen through three small openings in the machine when the rotors were
set up ready to start. This was done by setting the rotors in the day's
standard starting arrangement and sending the three letters which
indicated the ring settings he'd chosen for the rest of the message. To
make sure there was no mistake these letters were then repeated. The
rotors were then re-set with the appropriate letters showing and the actual
message sent.

This method of indication is a poor one. It relies on assuming that the
basic encryption is so good that it is effectively unbreakable. In reality, the
Enigma system can be broken given information about how it works.
Various accounts of how this was done have been published in recent
years. Perhaps the best explanations are in Hodges; The Enigma of
Intelligence (a scientific biography of Alan Turing, published by
Hutchinson, London, 1983) and Hinsley and Stripp; The Code Breakers (a
collection of memoirs from people who worked at Bletchley Park during
the second World War, published by Oxford University Press, 1993). The
basic method was as follows:

In Enigma codes it is impossible for any letter to be encoded as itself. This
is because of the reflector plate, which always returns a typed signal back
through the wheels on a path different to the one it followed on its way
towards the plate. Hence the initial six letters �ADGSFH� in a message
must stand for an indicator where the first letter cannot be either �A� or
�S�, the second cannot be �D� or �F� and the third cannot be �G� or �H�.
Importantly, all the traffic on a given day uses the same code scheme for
those first six letters. Using these two pieces of information it is possible to
try various possible codes until one is found where, for every message, the
first six letters are a group of three repeated and none are the same as the
corresponding encrypted letters.

The Allies were fortunate in getting some information shortly after the
start of the war on the wiring of the standard rotors and the method of
operation. (Some of the details of this remain secret, although it is clear
that considerable help was provided by the Polish intelligence service.)
Hence once the indicators were broken, all that day's traffic could be de-
encrypted.
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21.4  Electronic encryption

The Enigma system is an example of the use of an algorithm for encoding
messages. Modern systems exploit the power of large, fast, digital
computers. This enables them to carry out far more complex encryption
schemes, and produce codes which are harder to crack. It remains true,
however, that any deterministic method of coding can  � in principle � be
broken. The main object of modern systems is to devise systems which are
easy to use but extraordinary hard to break. For practical purposes it
doesn't matter if an encryption can be broken after 10,000 years of effort! 

The simplest digital encryption systems rely on digital random number
generators like the shift register system described in the last chapter. The
message sender and receiver arrange to use similar systems starting in the
same state and use the string of bits their generators produce as electronic
one time pads. In these systems the initial state of the random number
generator represents a Key to deciphering the signal. To crack such a
message a codebreaker needs to know both the encryption scheme and
the value of the key. The indicator of the Enigma system was used to tell
the receiver the key for that particular message. 

Clearly, if a codebreaker knows the details of the encryption system, the
signal can be broken as soon as the key is discovered. For this reason, a
system using a shift register of modest length isn't very secure. The
codebreaker can use the Brute Force Attack of trying every possible starting
state (i.e. every possible key) until finding one which turns the encrypted
signal into a sensible message. To avoid this, the encryption scheme
should be capable of producing an enormous variety of patterns. (i.e. a
random sequence which only repeats itself after a very long sequence �
ideally infinite.) This would mean that trying every possible key would take
far too long to be worth trying unless the codebreaker is really desperate!
For this reason chaotic and semi-chaotic systems have attracted the
interest of codemakers. 

Various encryption schemes have been devised during recent years. Here
we will use as an example a Trapdoor system of the general type outlined
initially by Diffie and Hoffman (New Directions in Cryptography, 1976). The
specific example we will examine is the Rivest, Shamir, Adelman (RSA)
system. The name �trapdoor� comes from the analogy that it is easier to
fall down through an open trapdoor than to climb back up through it
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again. In this case, given the appropriate information, the encryption
method is designed to be easy in one direction and � without the right
key � virtually impossible in the other. The basic requirements of a
trapdoor system can be given in terms of four conditions which it must
satisfy:

  i) There should be a Forward Algorithm, F, for converting an input
message, X, into its encoded form, Y, which uses some form of key, K, i.e.

Y = F {K , X } ... (21.1)
  ii) This encrypted message can easily be decoded given another
key, L, (related to K) via the appropriate Inverse Algorithm, I, i.e. 

X = I {L, Y } ... (21.2)
  iii) Without knowing the decoding key, L, it is computationally
�impractical� to decode the message (i.e. it should take far too long to
make it worthwhile).

 iv) The number of possible key pairs, [K,L], is �very large� (i.e. it
isn't worth trying each possible L in turn because it would take too long to
discover the correct value).

The difficulty of breaking such an encoding scheme now depends upon
how well it satisfies the third and forth properties. The terms,
�impractical�, and, �very large�, in the above conditions have been placed
in quotation marks because they are rather difficult to define precisely.
This is because it isn't possible to devise a system which can be guaranteed
to be invulnerable to attack. The power of computing systems, and the
skills of codebreaking mathematicians, tend to increase with time. A code
which was once considered unbreakable may soon fall victim to progress!

Any particular pair of functions or algorithms, F and I, are said to be
symmetric. That is, F is the inverse of I and I is the inverse of F. Well-
designed trapdoor systems have a number of interesting properties which
can be very useful in practice. For example, it is possible to give someone
the encoding algorithm, F, and  key, K, without letting them know how to
decode a message. This is because the function, I, and the value of the
decode key, L, aren't (or at least, shouldn't be!) obvious from F and K. 

We can now imagine a situation where various people have devised their
own, individual, forward and reverse algorithms (equivalent to choosing a
particular pair of [K,L] values),  and . Each person can then freely
publish the details of their particular forward algorithm (i.e., publish their
key value ) with confidence that they remain the only one able to

Fi I i

K i
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decode any messages sent to them using that algorithm! The published
value of  is then called their Public Key. The corresponding inverse key
value  which they keep secret is their Private Key.

K i

L i

One particularly interesting property of these systems is that it is possible
to �sign� messages. To see how this works, consider the situation where a
sender, A, wants to communicate a secret message to a receiver, B,  and
also wants to give B proof that the message cannot have come from
anyone but A.

Each of them chooses their own function/algorithm pair, F and I (i.e.
selects their [K,L] pair). They both then publish their forward algorithms.
A takes his message, X, and initially encodes it into a new form, Y, using
his own inverse function

Y = I a {X , La} ... (21.3)
he then re-encodes this using the receiver's public forward algorithm into 

Z = Fb {Y , K b } = Fb {I a {X , La} , K b } ... (21.4)
and the message is then transmitted in the form of the signal, Z. Now,
even if it is received by anyone else, only the intended recipient, B, has the
inverse function, , to recoverI b

I b {Z , Lb } = I b {Fb {I a {X , La} , K b } , Lb } = I a {X , La} = Y

... (21.5)
Having converted the message back into the form, Y, the receiver can now
use A's public key to perform

Fa {Y , K a} = Fa {I a {X , La} , K a} = X ... (21.6)
and obtain the original message. Given that only the sender possesses ,
the message must be genuine if it can be de-encrypted using . Similarly,
the message is secure from eavesdroppers if only the intended receiver, B,
possesses . Hence it is possible to send a secure, signed, message even
though  and  (and hence ) are public knowledge. 

La

Fa

Lb

K a K b Fa {} and  Fb {}

In the RSA system the algorithms reply upon the properties of prime
numbers. To design a particular coding scheme we must first choose a
pair of �large� prime numbers, P and Q, which we use to calculate the
number

N = PQ ... (21.7)
Next, we select another �large� integer, R, which is prime relative to (i.e
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neither is a factor of the other) the integer

S = (P − 1) (Q − 1) ... (21.8)
We should now find that there is just one number, E, in the range

, which is such that1 ≤ E ≤ S

(ER ) MOD S = 1 ... (21.9)
having found this value we can publish the number, E, as the public key
for our personal algorithm. R is the secret key kept for deciphering
messages. (Note that the enciphering and deciphering processes must also
agree on the value of N. This is also therefore �public information�.)

The message sender and receiver now agree to represent each possible
message symbol as an integer, , in the range . For text
messages each symbol can be a collection of two or more successive letters
from the message. Each message symbol is then converted into an
enciphered signal symbol

x i 1 < x i < N

yi = x E
i MOD N ... (21.10)

The received message can then be deciphered using

x i = yR
i MOD N ... (21.11)

Here 21.10 and 21.11 are the forward and reverse algorithms. Clearly,
these calculations are fairly quick and easy given a decent computer
provided that you know the correct value of R or E. The problem for
codebreakers is that, when P and Q are very large it can be �very difficult�
to discover the value of R  from knowing N and E.

For this system to work well it is important to bring together the message
symbols into groups large enough to use as many as possible of the
available N integer values. For example, a system which just used the 256
ASCII codes for text wouldn't make effective use of a system where N
≈100 000 since only a few of the codes would be used. Instead, it makes
sense to group pairs of letters of the message to make 256 × 256 = 65,536
message symbols � hence using over half the possible integers. The
reason for this is that the RSA system we've described is just a very
sophisticated substitution code. We must therefore ensure that N is much
bigger than the length of the signal traffic. Otherwise the signals may be
vulnerable to straightforward entropic attack.

Summary
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You should now understand how simple Substitution encryption works and
why it is vulnerable to Entropic Attack. That we can protect encrypted
signals from attack be combining the message information with a string of
randomly varying values. As a result, systems which employ �true random
numbers� cannot be deciphered without knowledge of the random
number sequence used. You should now also understand that the practical
problems of secretly transferring true random One Time Pads (or their
equivalent) can be avoided by providing the transmitter and receiver with
an agreed Randomising Algorithm which enables then to generate the same,
apparently randomly varying, sequences for enciphering/deciphering
information. However, it should be clear that these methods never
produce true random sequences, hence it is possible to break the codes
given enough information about the algorithm used. 
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Chapter 22

One bit more

22.1 Problems with many bits

In Chapters 9 to 11 we saw how CD systems work. One of the subjects this
included was the use of multi-bit digital-to-analog convertors (DACs) to
turn the digital values back into an analog waveform. For various practical
reasons it's difficult to make accurate multi-bit DACs. Figure 22.1a
illustrates a system which takes an input voltage, converts it to an n-bit
digital value, and then turns that value back into an output voltage. This
represents a sort of �minimal� digital information communication system. 

V i n

V out
n-bit
ADC

(perfect)

n-bit
DAC

V in V out
n-bit digits

Monotonicity
errors

Systematic
distortion
error

Perfect
DAC

Signal transfer using ‘back to back’ ADC−DAC pair.Figure 22.1

22.1a  ADC/DAC ‘communication system’

22.1b

22.1c 22.1d

The ability of the system to transfer a signal from input to output can be
represented by a graph showing how the output voltage, , from the
DAC varies with the input voltage, , presented to the analog-to-digital
convertor (ADC). A plot of this kind is called the Signal Transfer Curve of
the system. For a perfect matching ADC/DAC pair we would expect the

V o ut

V in
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system to have a �staircase� transfer curve of the kind illustrated in figure
22.1b. The steps of this staircase are produced by the quantisation
produced when the ADC represents each input voltage as an appropriate
digital value. For an ideal system all the steps should have the same
heights and widths. The resulting staircase shape is said to be Monotonic.

Multi-bit DACs use a variety of techniques to convert digital values back
into an analog voltage. Unless they're perfectly made, these produce two
general sorts of errors. Figure 22.1c illustrates the effects of Monotonicity
Errors. Here, imperfections in the DAC mean that some input digital
values produce incorrect output voltages. The effect of this is to lift or
lower some of the steps in the transfer staircase. Another type of problem
is illustrated in 22.1d. This shows an overall or Systematic nonlinearity
where imperfections in the DAC cause the output voltage to be wrong by
an amount which varies relatively smoothly with the input. Both types of
imperfection will cause the output signal to become distorted. 

One way to avoid this distortion is, of course, to make and use very good
ADC/DAC chips! This solution is OK for the music companies who can
afford to spend thousands of pounds on ADCs. They can also afford to
employ technicians to regularly check the ADCs and replace/adjust them
if they aren't working properly. However, those of us who just want to buy
and play CDs expect the player to work well without being outrageously
expensive or requiring regular adjustment. The DAC systems in CD
players should therefore be reliable, accurate, and (relatively) cheap. 

As we saw in chapter 8, Dither can be used to suppress the effects of the
basic staircase quantisation provided that it is applied before an original
analog signal is digitally sampled.  Dither can also be used to reduce the
effects of monotonicity errors in either the ADC or the DAC. It does this
by producing a result which is effectively �averaged over� a number of
levels, essentially smoothing over small-scale errors. The bad news is that
dither can't totally remove monotonicity error distortions. The good news
is that � unlike the dither used to suppress ADC quantisation effects �
dither added to the digitised signal before digital to analog conversion can
reduce monotonicity error problems. In a practical example like the CD
audio system this means that dither has to be added during recording to
remove quantisation effects, but the CD player can employ dither to
reduce any tendency it has to distort the signals it recovers from the CD.
This is one of the reasons why some manufacturers proudly boast that
their CD players �use dithering� to achieve improved performance. 
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In practice all multi-bit DACs will suffer from monotonicity errors at some
level, however small. To avoid this problem altogether many modern CD
systems employ one-bit digital to analog conversion systems. This chapter
will examine how these work as they make an excellent example of how
information can be converted from one form into another without loss.

22.2  One bit at a time

A conventional 16-bit DAC can output 216 different output voltages, each
corresponding to a different input digital value. A one-bit DAC can only
produce 2 possible output voltages � �high� or �low�. Figure 22.2
illustrates how a typical one-bit system works.

1-bit
Quantisation

Z i

V z V out

Analog
signal
driver

R

C

Stream of
digital data.

Z iDigital output,

time

‘1’

‘0’

t

T

Basic ‘one-bit’ DAC  system.Figure 22.2

V zOutput from signal driver,

time

V r e f

−V r e f

t

T

The system uses one digital line, , which will either be �high� (=�1�) or
�low� (=�0�) at any instant. This digital level is used to operate an Analog
Signal Driver � an amplifier whose output is  when  and

 when . The choice of the value  isn't important
provided it is constant whilst the circuit operates. 

Z i

+V r e f Z i = �1�
−V r e f Z i = �0� V r e f

The digital output consists of a stream of pulse �cycles� with a period or
interval, T. The duration or width of each pulse is t. The output from the
driver is passed through a time constant (or some other low-pass filter)
chosen so that . We can think of the input waveform, , as
being a combination of a d.c. level plus some a.c. components which give

RC ≫ T V z
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the pulse shape. The output voltage, , at any moment will therefore
roughly equal the value of  averaged over the most recent pulse cycles. 

V o ut

V z

Now the average value of  during one pulse cycle will beV z

〈V z〉 =
t V r e f − (T − t ) V r e f

T
... (22.1)

where the angle brackets indicate that we're talking about an averaged or
smoothed value. We can therefore expect that

V out ≈
t V r e f − (T − t ) V r e f

T
... (22.2)

which can be simplified into the form

V out ≈
V r e f (2t − T )

T
... (22.3)

As a result � provided the value of  is large enough � the filter will
smooth out the pulses and the output will be a d.c. level whose value
depends upon the ratio . Since t can't be less than zero or
greater than T this means we can obtain any output voltage we wish in the
range  by choosing appropriate values for the pulse
width, t, and the cycle period, T. 

RC

(2t − T ) / T

−V r e f ≤ V o ut ≤ V r e f

Low-pass filter

Pulse width modulation.Figure 22.3
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Two basic methods which use this technique are Pulse Width Modulation
(PWM) and Pulse Density Modulation (PDM). Figure 22.3 illustrates the use
of PWM to convey information which can be converted back into an
analog sinewave. Here the pulse cycle period, T, is kept constant and the
pulse width is varied according to the signal voltage level,  , we wish the
system to output. Since we require the final output level to equal  we
can rearrange equation 22.3 and say that

V s

V s

t =
T (V s + V r e f )

2V r e f
... (22.4)

PDM keeps the pulse width fixed and alters the cycle period to achieve the
required smoothed output voltage level. In this system we therefore
require

T =
2V r e f t

(V s + V r e f )
... (22.5)

This produces the kind of signals illustrated in figure 22.4

Low-pass filter

Pulse Density Modulation (PDM)

0

V r e f

−V r e f

0

Output

V r e f

−V r e f

Pulse density modulation.Figure 22.4

T t

T =
2V r e f t

(V s + V r e f )

Vz

Both PWM and PDM are used in data telemetry/communications systems
to send information about analog levels in the form of a �digital� signal �
i.e. one whose level is either �1� or �0� at any instant. These forms of signal
and the circuit which converts them back into analog form are called
�one-bit� since only two possible levels are involved. In practice PDM has a
disadvantage that the pulse interval becomes very long when .
This means that the a.c. components of the signal then extend to low

V s → −V r e f
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frequencies and may not be very well suppressed by the output filter.
Hence PWM is usually preferred.

Perhaps the simplest way to make a CD player one-bit DAC is the method
illustrated in figure 22.5. Here  represents the series of 16-bit values
recovered from the CD (for simplicity we'll only consider one channel).
The subscript, , indicates which sample in the series we're considering. So
the samples appear in the regular sequence,

 etc � CD sample values are integers in the range +215 to
(�215+1). For this particular form of one-bit DAC to work we have to begin
by adding 215 to each sample value to produce the �shifted� values ,
which are all in the range 0 to +216. The shifted 16-bit sample values, ,
are then loaded into a Down Counter. This counter is driven by a clock
whose period is , where T is the time interval between
successive samples. Each clock pulse or �tick� makes the counter reduce
it's stored value by one. The counter provides a one-bit output,  , which
is �1� whenever the value stored by the counter is greater than zero. When
the steady countdown reaches zero,  is switched to �0� and this halts the
counting process. As a result, each input sampled value loaded into the
counter produces an output �1� pulse whose width . Higher
(more positive) signal levels produce wider pulses and lower (more
negative) signal levels produce narrower pulses. The binary signal, ,
therefore represents the input stream of 16-bit values converted into one-
bit PWM form. Hence  should be the required analog music signal.

X i

i
...X (i − 2)) ,  X (i − 1) ,  X i  ,

X (i + 1) ,  X (i + 2) ,

X i ′
X i ′

t c = T / 216

Z i

Z i

t = X i ′t c

Z i

V o ut
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+

X i

X i ′ Z i

V z V out
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signal
driver

R

C

2(n − 1)

Down
counter

Input samples from CD

Offset Value

t c

Counter clock

Simple PWM one-bit DAC system.Figure 22.5

In practice this type of one-bit DAC would be difficult to make work well.
The main reason for this is that, for CDs, the sampling interval T = 22·675
µs. This means that the countdown clock required would have a clock
interval of ns. This means a clock frequency

 of 2·89 GHz! Clock oscillators and digital logic operating at
t c = T / 216 = 0·346 

f c = 1 / t c
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this high frequency are currently too expensive for use in consumer
products (although this may, of course, change in the future). As a result
this method isn't suitable for normal domestic systems. Another problem
is that we would require an excellent output filter to pass the required
audio information whilst blocking the high frequency pulse shapes. This
difficulty could be eased by Oversampling to increase the input sample rate
and hence reduce T. However this would also increase , making the
system even less practical for normal applications.

f c

22.3 From many to one

To overcome the problems described above we need to make use of the
oversampling and Noise Shaping techniques we met in an earlier chapter.
Most CD player manufacturer like to devise their own way to perform this
operation � and, naturally, their newest way is always the �best�. For this
chapter we will take one method, the use of a Delta-Sigma (or �∆Σ�) DAC.
Before looking at this in detail it's worth making a general point about
systems which oversample and change the �number of bits per value� of a
stream of digital data.

In previous chapters we saw how the first generation of Philips DACs used
4× oversampling to permit the use of a 14-bit DAC to recover all the input
16-bit information. In general, we can describe a p× oversampling and
noise shaping system as taking in m samples per second and generating

 output samples per second. Each input sample will have n bits
and each output value will have  bits. The rate at which bits of
information enter the oversampler will therefore be . The rate at
which they emerge will be . From the basic arguments of information
theory we can expect that � provided the system works in a sensible way
� no information need be lost provided that . This is because
the amount of information conveyed in a given time depends upon the
rate of bit transfer. The effect of having fewer bits per sample can be
counteracted by having more samples. On the basis of this argument we
can expect that a system which oversamples by at least 16× should be
capable of providing a stream of 1-bit output values which carry all the
information from an input stream of 16-bit samples. In practice � as we
might expect � it is normally advisable to ensure an Oversampling Ratio
which ensures that  is significantly greater than  to avoid effects of
any imperfections in the signal conversion process.

m ′ = pm
n ′

m n
m ′n ′

m ′n ′ ≥ mn

m ′n ′ m n

22.4 First order delta�sigma conversion
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Figure 22.6 illustrates a First Order Convertor. Here  represents the
initial input stream of 16-bit integer values coming from the CD. These
are passed through a Transverse Digital Filter similar to that described in an
earlier chapter. This produces an oversampled stream of values,  which
is presented to a ∆ (or �difference�) unit. This compares the current
oversampled value with the single output bit, , currently emerging from
the convertor. For this part of the circuit  is treated as the �most
significant bit� of a binary number having the same number of bits as each
oversampled value � i.e. for, say, 4-bit values,  �high� would be treated
as +23 and �low� as . The ∆  unit subtracts the value of  from
and passes the result,  , on to a Digital Integrator.

∆Σ X i

X i ′

Z i

Z i

Z i

(−23 + 1) Z i X i ′
Y i

Transverse Digital Filter
& Oversample Generator

X i

X i ′

Σ+
+

∆+
−

T ′

1-bit
Quantisation

Digital integrator

Y i I i

I i − 1

Z i

V z

V ou t

Analog
signal
driver

R

C

First order delta−sigma DAC system.Figure 22.6

Input digital data stream

The integrator consists of a Σ (�sum�) unit and a delay gate. The delay
feeds the output from the Σ unit back to its input, but delays it for one
oversample clock interval. As a result, the output from the digital
integrator  , i.e. the sum of the current input to the Σ unit
and the �previous� output value. A steady input to this arrangement would
cause the output to change steadily at a rate proportional to the size of the
input, hence the combination of the Σ unit and the delayed feedback
behaves as an integrator.

I i = Y i + I (i − 1)

The output from the integrator is passed to a unit which simply tests
whether the result is greater than zero or not. If  then it setsI i > 0
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. If not, it sets . This output value is then used to control the
output driver and fed back to the input ∆ unit. The behaviour of this
system is illustrated in figure 22.7. Note that the conversion process shown
has deliberately been done too poorly for ideal conversion of 16-bit input
values. This is to help make clear the characteristics of this form of DAC.
The example only uses 8× oversampling whereas at least 16× would be
required for no information to be lost. Also, the output filter does not
reduce the effects of driver pulses very much. A better output filter and a
higher oversampling ratio would produce a much more accurate output
analog sinewave.

Z i = 1 Z i = 0

X i

Z i

V out

8 × oversampling first order delta−sigma DAC.Figure 22.7

Output from the lowpass filter.

4kHz sinewave sampled 44100 times per second

1-bit output from 8 × oversamples passed through 1st orderDS

Examining figure 22.7 we can see that the output has the correct form, but
has a high frequency �frizz� error pattern superimposed upon it. Note that
this error pattern essentially consists of frequencies between 4× to 8× the
basic sampling rate and above. Hence this unwanted addition to the signal
is at frequencies well above the audio range and could largely be removed
by a better output filter. A higher oversampling ratio would increase the
frequency of this error pattern and reduce its amplitude, making it easier
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to filter the unwanted �frizz� off the wanted audio waveform. Current
generations of Bitstream DACs (Philip's name for their one-bit systems) use
256× oversampling. As a result, the output error patterns they produce are
mainly at frequencies around 256 × 44·1 kHz = 11·289 MHz and above.
These frequencies are far enough from the audio band to be removable
with relatively simple low-pass filters.

22.5 One last bit of chaos!

The first order ∆Σ considered above is the simplest member of a family of
delta�sigma convertors. Figure 22.8 illustrates a second order ∆Σ DAC.

X i ′

Σ+
+Σ+

+
Σ+

+∆+
−

T ′T ′

1-bit
Quan.

Z i

Second order delta−sigma DAC system.Figure 22.8

1st integrator 2nd integrator

Input stream of 
input oversamples

Second order ∆Σ convertors are generally preferred to first order systems.
This is mainly because their Idler Pattern behaviour is better.

The idler pattern is the output pattern of �1�s and �0�s the DAC generates
to produce a steady analog output level. Figure 22.9 illustrates some idler
patterns produced by a first order ∆Σ DAC which has a 6-bit range. (That
is, the maximum +ve output corresponds to .) The top line shows
the output pattern when the system is switched on and presented with a
series of  values. The result is a series of alternating �1�s and �0�s.
The lines below show the effect of increasing the input series of number
to +4, then back to 0, then to �6, then to 0 once more.

X i = 25

X i = 0
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In each case the output series will, when averaged over a reasonable time,
give the correct value. However, this illustration shows two effects. Firstly,
that an output of zero makes the DAC generate a repetitive squarewave
sequence, ��10101010101��. Secondly, that this sequence reappears
whenever the input signal returns to 0. Note that values of  near to zero
also produce waves which spend a large fraction of the time behaving like
a ��10101�� squarewave. These patterns tend to concentrate their high
frequency energy into a few strong frequency components. As a result we
require a good low-pass filter to suppress them to the �100 dB level
required to ensure the full dynamic range of a CD system. In addition, the
highly coherent, repetitive nature of these patterns means that, if they are
�mixed� or combined with any other repetitive signal, a low frequency
�whistle� may be produced in the audio output. Unwanted whistles of this
kind can appear as a result of nonlinear beating with clock harmonics or
with rf interference from other equipment.
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Output ‘idler’ patterns from a first order delta−sigma DAC.Figure 22.9

To avoid these effects we require a DAC system which produces idler
patterns which are more variable. Figure 22.10 illustrates some idler
patterns produced by a second order ∆Σ DAC.

Note that in this illustration all the patterns shown are produced with an
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input series of  values. The top line of the illustration shows the
pattern produced when the system is switched on. Each of the lines below
it were produced after the  values had been moved away from 0 for a
while and then returned to 0. From this illustration we can see that the
second order system can generate a wide variety of idler patterns when
required to produce a steady analog output of zero. In principle, any
pattern of �1�s and �0�s can be produced provided that on average the
numbers of each in a long time are equal. The pattern the system settles
on depends on it's �recent history� (i.e. the values stored in its integrators)
when the input series returns to zero.

X i = 0

X i
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011001011001100110010110011001100110010110011001100101100110
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101010101001110001110001101010101010101010101010101010101010

Typical idler patterns of second order delta−sigmaFigure 22.10

DAC (all examples for               ).X i = 0

This variability of the idler pattern also applies to other, non-zero, series of
 values. It means that the second order system tends to produce an idler

pattern which varies from time to time. As a result, the unwanted high
frequency spectrum of the idler pattern tends to consist of a large number
of low-power frequency components and this spectrum changes from
moment to moment as a signal is recovered. This tends to �blur out� any
unwanted mixing problems and hence the effect is to slightly alter the
noise background of the audio signal. This effect is undesirable, but not as
objectionable as unwanted whistling noises! 

X i
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There is a measure of �unpredictability� in which idler pattern a second
order system will produce since the pattern depends upon the system's
recent history. Third (and higher) order ∆Σ systems can also be made.
These take this variability further and tend to produce Chaotic idler
patterns. In itself, this behaviour is desirable since it ensures that idler-
produced whistles become impossible. Unfortunately, high order systems
sometimes become so unstable that the values stored in their integrators
rise until they overflow the register sizes. This can produce disastrous
signal distortion, hence higher order systems must be used with great care.
(Fortunately, methods do exist to �stabilise� them and avoid this effect.)

Note that the second order system does sometimes produce a regular idler
pattern (a squarewave). To prevent this being a problem, commercial
systems usually deliberately add a dither pattern to the the  values fed to
the DAC. This tends to �break up� any repetitive behaviour � in effect it
produces a DAC whose order is �two-and-a-half�! The idler pattern this
produces is semi-chaotic. The system remains stable and should not
produce integrator overflows.

X i

Summary

You should now know that Multi-Bit DACs can suffer from practical
problems of Non-Monotonicity and Systematic Errors which can distort the
output waveform. That these problems can be avoided by using a One-Bit
DAC system. You should now also understand that any digital system
which takes an input of m samples/sec, each n bits long, and outputs
samples/sec, each  bits long can ensure that no information is lost
provided that . 

m ′
n ′

m ′n ′ ≥ mn

You should now understand how Pulse Width Modulation (PWM) and Pulse
Density Modulation (PDM) can be used to generate a wave which can be
averaged to obtain a required analog signal. That this principle of
averaging over a pattern of �1�s and �0�s can be used to recover an analog
signal from other one-bit systems. You should also now understand that
simple PWM/PDM systems aren't currently suitable for CD players. That
∆Σ DACs can work well using a combination of noise shaping by Digital
Integrators, and oversampling. That second order ∆Σ systems are preferred
because they have less regular Idler Patterns, and that higher order ∆Σ
systems can behave in a chaotic, unstable pattern.
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Chapter 23

What have we here?

23.1 Distinguishing messages

In many of the previous chapters of this book we have been concerned
with the need to be able to distinguish messages from random noise. We
have also spent time looking at assessing the information content of
messages and the information capacity of channels. One important topic,
however, we have taken for granted. Up until now we have assumed that
we can easily tell one message from another. We have also tended to take
for granted that the chosen patterns or symbols in use can be easily
distinguished from one another.

What is it that makes it possible to distinguish one message from another,
and how can we choose a system that maximises our ability to recognise
the meaning of signal patterns when they arrive?

Patterns for sending messages.Figure 23.1

...

etc ...

Pattern library

Typical message pattern

�A� �B�

�C�

�T�

�A��C� �T�

In human terms, we tend simply to look at patterns and �recognise� them.
In effect this means we have a sort of mental library of patterns which we
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associate with given meanings. Figure 23.1 gives an illustration of this
process. Here each letter of the alphabet is represented as a specific
pattern. In this case we can imagine each pattern as showing how a
received quantity � e.g. a voltage � varies with time. We then compare a
message when it is presented to us and choose the patterns in our memory
which seem �closest� to what has been presented to us.  In this case, when
we look at the message pattern shown an an example in figure 23.1 we can
compare it with the library of patterns for the letters and recognise the
message as being �CAT�.

This is all very well when we are happy to recognise message patterns or
symbol shapes by eye. More generally, however, we need to be able to
define, mathematically, what sort of process takes place when we are
identifying and recognising patterns. There are number of reasons for
this. For example, we may get bored and want to automate the message
recognition process. In practice we may want the messages to control
equipment, or to send data at high rates, etc. In addition we may find that
the received messages aren�t always easy to recognise.

A message altered by noise.Figure 23.2

RX SNR =  2.00 dB

‘?’

Figure 23.2 illustrates this situation. Here the pattern for just one letter
has arrived. Which one is it? If we compare, by eye, figure 23.2 with the
library shown in figure 23.1 we can decide that it is most probably a �B�,
but it isn�t easy to tell, and the presence of the added noise may mean that
we have made an error. In all real signal transfer systems we can expect
some random noise to be present, so we need some objective,
mathematical, way to take the signals as they arrive and compare them
with our library. This can then serve two primary purposes. Firstly, to
speed up and automate the process. Secondly, to help us assess how likely
it is that we have identified the right message. 

There is also a further useful advantage to employing a mathematical
approach as it then helps us to decide how we can choose the �best� library
of patterns to aid the recognition process. When recognising them by eye,
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the best set of library patterns would be chosen so that they all looked as
different to one another as possible. We will see later what �best� means
here in a more objective mathematical sense.

23.2 Correlation

The standard mathematical technique that is employed to compare
patterns and assess how �similar� they are is called Correlation. Given a
library of continuous functions, , (i.e. a set of functions;  to
define the pattern for �A�,  to define the pattern for �B�, etc.), we
can define the correlation of each of these with some input, , using
the integral

L i {t } LA {t }
LB {t }

x {t }

C i ≡
1

αi ∫
T

0

x {t } L i {t }  d t ... (23.1)

By performing a series of these integrals for each  in our library we
can obtain a set of  values which we can then use to help us decide
which � if any � of the library patterns is most similar to . The term,

, is a Normalisation factor whose value may be defined using the
expression

L i {t }
C i

x {t }
α

αi ≡  
∫

T

0

x 2 {t }  d t 


× 
∫

T

0

L i {t }  d t 


... (23.2)

This ensures that any values we obtain are always in the range

−1 ≤ C i ≤ +1 ... (23.3)
Normalisation is convenient as it means we can concentrate on similarities
between the shapes or patterns without having to worry too much about
their amplitudes or lengths.
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Multiply together library patterns and input.Figure 23.3

Bank of
multipliersLibrary patterns

LA {t }

LB {t }

LC {t }

x {t }

x {t } LA {t }

x {t } LB {t }

x {t } LC {t }

To illustrate why the correlation is useful we can examine figure 23.3. This
shows the results we get when we try multiplying the input pattern by each
of the library patterns. Looking at each of the results we can see that the
pattern for  is distinctive in that the result is generally positive
(or zero). The patterns obtained by multiplying the input by other library
shapes all tend to fluctuate in both the positive and negative directions
with no obvious preference.

x {t } LB {t }

This tendency for one result to be positive is quite significant. It indicates
that the two patterns being multiplied together tend to share the same
sign at every instant. It also means that the integral of  tends to
give a distinct positive result. Integrating the other output patterns, for

, etc., tends to give values of much smaller magnitude which
are just as likely to be negative as positive. This difference in behaviour
makes the result of integrating  stand out from the crowd,
indicating that we may have identified a special relationship between the
noisy input  and the pattern for �B�, . Hence we can use it as a
way of recognising that in this case the pattern, , is probably that
which signals a �B� despite the noise which disguises this fact.

x {t } LB {t }

x {t } LA {t }

x {t } LB {t }

x {t } LB {t }
x {t }

In practice, we would often sample the signals and patterns, and then use
numerical summations rather than integrals. Theoretically, this gives the
same results as if we had used (as indicated in figure 23.3) analogue
multipliers on the waveforms, but given the power of digital computers
this sample-based method is usually more convenient in practice. It also
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makes the argument for what is happening slightly clearer, so we can
adopt the approach here.

When dealing with series of sampled values we can define the correlation
between a pair of patterns in terms of a series

C {x , y} ≡
1

αx y
∑

N

j = 1

x jyj ∆t ... (23.4)

where the information in one pattern is now represented by the series of
values  each of which records the level of the pattern
at a time  from the start of the pattern. In a similar way, the other
pattern�s information is represented by the values
taken at the same moments. As we have seen in earlier chapters, these
series can hold all the information about the original patterns provided
that the sampling interval, , is small enough to ensure that we have
satisfied the sampling theorem.

x 1,  x 2,  � x j,  � x N

j∆t
y1,  y2,  �,  yj,  �,  yN

∆t

In terms of these sets of sampled values the normalisation factor will be

αx y ≡ ∑
N

j = 1

x 2
j  ∆t × ∑

N

j = 1

 y2
j  ∆t ... (23.5)

Before considering the specific patterns in the example illustrated earlier
it is useful to understand the general properties of this numerical
correlation. Once these are understood the results which arise when we
use correlation for pattern recognition should become clear.

Combining expressions 23.4 and 23.5 we can say that

C {x , y} ≡
〈x jyj〉

〈x 2
j 〉 ×  〈y2

j 〉
... (23.6)

where the angle brackets are used to indicate a quantity averaged over the
 values of each summation. The actual value of , and that of  have

vanished from expression 23.6 as the were present in both denominator
and numerator and hence have been cancelled out and removed.

N N ∆t

The above expression is simpler than those given earlier, so it makes the
properties of the correlation clearer. For example, we can see that the
normalisation term is essentially the product of the rms levels of the two
series. The effect of the normalisation is therefore to produce the same
result as would occur if the input patterns happened to have rms levels of
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. To further simplify the argument we can therefore
assume that the levels have been prearranged so that this is the case.
〈x 2

j 〉 = 〈y2
j 〉 = 1

The precise result we obtain will obviously depend upon the details of the
sets of values,  and . We can however obtain some general conclusions
based upon assuming that the patterns we have sampled are intended to
efficiently communicate information. From previous chapters we already
know that an efficient signal has statistical properties similar to those of
random noise. The above normalisation implies that the most typical level
of  and  will also be unity since they are the square root of unity.
Hence the most likely value, statistically, of  will also be around unity.

x j yj

| x j | | yj |
| x jyj |

When calculating the average value of  we now say that there will be
contributions, each having a typical magnitude of unity, but with an actual
magnitude and sign which varies randomly from sample to sample. As a
result, when the patterns are unrelated, the most probable value of the
sum of this product will statistically be

x jyj N

∑
N

j = 1

x jyj ≈ N ... (23.7)

in effect, this is an example of random, incoherent, addition, so the level
only tends to grow as the square root of the number of contributions.
When we divide the sum by the number of contributions to obtain the
mean level we therefore obtain a most probable result of

C {x , y} ≈
N

N
=

1

N
... (23.8)

Note that this only indicates the most probable magnitude of the result.
The actual value can vary, and is just as likely to be negative as it is positive.
When correlating two unrelated patterns whose amplitudes have already
been normalised to  it is probably better to regard the
result as being

〈x 2
j 〉 = 〈y2

j 〉 = 1

C {x , y} ≈ ±
1

N
... (23.9)

to make it clear that result is really the most likely size for a range of
possibilities. Pairs of patterns which produce results like this are said to be
Uncorrelated as the calculation indicates that they are unrelated.

23.3 The effects of noise
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Now consider what happens where there is a relationship between the
input pattern, , and the pattern, , which we are correlating it with. For
clarity we can now define the input to be

x j yj

x j ≡ βyj + n j ... (23.10)

i.e. the input has two components, one being a scaled version,  of the
signal pattern we are now comparing it with, the other being random
noise, represented by the series of value, . As before, for the sake of
simplicity we will assume that we have scaled the patterns so that they are
normalised to . The correlation now has the form

βyj

n j

〈x 2
j 〉 = 〈y2

j 〉 = 1

C {x , y} =
1

N





 ∑

N

j = 1

βy2
j + n jyj 






... (23.11)

The first term represents the part of the input, , that has the same
pattern as the series, , we are correlating it with. Hence it produces a
value which is just equal to . The above is therefore equivalent to

x j

yj

β

C {x , y} = β +
1

N ∑
N

j = 1

n jyj ... (23.12)

The second term is a summation of the series of  values. n jyj

Since we can expect the random noise pattern, , to have no relationship
with the pattern of, , this is similar to the result given in expression 23.7.
However in that case we were correlating two patterns whose sizes had
already been scaled to ensure that . We have not scaled the
size of the series, , in this way. In this case, therefore, we find that

n j

yj

〈x 2
j 〉 = 〈y2

j 〉 = 1
n j

1

N ∑
N

j = 1

n jyj ≈ ±
〈n 2

j 〉 × 〈y2
j 〉

N
... (23.13)

This is really just a more general form of the result used earlier. As before,
we have pre-set , so we can say that the above means that〈y2

j 〉 = 1

C {x , y} = β ±
〈n 2

j 〉
N

... (23.14)

In the absence of any noise contribution we would expect  and all
. The result would be a correlation value of unity and we would say

that the  and  patterns were perfectly Correlated. We would then use this

β → 1
n j → 0

x j yj
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as evidence to unambiguously say that the patterns  and  were the
same.  The presence of the noise alters this in two ways. To understand
these it is useful to notice that expressions like  essentially indicate the
�mean power� of the patterns.

x j yj

〈x 2
j 〉

The first consequence of the presence of the noise is that the signal
pattern, , now only provides a fraction of the total power of . It
actually provides just  of the total. Since we have scaled the size of the
values to get unity total power from the input combination of signal plus
noise, we can say that

βyj x j

β2 x j

〈x 2
j 〉 = β

2 〈y2
j 〉 + 〈n 2

j 〉 = 1 ... (23.15)

Since we also know that we have arranged for  and we have a non-
zero noise power it follows that  will have a value less than unity, and that
the greater the noise level, the smaller  will be. The primary effect of the
presence of the noise is therefore to reduce the typical level we get when
we correlate a signal with the �correct� pattern that it contains since we are
seeking a correlation value approaching unity as a sign that we have
identified the signal pattern.

〈y2
j 〉 = 1

β
β

The second consequence of the presence of the noise can be seen by
looking again at expression 23.14. The second term in that expression
indicates that there will be a level of uncertainty or error in the value
obtained by performing the correlation. This is just the usual, inevitable,
result we would expect from the basic ideas of Information Theory. i.e.
having made a �measurement� (in this case a test to see if a specific signal
pattern is present) we can expect some level of uncertainty in the result
due to the presence of noise. This limits the amount of information we
can gather, in this case meaning we can never be 100% certain we have
correctly identified the signal pattern.

To assess this level of uncertainty we can make use of the value of  to link
the input and output Signal to Noise Ratios of the measurement process
implied when we correlate the input against the �correct� pattern.

β

From expression 23.15 it follows that the relative level of the noise must be
such that . This allows us to link the input Signal to Noise
Ratio (SNR) of  (i.e. the power ratio of the actual signal level,  to the
noise power level of ) to the value of  via the expression

〈n 2
j 〉 = 1 − β2

x j yj

n j β
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in ≡
β2

1 − β2

... (23.16)SNR

Looking back at expression 23.14 we can take the two terms and identify
the first with the detected signal level, and the second with the output
noise level. Since Signal to Noise Ratios are always power or energy ratios
we have to square these to obtain an output result of

≡
N β2

1 − β2
= × N ... (23.17)SNRout SNRin

This result tells us that the correlation process enhances the SNR and this
can help us to �pick out a signal from noise�.

The value of the ratio  is often called the Process Gain. The
longer the pattern sequence, the higher the process gain, and the greater
the improvement we can obtain. As a result we can often begin with a
situation where the �raw� or input SNR is less than unity (i.e. the input
signal power is less than the input noise power) and by performing a
correlation with the relevant pattern obtain a clear detection of the
presence of the signal pattern with a final SNR well above unity.
Correlation is therefore a very valuable technique when we are seeking
patterns which may be submerged in noise, as well as when we want to
reliably decide which pattern from a possible set has arrived.

/SNRout SNRin

This improvement should not really be a surprise as it is very similar to
results obtained in many cases described in earlier chapters. The accuracy
or confidence of the output rises with the length of the sequences of
values we have available. In fact Correlation is a process we have already
met in this book in various disguises. For example, the integration
technique used for signal averaging in Chapter 15 essentially correlates
the input with the �pattern� of a steady level. Similarly, the Phase Sensitive
Detection process described in Chapter 16 is a way of correlating an input
with a square-wave pattern of a specific frequency and phase.

Applying the arguments of the Sampling and Nyquist Theorems we can
expect that a series of values, , will form a complete record of a
continuous pattern provided they represent the values taken at instants
less than  apart. In this situation a series of  samples will take up
a record duration of . This means that we can say that when
considering continuous signal patterns which arrive with superimposed
noise, the value of the Process Gain will be equal to

x j

∆t = 1
2B N

T = N
2B
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G P = N =
T

∆t
= 2BT ... (23.18)

When we wish to estimate the amount of SNR enhancement a correlation
process will provide we can now choose to use  for situations where we
have sets of sampled values, or the signal�s bandwidth and duration when
dealing with continuous waveforms.

N

23.4 Signal recognition using correlation

Since Correlation can provide Process Gain we can use it to detect signals
in the presence of a noise power level which may be higher than the
signal�s power level. This often means receiving a noise-dominated input
and searching it for one or more �known� patterns which are expected.
This raises two issues which we have to resolve in order to be able to
recognise signals. Firstly, how can we optimise our chances of being to tell
which signal has arrived? Secondly, how can we tell when a signal arrives
when it is buried in noise? Let�s start with the first question.

It should be fairly clear from the previous sections of this chapter that we
can hope to identify which pattern has arrived by performing correlations
and finding which of our library gives the largest correlation value. To be
able to do this as effectively as possible we�d like to arrange for two things
to be true. Fairly obviously, we�d like to arrange for the highest possible
input SNR to make the signal stand out from the noise. This being the
case, we can hope to minimise the effect of the noise on the correlated
output when we find the right message pattern and get a correlation value
that approaches unity. However, in addition to this, we will also find it
useful to make the actual signal patterns as �different from each other� as
possible. To understand what this means, we can assume that the actual
noise level is small enough to be ignored, and that the input signal is a
specific choice, , from our library, . To maximise detectability
we want to arrange � if we can � that

Lk {t } L j {t }

1

αi ∫
T

0

Lk {t } L i {t }  d t ≡ 0  k ≠ iwhen

1

αi ∫
T

0

Lk {t } L i {t }  d t ≡ 1  k = i ... (23.19)when

This means that, in the absence of any noise, we should find that only one
correlation will give a value of unity, when we happen to try the library
pattern for which . All other correlations will give a result of zero.k = i
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This makes the �correct match� stand out as clearly as possible.

Sets of functions or series of values which satisfy expression 23.19 are said
to be Orthogonal functions or series over the interval of the integral or
summation. Choosing such an Orthogonal Set is therefore desirable when
selecting the signal patterns we are using as they optimise our ability to
distinguish one message from another. In fact, we have already seen this
behaviour in earlier chapters as sinewaves and cosinewaves are used as the
Orthogonal functions which form the basis for Fourier Transformation.

Signal hidden in a section of noise.Figure 23.4

time

Signal added to this section.

Noise
Input

0

t m

T

By choosing a suitable set of functions we can minimise the risk of one
message being mistaken for another simply due to their being �similar�.
However, we still have to deal with the uncertainties introduced by noise,
and may often have the problem of recognising the time when a signal has
arrived if it is weak compared to the noise level. To see how we can deal
with this situation we can use the example illustrated in Figure 23.4. This
shows a signal pattern, of duration, , added into a random noise pattern
at a location starting at time, . If the signal power is low compared to
that of the noise, the signal seems to �vanish� when we just look at the raw
combination. In addition, as an efficient signal, the signal�s pattern can be
expected to have statistical properties similar to those of the noise, so it
has no obvious features that show when it occurs.

T
t m

The situation shown in figure 23.4 represents the situation which arises
when we are monitoring a communication channel, waiting for the arrival
of a signal, but not knowing when it might arrive. As before, we can
consider the situation in terms of series of sampled values, but whilst
doing so bear in mind that similar arguments and conclusions will arise
for continuous functions and patterns.
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We can now represent the input as a series of values, , which arrive at
instants, . The signal pattern we are looking for (which may be just one
of many we look for in parallel) can be represented as a series of  values,

. Once more than  input values have arrived we can
collect a consecutive series of them, starting at an instant , and
correlate this with the pattern we are looking for. For clarity we can ignore
the normalisation terms and just say that the result will be a correlation
value

v i

j∆t
N

y1,  y2,  �,  yj �,  yN N
p∆t

C {N , p} ∝
1

N ∑
N

j = 1

(yjv j + p) ∆t ... (23.20)

As new sample points (new input data) arrives we can repeatedly
recalculate this value for new values of  and correlate later and later
sections of the input against the Key pattern(s) in our library of possible
signals, searching for a match that tells us which pattern has arrived, and
its time of arrival.

p

Now the noise won�t have any specific relationship with the patterns we
are seeking, so, provided that  is reasonably large, this usually won�t
contribute a significant amount to the result of the summation. Similarly,
if the signal pattern is efficient, each of its values will be independent in
information theory terms from its companions. (This was discussed
perviously at the start of Chapter 8.) This has an important consequence
which we can understand by considering expression 23.21

N

C {m } =
1

N ∑
N

j = 1

a ja j + m ... (23.21)

Here  represents the result of correlating the pattern  with itself,
but with an offset, . We know from earlier in this chapter that when

 the correlated value will be unity if the signal level has been
normalised. However, when  we find that inside the summation we
are multiplying pairs of values which aren�t the same. Indeed, if the signal
pattern is efficient we can�t predict any one value in the series from any of
the others. The offset therefore breaks the relationship that causes the

 correlation to give a distinct positive value. The result is as if we
were correlating to completely unrelated patterns!

C {m } a j

m
m = 0

m ≠ 0

m = 0
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Sliding CorrelationFigure 23.5

time

Signal added to this section.

Input

0

0

Correlated
Output

t m

Correlation peaks when
aligned correctly in time.

The result is shown graphically in Figure 23.5 which plots  as a
function of  below the original input. The �hidden� signal only
correlates constructively with the Key message pattern we are looking for
when we arrange that we take the set of values starting where .
Conceptually, we are essentially �sliding the key pattern along the input
looking for a match�. Hence this type of process is sometimes called
Sliding Correlation. The clear peak when we start with the value for which

 shows both that the sought pattern has arrived and also
indicates when it arrived. (For clarity, figure 23.5 shows the square of

 to indicate the SNR of the result.)

C {N , p}
p∆t

t m = p∆t

t m = p∆t

C {N , p}

In practice, the above process may be quite tedious to perform as it
involves repeated summations over products of large sets of values, which
must also be redone for each of the possible message patterns in which we
have an interest. Hence the whole process may become computationally
intensive and take longer than we would wish. Fortunately, there are some
more efficient ways to perform the same process. The most common of
these is the use of an FFT-based method. This is based upon pre-
computing the complex conjugate of the Fourier Transform of each
library pattern and using these instead of the initial patterns. We then
collect chunks of  samples from the input signal as they arrive, Fourier
Transform them, multiply these values by our new library of transformed
patterns, then inverse transform the result.

N

If one of the patterns we are looking for is present in the input, the result
shown the same kind of peak we see in Figure 23.5. Although the details
are more complicated in practice than described here, the system has one
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great practical advantage. It simultaneously tests for possible signals
starting at  time offsets. This method is therefore often preferred as
being faster and easier than the �brute force� method of repeatedly just
calculating each Correlation in turn, for every possible starting time.

N

In fact, there are a variety of ways we can search for signal patterns that
are, in information theory terms, equivalent to the methods described in
this chapter. For example, when building analog circuits, another
common method has been based upon what is called a Matched Filter. This
uses a filter which has been designed to give the maximum possible
response when it is fed one of the patterns we are looking for. Parallel
arrays or Banks of such filters can then be employed to quickly scan an
input looking for signals. This approach is used less often these days as it
has been overtaken by digital computations, but a numerical equivalent is
still employed. In principle, however, both the FFT-based and Matched
Filter based methods are equivalent to simple Sliding Correlation. The
choice of method is simply for reasons of convenience, not for any
abstract theoretical reason.

Summary

You should now understand how Correlation can be used to identify when a
specific signal pattern has arrived, and can determine the time of arrival.
It should also be clear how choosing an Orthogonal Set of patterns
maximises our ability to decide which of them has arrived when the
reliability of recognition is affected by noise. You should also now know
what is meant by Process Gain, and that this increases with the number of
samples in (or the duration of) a signal pattern. It should be clear that, as
a result, Correlation provides a signal to noise enhancement which
increases with the signal length.
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Chapter 24

Time and frequency

24.1 The meaning of frequency

Many of the chapters in this book consider how we can accurately measure
the shape or amplitude of signal patterns. In practice, we often also need
to perform time or frequency measurements. These measurements can be
performed in a variety of ways. However, before looking at some examples
it is worth asking, just what do we mean by the �frequency� of an input
signal? The reason for this question is that, surprisingly, there is more
than one definition of the term �frequency� and we may get different
results from a measurement depending upon which one the chosen
technique assumes. There are three related problems which arise when we
want to define and measure the frequency of a waveform. To understand
these we can start by considering figure 24.1. This shows three signal
pattern observations, each made over a finite duration, .T 0

24.1a Many cycles in
observed signal duration

24.1b  Around one cycle in
observed signal duration

24.1c  Is this a part of
a sinusoid at all???...

Figure 24.1 Three signal patterns of finite duration that may

be sections from a sinusoid.

T 0

The waveform shown in 24.1a exhibits very clear signs of being a sinusoid
with a fairly obvious frequency and amplitude. The presence of a number
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of repetitive cycles provides a strong argument for this. In comparison,
24.1b is less obviously a section of a sinusoid, although it still seems a
reasonable deduction. Finally, with the signal pattern shown in 24.1c it
isn�t at all obvious that the shape is a section taken from a sinusoid since �
if it is � we have so limited a section as to make the shape�s nature unclear.

In practice, all observations are limited to a finite length or duration.
However we tend to associate the concept of �frequency� with sinusoids
which, by definition, extend over an infinite duration. In Chapter 7 we saw
how Fourier Analysis can be employed to obtain the Frequency Spectrum of an
input waveform or signal pattern. This technique was applied using the
assumption that we could always treat a pattern of duration, , as being
Periodic and that it would repeat itself after this time interval. Taking 24.1b
as an example, this implies that the signal � if observed for much longer
than  � would look like the non-sinusoidal pattern shown in Figure 24.2.

T

T 0

T 0

T 0

Figure 24.2 Extended waveform implied by assuming that the
finite section shown in 24.1b repeats every     .

In the absence of any other information this result is fine since we would
then have no reason to expect the �chunks� shown in Figure 24.1 to
actually be part of a sinusoidal wave at other times. Hence we would not
need to worry that the three examples shown would all show quite
different, and complicated, spectra when analysed using Fourier Analysis
as applied in Chapter 7. However in each case the result has an �enforced�
periodicity imposed by the assumptions which then influences the results
we obtain. This may conflict with any periodic behaviour inherent in the
signal itself and lead to a misleading result in some circumstances. To
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avoid this problem, we can choose to make some alternative assumptions
about the nature of the waveforms. 

By looking at the patterns shown in figure 24.1 we can decide to assume
that they are, indeed, all sections of a sinusoid. In some cases, instead of
subjective recognition as the basis for such an assumption, we may have
some extra information about the way the waveform was generated which
tells us that it is reasonable to make this new assumption. Starting from
this new basis, we can now hope to find a way of determining the relevant
sinewave�s frequency without being confused by the effects of the chosen
finite duration, , upon the observations. Note that when we make this
alternative assumption we aren�t actually varying the information content
of the signals, just interpreting the content in a more appropriate way.
This underlines that the assumptions we make, and the methods used for
analysis, can alter the values we obtain as the results of a measurement. In
effect, we have changed our minds about what quantity we are measuring.

T 0

The second problem which arises when we make frequency measurements
is that the waveform may obviously be repetitive, and have a clear period,
but not be sinusoidal. Examples of some waveforms like this are shown in
figure 24.3.

Figure 24.3 Various waveforms with the same repeat period.

As in the previous case, simply applying Fourier Analysis to obtain a
spectrum on the assumption that the pattern is periodic over the entire
observed interval may not provide a satisfactory measurement of the
pattern�s �frequency�. In many cases like this we find it convenient to
define the frequency of the waveform to be the number of times its shape
repeats per second. i.e. we now define the frequency to be
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f ≡
1

t p
... (24.1)

where  is the repeat period of the waveform. This definition of a signal
pattern�s frequency is more general than our previous one which assumed
sinusoidal behaviour. However there are still cases where we want to
measure the frequency of a sinusoid, and will use the sinewave-based
definition.

t p

The third problem that affects frequency measurements is that the actual
signal may not be perfectly periodic. Either as a result of drift, or random
noise, or deliberate modulation, the frequency may change with time. The
rest of this chapter will ignore deliberate frequency changes and only
consider random noise effects as these can be expected to limit the
accuracy of a frequency measurement. 

24.2 Time and counting

Having established the way our assumptions can effect how a frequency
value is determined, we can now examine some examples of various
measurement techniques, starting with those which depend explicitly
upon timing and waveform periodicity. Counting methods depend upon
identifying some specific feature of the incoming periodic waveform and
using this to Trigger a counting process. The chosen feature should only
appear once per cycle. Hence by counting the number of times this
feature Event occurs in a given time we can determine a frequency for the
waveform. Using this method, we are defining the frequency to be the
number of �events (or cycles)per unit time� we observed.

An example of this method is illustrated in figure 24.4. The input
waveform is passed through a Comparator. This has the task of comparing
the input with a chosen Decision Level (sometimes called a Cut level). The
output from the comparitor is binary � i.e. it provides one or the other of
two output levels which just indicate whether the input signal is above or
below the chosen decision level. This has the effect of converting the
input waveform into a series of pulses. Usually, the comparitor is designed
to output pulses whose voltages are compatible with digital logic gates
(usually either TTL or CMOS).

Before proceeding to analyse the performance of this method it is worth
noticing that we need to take care and ensure that we know how many
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times per cycle the input waveshape�s level crosses the chosen decision
level value, , since this determines the actual number of events per
cycle. Usually we try and ensure there is only one event in each cycle.
Multiple events per cycle do not matter provided we know how often they
are occurring. However if we assume the incorrect number, the resulting
frequency measurement will also be incorrect.

V c

Figure 24.4 Frequency measurement based upon counting.
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The system uses a pair of digital counters. The input to each of these is
controlled by a Gate. Depending upon a control level supplied to these
gates, we can either allow signals to reach the counters or block the
inputs. When the gates permit, the lower counter, �B�, will count incoming
pulses being supplied from a Clock. However, once this counter has
received a set number of clock pulses, , it changes the level of an output
line, labelled as the �control line�. This alters the action of the gates,
blocking the entry of any more signal and clock pulses into the system.
Counter �A� will count the number of signal events (and hence the
number of input signal cycles) allowed through by its gate.

M

The overall sequence for a measurement is therefore as follows:

• A �start command is received by both counters. This clears the values
they hold to zero.

• A count now starts as clearing counter �B� caused its control line
output to change, allowing both gates to pass the input signals.

• The count continues until counter �B� has received  clock pulses.
Once this occurs, the control line level changes and counting halts.

M

• Counter �A� now stores the number, , of signal events (cycles) it
observed during the duration of the counting process.

N
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Provided that we know the pulse-rate, , provided by the clock, and that
this rate is stable, we can now read counter �A� and say that  signal cycles
occured in a measurement time interval of . Hence the measured
frequency value for the input signal waveform will be

f c l

N
M / f c l

f =
N

M
× f c l ... (24.2)

Having established the basic method we can now assess the precision of
any measured values we obtain using this method. This will clearly be
affected, as usual, by the presence of noise. However before considering
the effect of noise we should note some limitations inherent in the
method. These arise from the quantised nature of the counting process.

The system counts whole events/cycles. Consider a situation where there
happened to be, say, 1357·56 signal cycles during the observation interval.
The counting would round this down to 1357. Hence the measured
frequency would be in error due to the loss of the fractional part of the
true value. Also, if the frequency changed before a remeasurement to, say
1357·55, we would not notice as this value would also be rounded down.
The inherent frequency accuracy of this measurement process is therefore
such that we must expect a typical frequency accuracy of no better than

δf ≈ ± 
f

N
... (24.3)

This will be the case even if we could ensure a clock that was perfectly
stable, running at a precisely known rate, and remove all random noise
from the system. In practice we can seek to improve this measurement in
two ways. The first, and most obvious, is to choose a larger value for  or
a lower clock frequency, hence increasing the counted value for . This
increases the required measurement interval and we observe the input
signal for longer than before. A similar improvement can be obtained by
adding up and averaging a series of measurements as this also increases
the total observation time. 

M
N

A second, less obvious, potential improvement is to consider swapping
over the signal and clock inputs and choose to use a very high clock
frequency. This modified system counts how many clock cycles occur
during a set number of input signal cycles � i.e. the inverse of the original
process. The inherent accuracy is now determined to ± one clock cycle,
not one signal cycle. Hence in this alternative arrangement we would
obtain a measurement with a typical inherent accuracy of



Information and Measurement - 259 - Free PDF version

δf ≈ ± 
f

M
... (24.4)

In practical cases we should use whichever frequency is the lowest to
determine the counting interval, and maximise the number of counts of
the other, in order to obtain the most accurate results.

24.3 Effect of noise on counting methods

For the sake of the explanations in this section we can assume that the
counting method extends over many cycles so we can therefore neglect
the rounding accuracy limit explained in the last section. Here we can
consider the effects of noise upon frequency measurements obtained via
counting or timing processes. A detailed analysis of this is complex so here
we will adopt a simplified explanation which, nevertheless, gives the
correct result in most cases of interest.

t 1 t 2 t 3 t N

T N

t s

δt 1 δt 2 δt 3 δt N − 1

Figure 24.5 Observing the periods of a series of cycles.

Figure 24.5 is a schematic representation of the process of performing a
timing measurement over a number of cycles. For the sake of clarity and
simplicity we will only consider quasi-sinusoidal waveforms here. We then
also use the zero crossings in the positive-going direction as our events
indicating the start of each cycle period. 

Before proceeding, it is worth bearing in mind that any periodic waveform
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can be regarded as having a spectrum that consists of a nominal
Fundamental frequency, plus harmonic components. We could therefore
choose to filter a waveform to remove the harmonics, leaving just the
fundamental sinusoid which could then be processed as considered here.
This approach can, in fact, be useful in practice as it removes the noise
power present at frequencies well away from the fundamental period/
frequency, hence potentially improving the SNR.

If the observed waveform were perfectly periodic, and no noise were
present, we could expect to see a given number of cycles, , occurring in
an appropriate total observed interval, . The waveform�s period would
then clearly be equal to . In practice, we can expect noise to
randomly alter the instants when the zero crossings are observed. Hence
instead of the observed period of every cycle being  it will have some
value  which varies unpredictably from one cycle to the next. Random
fluctuations in the time intervals between successive events is often called
Jitter. These timing variations can be very important in some situation. For
example, they may lead to problems in 1-bit DAC/ADC systems of the
kinds considered in Chapter 22.

N
T N

t s ≡ T N / N

t s

t i

Whatever the source of the noise we can represent it as a series of timing
errors for the observed events, . We can also represent the typical
timing error level in terms of an amount . Now when we just observe one
cycle period we can expect each �end� to have its apparent time altered by
an unpredictable amount similar in magnitude to . As a result since
there are unrelated errors at the start and end of each cycle we would
obtain an error in measuring the period of just one cycle that will typically
be around . i.e. The observed period would therefore typically be

δt i

∆

∆

± 2 ∆

t ′ = t s ± 2 ∆ ... (24.5)
where  represents the actual underlying signal period. Provided that the
error is reasonably small compared to the period this leads to an
uncertainty in the measured frequency taken using one cycle of around

t s

δf ≈ ± f 2 2 ∆ ... (24.6)
where  represents the nominal signal frequency. This frequency error is
set by the relative levels of  and , which is the observed time in this
case. The above is therefore just equivalent to saying that

f
2 ∆ t s

δf

f
≈

2 ∆
t s

... (24.7)

Consider now the effect of measuring the time taken for  cycles. We nowN
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ignore the timing errors of intermediate cycle locations and just see the
errors in timing at the start and finish of this prolonged observation. So,
since these timing errors are statistically similar to before, the level of
frequency error changes to

δf

f
≈

2 ∆
T N

=
2 ∆

N t s
... (24.8)

This result tell us that making a measurement over  consecutive cycles
gives an -fold improvement in the accuracy of the frequency
measurement. Where the timing errors are due to noise superimposed on
a genuinely periodic waveform this is the correct result. However it isn�t
the right answer for situations where the jitter arises due to random
fluctuations in the signal source which affect its behaviour.

N
N

The above analysis assumes that the actual signal generated by the signal
source is perfectly regular, and each cycle has a period identical to all the
others. This perfect regularity is just �masked� by noise which is
superimposed in between the creation of the signal and the observation
process used to make a measurement. As a result, each observed zero
crossing tends to remain within a typical  from the actual instant the
perfect regular underlying signal crosses the zero level. A similar result
would apply for any other chosen event used to identify the start of each
period cycle.

±∆

However when the signal source itself is affected by noise the period of its
output may change randomly from cycle to cycle. Unless the source has
some way to detect this and correct for the effect, the resulting time errors
tend to accumulate incoherently. The result is that after  cycles the -th
zero crossing will not typically have a timing error of , but  due to
the �random walk� addition of all the earlier errors. In such cases the likely
error leads to an uncertainly

N N
±∆ ± N  ∆

δf

f
≈

N   ∆
T N

=
 ∆
N  t s

... (24.9)

i.e. the probable accuracy of the frequency measurement only increases
with , not  as would be the case where the noise is superimposed
upon a perfectly regular signal pattern. Since this result implies a lower
accuracy it is often wise to assume that it is so in order to avoid thinking
that a measured result is more accurate than is really the case!

N N

To obtain the above results we just have to count intermediate events
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(zero crossings) to ensure that we know how many cycles have occurred
during the observed period, . The precise instants when the
intermediate events occurred were not noted. Some textbooks argue that
we can obtain a more accurate result by recording each of the observed
cycle periods, , , �,  �, , and then taking their average. The
argument presented is that all these values have independent errors which
can be reduced by the averaging process. Since this argument is put
forwards in some texts it is perhaps worthwhile pointing out that it is
incorrect. We can see why this is the case by looking again at figure 24.5
and imagining we had collected just a few cycle period lengths.

T N

t 1 t 2 t i t N

Take as an example, the error  which affects both  and . By looking
at the figure we can make two important points. Firstly that the effects of

 upon  and  have the same magnitude. Secondly, that they have
opposite signs; i.e. if  makes  longer by delaying the zero crossing, it
shortens  by precisely the same amount. If we choose to collect all the
individual observed periods, , , , etc, we calculate their average by
performing two steps � adding up all the values, then dividing by how
many values we collected.

δt 2 t 2 t 3

δt 2 t 2 t 3

δt 2 t 1

t 3

t 1 t 2 t 3

The first step of the averaging process means that we obtain a total time

T N = t 1 + t 2 + ... + t N ... (24.10)
which is obviously identical to the time we would obtain by simply
determining how long  cycles will take. The effects of all the
intermediate error values vanish from this result because when we sum
over all the individual times the effects upon adjacent values cancel out.
As a consequence, in terms of obtaining an accurate result, there is no
need whatsoever to record all the individual time periods since the
averaging process gives us precisely the same answer as measuring the
total time taken for  cycles.

N

N

The above does not mean that collecting the individual values is pointless.
If we do not already know the value of , collecting these values can be
very useful in allowing us to assess the magnitude of the possible
uncertainty in our measurement. By collecting a series of individual
values and calculating their spread we can estimate  and hence estimate
the accuracy of measurement. However this process does not, in itself,
alter the measured value we obtain.

∆

t i

∆

24.4  Relationship between SNR and jitter level
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In many cases the jitter arises due to the presence of a given superimposed
noise. As usual with measurement processes the accuracy of measurement
will depend upon the input SNR and the time taken for the measurement.
The previous section is all in terms of the typical jitter level, , so we
should now establish how this is related to the input SNR. To understand
their relationship we can use the example illustrated in figure 24.6. For
the sake of our example this combines a sinusoid of amplitude, , with
some random noise, of rms level . As usual, the effect of the noise will
be to change the signal level in a manner that varies unpredictably from
moment to moment.

∆

a
v n

Figure 24.6 Jitter level caused by superimposed noise.

2∆

2v n

Since we are concerned with the typical or most probable effect of the
noise we can imagine the underlying sinusoidal signal pattern as being
�surrounded� by a band of noise which typically extends  above and
below the actual sinusoid. If we observe many cycles (e.g. by overlaying
many cycles on an oscilloscope) this effectively �blurs out� the sinusoidal
pattern by this amount. Although this noise primarily alters the signal
level, since the waveform crosses zero at a finite rate of change it also
affects the instant of zero crossing.

±v n

For a sinewave
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S = a Sin {2πf t } ... (24.11)
the rate of change as the sinusoid crosses zero will be

d S

d t
= 2πf a ... (24.12)

A small change in level of  therefore alters the instant of zero crossing
by an amount  where

±v n

±∆

∆ = 
d S

d t


 − 1

× v n ... (24.13)

i.e. we can say that the probable jitter level will be around

∆ ≈
v n

2πf a
... (24.14)

This result is an approximation which assumes that  as it is based
on assuming that the slope of the sinusoid remains essentially constant
over the time interval . In effect, we treat the zero-crossing waveform as
locally being a straight line and then deduce the relationship between the
values of  and  by assuming that their ratio tells us the slope of the
line. Hence expression 24.14 is only reliable when the SNR is reasonably
high. At lower SNR�s, however, the counting method tends to fail to
function reliably for the purposes of frequency counting. This is due to
the noise tending to unpredictably alter the number of trigger events per
cycle when the noise level is high. To obtain reliable counts we therefore
require a reasonably high SNR. The above estimate can hence be
regarded as being valid in most cases where the results of a count are
likely to be accurate.

a ≫ v n

∆

∆ v n

Expression 24.14 is in terms of amplitude levels. In general, the accuracy
of measurements should be related to the SNR in energy or power terms
as the result is then more general in its applicability. For a sinusoid the
power level is proportional to . We can therefore say thata 2 / 2

≡
a 2

2v 2
n

... (24.15)SNR

Combining expressions 24.14 and 24.15 we obtain the result

∆ ≈
1

2πf
×

1

2 ×
... (24.16)

SNR

where SNR represents the input signal to noise ratio. By combining this
result with expression 24.8 we can say that the resulting uncertainty of a
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frequency measurement will be

δf ≈
1

2πT N

... (24.17)
SNR

This result is just an approximation but it serves to act as a guide to the
effect of superimposed random noise upon the probable accuracy of
frequency measurements based upon timing the period length of a
number of cycles of a repetitive waveform. Note that, as we would expect
from the basic concepts of information theory, the accuracy depends
upon the observation duration, , and the input signal to noise ratio.T N

In practice, frequency measurement methods based upon counting are
actually comparisons since they determine the ratio of the number of
cycles of the input signal to the number of cycles of the chosen clock
which occur during the the observation time. This isn�t a surprise as we
established in the early chapters of this book that measurements are
usually comparisons between a reference standard (in this case the time
taken for a number of clock cycles) and the item we wish to measure.
Once we are aware of the role of the clock in this process it becomes clear
that any jitter or uncertainty in the period of the chosen clock will also
tend to introduce some level of error or uncertainty into the result of the
measurement process. When dealing with the methods considered in this
chapter this has two consequences we have to bear in mind.

• Any noise superimposed on the process of counting clock cycles will
cause a jitter. The likely effect of this can be estimated using an
approach similar to that used to deduce expression 24.17

• Any error we make in defining or measuring the clock frequency will
alter the results we obtain.

In many situations we can ensure that the effects of clock errors are
relatively small and hence our measurements are limited by the signal
SNR and the available obervation time, . However we need to be aware
of the need for a stable, well defined, clock to ensure this is the case.

T N

Summary

You should now understand how Counting methods can be used to
determine the period of a repetitive waveform. It should also be clear that
the accuracy of a measurement will depend upon various factors which
include the chosen clock rate, the signal�s SNR, and the total time devoted
to the measurement. You should also be aware that this kind of



Information and Measurement - 266 - Free PDF version

measurement is, like most others, a comparison, hence the stability of the
clock, and the reliability with which we know its frequency will be
important in ensuring an accurate result.
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Chapter 25

Frequency measurement systems

25.1 Phase lock methods

Chapter 24 examined measurement techniques based upon counting
methods. These are particularly useful where we can employ digital
circuitry, and where we we want to measure the duration or period of a
repetitive signal pattern. However they are not the best choice for every
purpose. This chapter examines some of the other methods that are
widely used to perform frequency and spectrum measurements. We will
start by looking at the use of the Phase Lock Loop (PLL).

The Counting approach described in Chapter 24 relies upon using a
suitable oscillator as a Clock. For accurate measurements to be possible this
clock must have a well defined, and stable, frequency . In essence, the PLL
approach turns the counting method on its head and seeks to adjust the
clock frequency to Synchronise it with the incoming signal. If we then
determine how much we have altered the clock frequency we can use this
information as a measure of the frequency of the input signal. In practice,
the term �clock� is avoided when describing the oscillator that forms part
of PLL systems since this word normally implies a stable frequency source.
In most cases using electronics the alterations in the oscillator frequency
are produced by applying a control voltage, hence the oscillator is
referred to a Voltage Controlled Oscillator (VCO). Figure 25.1 is a schematic
diagram showing the basic form of a simple PLL.
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Figure 25.1 Simple Phase Lock Loop  (PLL)
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The system consists of a VCO, an amplifier of voltage gain, , and a PSD
connected together to form a closed loop. We have already examined the
behaviour of Phase Sensitive Detectors in Chapter 16. The Reference Frequency
for the PSD is supplied by the VCO. We can define the VCO�s behaviour
to be such that it produces an output whose frequency is given by the
expression

Av

f r = f 0 + k f v {t } ... (25.1)
where  is the voltage used to control the VCO. When  the
oscillator outputs a frequency, , which is called it�s Free Running
frequency. i.e.  represents the frequency the VCO will produce naturally
when we make no attempt to alter its output.

v {t } v {t } = 0
f 0

f 0

From the basic properties of a PSD, the output, , can be defined ase {t }
e {t } ≡ k pA Cos {θ} ... (25.2)

where  is a measure of the gain of the PSD,  is the mean amplitude of
the input signal, , and  is the difference in phase at any time
between the input signal and the reference, . 

k p A
S {t } θ

r {t }

To understand how the system works we can start by considering the
situation where the signal frequency happens to equal the VCO�s free
running frequency and the two happen to be in quadrature � i.e. we start
by assuming that  and the signal and reference differ in
phase by 90 degrees. When the signal and reference are in quadrature,

, so , and hence . This means the VCO will
continue to oscillate at . As a result, unless we alter the input signal
frequency this initial situation will continue.

f s = f r = f 0

θ = 90° Cos {θ} = 0 e {t } = 0
f 0
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Consider now what happens if the input signal�s frequency changes
slightly. At first the VCO output remains unchanged. The signal and
reference frequencies are now different. Since frequency is the rate of
change of phase, it follows that the phase difference between the signal
and reference now starts to change, and  departs from being 90 degrees.
This alteration in relative phase means that the output from the PSD will
also change and will no longer equal zero. The result is that, now

, we get an amplified non-zero control voltage of

θ

Cos {θ} ≠ 90°

v r {t } = k pAAv Cos {θ} ... (25.3)
applied to the VCO, altering its output frequency to a new value

f r = f 0 + k f k pAAv Cos {θ} ... (25.4)
The behaviour now depends upon arranging the loop and VCO to obtain
the correct sign for the factors . Provided that we ensure that this is
such that the change in VCO output frequency has the same sign as the
change in  we find that the VCO frequency now alters to �follow� the
change in input signal frequency. This change will continue whilst there is
any difference between the two frequencies. This is because a continued
difference in frequency means that the phase difference is changing,
altering the PSD output that controls the VCO. However once the VCO
frequency has changed enough and become equal, once again, to the
signal�s new frequency their relative phase difference becomes steady
again. The result is that the system eventually settles at a new equilibrium
where the signal and VCO frequencies are the same once more. However
there is now a new difference in phase, maintained at whatever value is
required to �push� the VCO output to  and preserve this equality.

k f k pAv

f s

f r = f s

The result is that the loop causes the VCO output frequency to Track the
signal frequency. The system is, in fact, a Feedback Loop (hence the word
�loop� in its name). Most control loops feedback a voltage, but this one
feeds back a frequency, and always tries to adjust this frequency to match
that of the input. Provided that we know the values of  and  we can
now expect that

k f f 0

f s = f r = f 0 + k f v {t } ... (25.5)
Hence by observing the voltage, , we can determine the signal
frequency, .

v {t }
f s

PLL�s are often used as Frequency Demodulators in communications systems
since the output voltage will tend to vary in sympathy with any changes in
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 as time passes. PLL�s are widely used in radio and microwave
applications and lend themselves well to being incorporated into
integrated circuits. Their main drawback is that we must have reliable
knowledge of  and  in order to convert the observed output voltage,

, into a frequency value. We also have to take care in cases where the
signal frequency fluctuates. When this happens, the output  will then,
temporarily, become �wrong� (i.e. incorrectly indicates the frequency)
until the difference between  and  allows the phase difference between
them to shift to a new level that alters  to bring them back to being
equal again.

f s

f 0 k f

v {t }
v {t }

f s f r

v {t }

The system has a finite Response Time which determines upon how quickly
it can react to changes in the input frequency. In some cases this can be
useful as it means the output value will be averaged over a period of time,
smoothing away any brief frequency fluctuations. In fact, some counting
systems exploit this behaviour and use a PLL to �clean up� the input
signal. In these systems the input signal is used to drive a PLL and a
counter is used to count the VCO output, not the signal. Any swift
temporary fluctuations in the input signal will tend to be smoothed away
by the time constant chosen for the PSD. Averaged over a long enough
time the VCO output has the same frequency as the signal, so can be
counted in its place. The advantage is that the SNR presented to the
counter has been improved by using the PLL to filter away swift variations.
The disadvantage of the PLL is that we can�t use it to detect or measure
changes that are too swift for it to be able to respond.

25.2  Resonators and filters

Systems based upon Phase Lock Loops are now widely used in electronics
as the circuits required work well and are easy to manufacture. However, it
isn�t always possible to employ a PLL. For example, it is currently
impractical to manufacture a conventional electronic system which acts
directly upon very high frequency signals � e.g. at the frequencies of
visible light. Even at lower frequencies it is sometime more convenient to
use other methods that were in widespread use before the development of
the PLL. One of the most common alternatives is the use of some form of
filter or device whose behaviour is inherently frequency sensitive, and
then use that sensitivity as a route to performing frequency measurements.
Figure 25.2 shows a couple of examples of the kinds of electronic circuit
often used for this task.
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Figure 25.2 Examples of bandpass filters

Figure 25.2a illustrates a passive RCL Bandpass Filter. Figure 25.2b shows an
active filter system which performs in a similar manner. The practical
advantage of 25.2b is that it does not require an inductor. This makes it
smaller, cheaper, and gives better defined performance. However, the
need for an amplifier means it requires power, and limits its use to
frequencies where suitable amplifiers are available.

Although the systems employed at optical frequencies are physically
constructed in quite differently to the above they are used in similar ways.
Here we can concentrate on using electronic examples, but it should be
remembered that equivalent arrangements can perform the same
functions in other frequency ranges. For example, the Fabry-Perot Resonator
is often used at mm-wave and optical frequencies as a filter in much the
same way as the electronic arrangements considered here.

For the sake of example, lets look at the behaviour of the circuit shown in
figure 25.2b. Using the standard methods of complex circuit analysis this
can be shown to have a voltage gain

Av {f } ≡
v o

v i
=

− j 2Q 2f f 0

f 2
0 − f 2 + j f f 0 / Q

... (25.6)

at a (sinusoid) frequency, , wheref

f 0 ≡
1

2πRC
... (25.7)

represents the filter�s Resonant Frequency, and  is the quantity usually
referred to as the filter�s Quality Factor.

Q
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Figure 25.3 Frequency response of bandpass filter

Figure 25.3 shows a plot illustrating how the power gain of an example of
this type of filter varies with frequency. The graph is normalised in terms
of the circuit�s resonant frequency and its power gain at that frequency.
You can see that the circuit�s gain has a peak value at .  The shape of the
response shows that the gain is only greater or equal to half its peak value
over a limited range of frequencies

f 0

∆f =
f 0

Q
... (25.8)

centred upon the resonant frequency. 

There are two ways we can imagine this system being employed. These
differ as a result of the assumptions we make about the nature of the
incoming signal. The first case is where we have reason to assume that the
signal essentially consists of a single frequency component, although the
frequency may fluctuate slowly over a limited range. In this situation the
system is usually referred to as a Frequency Discriminator. The second case is
where we assume the signal has power spread out over a wide range of
frequencies. Here it is the bandpass filtering property � i.e. passing power
in a selected band of frequencies � which is used.

Let�s start with the frequency discriminator. Here we try to arrange for the
resonant frequency to differ from the nominal signal frequency, , by an
amount similar to . This is illustrated in figure 25.4.

f r

∆f
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Figure 25.4 Bandpass frequency discriminator

f

|Av {f }|2

|Av {f 0}|2

f 0

f r

δf

δP

Here we have arranged for  to be equal to . Hence when at
this frequency the output power emerging from the filter is half the value
it would have if the signal were at the resonant frequency, . A small
change in the signal frequency, , will cause a corresponding change, ,
in the output power level. We can therefore use the filter as a Frequency-
to-Voltage convertor and deduce a frequency change when we observe a
change in the output power level. 

f r f 0 + ∆f / 2

f 0

δf δP

The Conversion Gain or Sensitivity of the filter can be defined as the ratio
between the observed change in output power level and the
corresponding change in frequency. The value of this ratio will depend
upon the shape of the filter�s frequency response curve and the location
we choose for  relative to . We can, however estimate the approximate
sensitivity by noting that the power output falls by a factor of 2 as we
change the frequency from  to . We can therefore say that,
approximately, the magnitude of the observed change in power will be
given by the expression

f r f 0

f 0 f 0 + ∆f / 2

δP ≈ P0

δf

∆f
... (25.9)

i.e. the sensitivity will be approximately

δP

δf
≈

P0

∆f
= Q

P0

f 0

... (25.10)

As usual, in practice our ability to detect a change in frequency will be
limited by the smallest change in the power level we can observe. Hence to
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obtain a high sensitivity we would wish to arrange for the product  to
be as large as can be arranged. However we must take care not to employ
too narrow a filter � i.e. have an excessively large  value. This is because
the above result will only be approximately correct for small changes � i.e.
when  is somewhat smaller than . Increasing  would increase the
sensitivity, but also reduces the frequency range over which the bandpass
discriminator will work as expected. For example, in the case illustrated
the signal frequency is greater than . A small reduction in signal
frequency will tend to cause the output power to rise. However if the
signal frequency falls below  the output power reaches a peak value and
then falls. Similarly, once the signal frequency is more than a few times
away from  the output will essentially be zero whatever the frequency
since the filter is rejecting power at these frequencies.

Q P0

Q

δf ∆f Q

f 0

f 0

∆f
f 0

In addition to having a limited useful range, determined by the chosen
value, the system has two significant drawbacks. Firstly, the actual
relationship between the output power and the signal frequency is non-
linear. Hence if we assume a linear relationship (as implied by expression
25.10) we will obtain an incorrect or distorted output measure of the true
frequency. To avoid this we must either use a more precise knowledge of
the filter�s properties to convert power observations into frequency
measurements, or restrict any frequency changes to be much less than .
By only using a very small portion of the filter�s power/frequency curve we
can approach linear behaviour as any short section of a small curve
approaches a linear tangent provide we use a small enough section.

Q

∆f

The second problem is indicated by the fact that  appears in the
expression for the sensitivity. This warns us that the output power level
depends upon the actual input signal power level. Unless we take care we
will therefore find that any unexpected changes in the signal power will be
interpreted, incorrectly, as being due to frequency changes. The simplest
way to deal with this is to monitor the input signal power and then
compare this with the power level emerging from the filter. This can also
be done in optical systems by simultaneously measuring both the
transmitted and reflected power levels from the filtering element and
summing these to deduce the input power level. Some electronic systems
also use two or more filters, tuned differently, and compare their outputs
to give an indication of the input power and also help correct some of the
distortions produced by the non-linear curves of the filters.

P0

The second method for using the bandpass filter is simpler to explain as it
depends upon the filter�s property of passing signals in a range of width
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 centred upon  whilst rejecting signals at other frequencies. We can
therefore just measure the output power and deduce that this represents a
measure of the power of the input signal�s frequency components in this
range. By employing a set of filters, each tuned to a different band, and
measuring the output powers they provide we can build up a spectrum of
the input signal. This method is useful when dealing with wideband
signals rather than simple periodic waveforms. The results may sometimes
have to be interpreted with care as the above assumes that each filter has a
�top hat� shape � i.e. has a uniform gain over a range, , and perfect
rejection of frequencies outside this band. In reality the filter shape means
some of the �in band� power is lost, and some power at other frequencies
may �leak� through. When dealing with smooth spectral distributions this
isn�t a major concern, but it may have an effect in other circumstances.

∆f f 0

∆f

A series of such filters, tuned to adjacent frequency bands, and employed
in this way is called a Filter Bank. Such a system allows us to monitor the
power levels in a series of bands simultaneously. A common alternative is
to �sweep� the tuning of a single filter so as to vary the band where power
is passed through, and then note how the observed power varies as the
filter is swept. This is the method used for most RF Spectrum Analysers. The
disadvantages of this method are that it may miss changes that occur whilst
sweeping is taking place, and that it only observes power at each frequency
for a small fraction of the time. Hence it is inefficient in SNR terms as
signal energy can go unobserved, and there is also a risk that power
fluctuations may be appear, falsely, as spectral features.

25.3 Fourier transform spectroscopy

We have already encountered Fourier Transformation in earlier chapters.
This technique is widely used to make signal frequency and spectrum
measurements. The classical optical instrument employed for this
approach is the Michelson Two-beam Interferometer, although many other
forms of two-beam interferometer are used. At microwave or mm-wave
frequencies equivalent systems are sometimes used, but the signals may be
carried along a variety of guiding structures (waveguides, stripline, etc). 

Although these arrangements vary in their details we can explain how they
all work in terms of a �generic� form for a two-path interferometer as
illustrated in Figure 25.5. This shows a system constructed using a pair of
symmetric 50:50 power-splitter/combiner elements, linked via two paths.
The relative lengths of these paths, , and , may be varied. The two
outputs of the second splitter are directed onto a pair of power detectors.

Z 1 Z 2
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50:50 50:50
Pi n P1

P2

Z 1

Z 2

Figure 25.5 Schematic of 2-path interferometer.

The splitter/combiners can be assumed to be free of loss and balanced in
the way they behave. This means that the sum of the fields (or voltages)
exiting each equals the total field that arrives. It also means that the total
input and output powers must be the same.  At first glance this apparently
leads to a paradox since when we have two exit voltage levels, , and

, produced by splitting an input,  it means that we must
simultaneously ensure that both of the expressions

V 1 {t }
V 2 {t } V in {t }

V 1 {t } + V 2 {t } = V in {t } ... (25.11)

[V 1 {t }]2 + [V 2 {t }]2 = [V in {t }]2 ... (25.12)
must be correct.  This is a consequence of the power of a signal being
proportional to the square of its voltage (or to the field of a distributed
field). These two requirements can only be satisfied together by allowing
that the split fields have their relative phases altered. For an input
component at some frequency, , the outputs will have their relative
phases so that they emerge with a difference in phase of 90 degrees
relative to each other � i.e. ±45 degrees relative to the input.

f

The system shown in figure 25.5 has four Ports (ways in or out)by which
signals may enter or leave. In principle we can use these as we wish, but
here we can consider allowing signals to enter just via one port, and then
observe the results that exit via the pair of ports at the other end of the
system. Taking the above point about phases into account a detailed
analysis of the system will establish that when we input a power, , at a
frequency, , the powers exiting at this frequency will be

P {f }
f

P1 {∆, f } =
P {f }

2
[1 + Cos {2πf ∆ / c }] ... (25.13)

P2 {∆, f } =
P {f }

2
[1 − Cos {2πf ∆ / c }] ... (25.14)

where  represents the Path Difference value � i.e. the
difference in the lengths of the two signal paths within the system � and

∆ ≡ Z 1 − Z 2

c
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is the velocity of the signals propagating through the system. (In an optical
system this would, of course, be the speed of light.)

Where the input signal consists of a set of components at various
frequencies we can treat these as propagating independently through the
system and hence the resulting output power is just the sum of what we
would get according to expressions 25.13 & 25.14 for each spectral
component. We can represent these overall output powers as  and

 to remind us that the result depends upon the chosen value of .
P1 {∆}

P2 {∆} ∆

It is usual practice to call the manner in which the observed output powers
vary with the path difference value the Interferogram of the input signal. To
employ the system as efficiently as possible we would wish to use both of
the detected output power levels as part of a measurement process. When
trying to make frequency measurements we also usually find it useful to
normalise any measurements against the input power level to try and
prevent input power changes from accidentally being interpreted as being
due to frequency changes. As a result it is convenient to mathematically
define a normalised interferogram pattern as being

I {∆} ≡
P1 {∆} − P2 {∆}
P1 {∆} + P2 {∆} ... (25.15)

The interferogram shape we obtain by observing how the output powers
vary with the path difference now provides information about the
spectrum of the input signal. 
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Fig 25.6c

Figure 25.6 Some example interferogram shapes.

Wideband noise measured
using a detector sensitive
to the 25 − 180 GHz range.
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Fig 25.6b
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0

Figure 25.6 shows three examples which we can use to illustrate the
relationship between the shape of the interferogram and the spectrum of
the input signal. Figure 25.6a represents the output we would obtain from
an input source which is generating one single (sinusoidal) frequency
component. In this example the source�s frequency is 95 GHz. We can see
that � as implied by expressions 25.13 to 25.15 � the interferogram shows a
sinusoidal variation with . The observed period of this sinusoidal
variation of the interferogram shape will be , the wavelength of the input
signal. Hence by collecting the interferogram, and determining its period,
we can measure the signal�s frequency provided that we know the relevant
propagation velocity, .

∆
λ

c

Figure 25.6b has a similar shape and shows a pattern that looks almost
sinusoidal. However we can see that the amplitude of the apparent
sinusoid tends to decline as we move away from zero path difference. In
this case the input signal has a spectrum which contains power over a
modest range of frequencies centred upon 95 GHz. To understand this
pattern we can consider again the implications of expressions 25.13 and
25.14. By looking at these we can see that whatever the input signal
frequency, at zero path difference we would have  and ;
i.e., since it is normalised,  whatever signal we choose to input.

P1 = Pin P2 = 0
I {0} ≡ 1
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As we move away from the zero path difference setting, each frequency
component in the spectrum varies its contribution to the output with a
periodicity that varies according to its wavelength. The total interferogram
represents the sum of each of the sinusoidal contributions they make,
each with its own wavelength. At zero path difference (ZPD) these
contributions are all �in step� and give us a peak total output for . As
we move away from ZPD these contributions shift out of step and tend to
interfere with each other.  When the spectral components in the signal all
have similar frequencies their contributions to the interferogram all have
similar wavelength, hence this movement out of step only manifests itself
when we move a fair way away from ZPD. Hence we see an apparent
sinusoid whose amplitude decays away from the ZPD setting.

I {∆}

The example shown in figure 25.6c can be understood by taking this
argument further. Now the signal spectrum has components over quite a
wide range of frequencies. The resulting interferogram still has a peak at
ZPD, but it quickly falls away to almost nothing when we move away from
the zero path difference. Here the width of the central spike of the shape
is a guide to the observed bandwidth of the signal. The wider the range of
frequencies detected, the narrower the spike will be as a result of the
contributions rapidly getting out of step as we move away from the ZPD.

Before moving on to the considering how Fourier Transformation can be
applied to obtain spectral information, it is worth noting two useful points
that sometimes go unnoticed. The first is that the interferogram shows a
pattern that only depends upon the detected components of the input
signal. Once said, this should be obvious, but it has an interesting result.
An interferogram of the general form shown in figure 25.6c can often
arise as a result of making observations with an input signal that is actually
wideband (e.g. thermal) noise. The spectrum we see in this case is a
signature of the frequency response of the detectors and the actual
interferometer system we used to make the observation. Interferometers
work by exploiting Coherence. We don�t normally regard random noise as
being coherent. Here, however a level of coherence is Imposed by the finite
bandwidth of the system used to make the observations. The example
shown in figure 25.6c assumes wideband noise but using detectors that
only responds to power over a specific range. In this case its is the
characteristics of the detectors that determine the shape of the
interferogram.

The second point to note is that the above assumes that we are only
permitting signal power to enter via one of the two possible input ports
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shown at the left side of figure 25.5. In practice we may also have a quite
different signal entering simultaneously via the second input. When this
occurs the interferogram we observe will depend upon the difference
between the power spectra of the two input signals. This behaviour is a
result of the symmetry of the system. If we had chosen to use the
alternative input for all the above explanations the results would have
been the same except for swapping over  and  and thus inverting .P1 P2 I

In most practical cases we are likely to find that some signal power � e.g.
thermal noise from a background � will enter the second input port even
if we do not wish this to happen. We therefore need to consider this
possibility when making measurements as it may affect the results.
Alternatively, we can choose to deliberately make use of this symmetric
property and employ the interferometer for Nulling measurements. Here
we can deliberately inject a controlled signal into one input and seek to
adjust this so that, when combined with the signal from the other input,
the result is a �flat line� interferogram where  is zero at all path
differences. Once this occurs we can deduce that the controlled and
uncontrolled signals have identical power-frequency spectra within the
bandwidth the system can observe. Hence if we know the details of one,
we have determined the details of the other without having to know many
of the details of the actual measurement system.

I {∆}

The process by which a two-path interferometer is normally employed to
make spectral measurements can now be understood as a simple
application of the Fourier Transform (FT) methods described in earlier
chapters. The usual process starts by sweeping the path difference over a
suitable range of values and recording the interferogram pattern this
produces. In theory we can choose any range we wish, but in practice the
most sensible choice tends to be symmetric about the ZPD. The result is
that we have now observed an input signal pattern, , over a known
interval, , where  represents the range either side of ZPD
that has been recorded.

I {∆}
−D ≤ ∆ ≤ D D

In theory there is no need to make a symmetric measurement as the
interferogram pattern should be such that . In practice,
however, we may not have accurate pre-knowledge of the ZPD location
and there may be system imperfections which distort the interferogram
shape. We can generally detect and correct these by comparing the
patterns either side of the ZPD and noting any unexpected asymmetry.

I {∆} = I {−∆}

The input observation now forms a record of length  which we can
expect to contain some superposition of sinusoidal contributions with

2D
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wavelengths and amplitudes related to the frequencies and powers of the
spectral components of the input signal. By Fourier Transforming the
interferogram pattern we calculate the nominal spectrum. This process is
subject to the same limitations and assumptions we considered in earlier
chapters. The periodic assumption means that we obtain a spectrum in
terms of a series of frequency components whose wavelengths are

λi =
2D

i
... (25.16)

where  i.e. any positive integer up to some limiting value.
This means we have a spectrum which essentially tells us the power levels
in a series of bands centred upon the frequencies

i  =  1,  2,  3,  �

f i =
i c

2D
... (25.17)

For the interferogram (and hence the spectrum) to form a complete
record of the input we must have enough samples to satisfy the sampling
theorem. Hence if the highest detectable signal frequency is  we must
ensure that more than

f m ax

N ma x =
2Df ma x

c
... (25.18)

uniformly spaced samples are taken over the range .−D ≤ ∆ ≤ D

In practice the transformation is normally performed using an FFT
method and it is therefore often convenient for the number of samples
recorded to be a power of two. However this is not required for any
theoretical reason, nor is it always vital to take samples uniformly spaced.
These arrangements are purely for practical convenience. It is also worth
bearing in mind that we do not have to perform a Fast Fourier Transform
(FFT). We could use some analog arrangement (e.g. a set of electronic
filters) to analyse the interferogram. Digital sampling and FT methods
have become common simply because they are flexible, and convenient to
use.

The conventional FT approach is based upon assuming that we can regard
the signal spectrum as a set of components periodic in the observed
interval (  in this case). In general this is fine as the resulting spectrum
contains all the input signal�s pattern in a useful form. However � as
discussed in section 24.1 � where we have some other knowledge or
expectation, we can analyse the interferogram equally well on an
alternative basis.

2D



Information and Measurement - 282 - Free PDF version

A common example is where we have reason to feel sure that the signal
source is producing a close approximation to a sinusoidal output. i.e. it
has a spectrum which is confined to a frequency range narrow enough for
us to regard it as being at a single frequency. We could then take the
interferogram pattern and apply some curve fitting technique to find a
best fit to a sinusoid. (If the interferogram is symmetric this would be a
cosine in .) Another alternative is that we could use the interferogram,
plus a series of pulses from the system scanning the path difference as the
inputs to a counting system of the general type described in Chapter 24.
This forms what is sometimes called a Fringe Counting approach. Many
interferometers employ some form of stepping system to change the path
difference, or employ an encoder that gives pulses that are regularly
spaced along the range of path difference. These can be used as the
�clock� for comparison with a periodic interferogram shape.

∆

The above non-Fourier methods are only useful when we are confident
that the signal is periodic. However they have two very useful properties
when this is the case. Firstly, they are not subject to the Resolution Limit of a
standard Fourier method. This stems from the way the FT only gives
results at a series of specific frequencies, spaced apart by an interval, 

δf =
c

2D
... (25.19)

As a consequence, when we employ Fourier methods to compute a
spectrum for a signal which may contain many components spread over a
wide bandwidth, the result does not normally allow us to unambiguously
distinguish spectral features with a resolution finer than . The sinusoid-
fitting and fringe counting methods are employed in situations which are
should not subject to this limitation as the signal should be periodic.
Provided that the measurements are made with a high enough SNR, etc,
we can then hope to determine the frequency of a periodic input more
accurately than . The fringe counting method can also provide results
relatively quickly because the counting process may proceed while the
interferogram is recorded, whereas an FFT computation takes some time
and normally cannot start until the complete interferogram record has
been collected.

δf

δf

Despite the above, since Fourier Transformation does not lose any
information we can post-process an FT computed spectrum to obtain
higher frequency accuracy provided that we are confident that the input
signal is periodic. In effect, this means we fit a shape to the spectrum and
find its �peak� even when the peak does not coincide with one of the
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frequency, , values where the FT computed a nominal power level.f i

This method would ultimately give the same results as fringe counting or
fitting a cosine to the interferogram, but is rather more �around the
houses� in computational terms. The critical point here is that we can only
apply these methods when we are confident that we know that the input
signal is periodic. When this is the case we can apply sinusoid fitting, or
fringe counting, or FT and peak/shape fitting as we prefer and the results
should be the same if the process was carried out with care. 

When we have no pre-knowledge of the signal�s spectrum we cannot
reliably apply these fitting or counting methods as any results they
produced would probably be meaningless. In general therefore, where we
have no other information, we must normally accept that the resolution of
measurements upon signals with complex spectra will probably be limited
to the value of  given by expression 25.19.δf

Summary

You should now understand how a simple Phase Lock Loop can be used to
make frequency measurements and how it can be used to detect changes
(or modulation) in the frequency of a periodic signal. You should now
also know how a resonant filter can be used, either to select power in a
chosen band for measurement, or as a frequency sensitive element to
detect frequency changes. It should also be clear that a filter should use
used with care as fluctuations in the input signal�s power may appear as
frequency changes, and that to avoid this we may need to monitor the
signal power. Finally, you should now understand how a two-path (or two-
beam) interferometer can be used to make spectral measurements. That
this is usually done using Fourier Transform methods, but that other
approaches can be useful when making measurements upon a signal we
feel confident is periodic.
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Appendix 1

Solutions to numerical questions

Chapter 2

Question 2. The total voltage range is 4 V (+2 to �2). The noise blurs out
any reading over a range of 2 mV (+1 mV to �1 mV). Hence we can divide
the total range up into 4 V/2 mV = 2000 distinct bands. Since each band
requires its own symbol this means we need 2000 symbols to cover or
describe all the distinguishable levels. An n-bit ADC produces an n�bit
binary word for each sample. There are therefore only  possible values it
can indicate. When , 

2n

n = 11 2n = 2048.

Question 3.  An oscillation at some frequency, f, means the level moves
back and forth between a given maximum and minimum level during
each cycle, lasting a time . Since the level has to both rise and fall it
follows that it must switch from one level to the other in half this cycle
time. Hence a maximum frequency capability of 150 kHz means than the
channel's response time must be  µS.

1 / f

1 / 2f = 3·3

Question 4.  We have to take a new sample as soon as a response time has
elapsed since the last one. (Taking samples more often is a waste of effort
since the level hasn't had time to change significantly. If we take them less
often we risk missing something.) Hence we have to take 1/3.3 µS samples
per second � i.e. 300,000 samples/second. This means we'll collect 3
million samples during a 10 second message. Each sample can contain 11
bits worth of information. So we can get 33 million bits of information
from the message.

Chapter 3

Question 3.  Using equation 3.11 we can say that the thermal noise from a
10 kΩ resistor is such that

〈e 2
n〉 = 4 × 1·38 × 10

−23 × 300 × 1 × 10000

= 1·65 × 10
−16  V2 / Hz

We can now use equation 3.14 to work out the noise per unit bandwidth
entering the amplifier. Choosing kΩ and  kΩ we can sayR = 10 Rin = 22
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N =
1.65 × 10−16 × 22000

(10000 + 22000)2
= 3·54 × 10

−21  W/Hz

Question 4.  The maximum power transfer will occur when the source
resistance and input resistance are equal in value, so we require

 kΩ. We can either use the same equation as before, or use
3.15 to say that the noise power spectral density will then be
Rin = R = 10

N =
1.65 × 10−16

4 × 10000
= 4·12 × 10

−21 W/Hz

Chapter 4

Question 1.   The chance of a �1� being correctly transmitted is  and the
chance of a �0� being correctly transmitted is . The question tells us that
we start with the values , , and 1·5. From the
question we can set the decision level to be . (All values in volts.)
Using expressions 4.7 and 4.8 we can therefore say that

C 1

C 0

V 1 = 4·5 V 0 = 0·5 σ =  
V ′ = 2·5

C 1 =
1

2
[1 + Erf {1·88}]  ;  C 0 =

1

2
[1 + Erf {1·88}]

Using the expression for Erf given in the question we obtain the result

C 1 = C 0 = 0·996

There are  �1�s and  �0�s, hence the total number of
bits correctly received will be

N 1 = 2000 N 0 = 2000

N o k = N 1C 1 + N 0C 0 = 3984 bits

Question 2.  Changing the decision level to V means thatV ′ = 3

C 1 =
1

2
[1 + Erf {1·41}]  and  C 0 =

1

2
[1 + Erf {2·36}]

i.e. 3953 bits.N o k = N 1C 1 + N 0C 0 = 2000 × 0·9769 + 2000 × 0·9996 =  
Changing to  V means that  and  so the
correctly received bits will probably then be . (Note that in
each case this is only the �most likely� answer since the actual number of
errors depends upon the actual noise pattern during transmission.)

V ′ = 1 C 1 = 0·9999 C 0 = 0·7470
N o k = 3494

Chapter 5
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Question 1.  1024 symbols × 2 bits/symbol = 2048 bits of information.

Question 2.  Equation 5.13 tells us the amount of information in a typical
message. In this case , , and

, so for a typical message
n = 512 P1 = P2 = P3 = P4 = 0·125

P5 = P6 = 0·25

H t ypi c a l = ∑
M

i = 1

−N Pi log2 {Pi}

= −512 × (4 × 0·125 × log2 {0·125} + 2 × 0·25 × log2 {0·25})
If your calculator doesn't have a log2 button you can make use of the
relationship

log2 {x} = 3·33 × log10 {x}
to work out this means that  bits for a typical 512 symbol
message.

H t ypi c a l = 1280

Equation 5.16 tells us 

H spe c i f i c = ∑
M

i = 1

−Ai log2 {Pi}

is the amount of information in a specific message which contains
occurrences of the each symbol, . For the case described in the question
this means that

Ai

X i

= −300 × log2 {0·125} − 100 × log2 {0·125} − 112 × log2 {0·25}
i.e.  bits for this particular message.H spe c i f i c = 1424

Chapter 6

Question 1.  In this case E = 0·1 and C = 0·9 for each bit. 

The message is N = 10,000 bits long. For �tell me once� C  × 10000 = 0·9 ×
10000 = 9000 bits are likely to arrive without errors. i.e. E  × 10000 = 1000
of the received bits can be expected to be incorrect.

Using �tell me three times� we can expect around N C 3 = 7290 of the bits
to agree in all three copies because they are all error free. The number of
message locations where two copies are correct and just one is erroneous
will be 3N E C 2 = 2430. These errors can be detected and corrected, and
the recovered bits added to the 7290 which arrived without any errors to



Information and Measurement - 287 - Free PDF version

produce a correctly received (including corrected) total of 9720. 

The number of times two bit locations are in error and just one is correct
will be 3N E 2C  = 270. Hence there will be around 270 occasions when we
will see that an error has occurred, but will make the wrong correction
decision. These errors have been detected, but not corrected properly.
Only on N E 3 =  10 occasions will all three copies agree because they are
all erroneous. As a result the final �corrected� message is � following �tell
me three times� transmission � likely to contain around 270 + 10 = 280
undetected errors. 

Question 2.  Arrange the 16 bits into a 4 × 4 square. This contains all the
initial information. Adding one parity bit per column and one per row
produces an extra 4 + 4 = 8 bits. Hence the total number of bits, including
parity is 16 + 8 = 24. The efficiency is defined as the ratio 

initial/total = 16/24 = 0·666 

The redundancy is defined as 1 minus the efficiency, i.e. 0·333 in this case.

Chapter 7

Question 1.  The bandwidth of the signal coming from the microphone is
18,000 - 10 = 17,990 Hz. We therefore need to take at least 2 × 17,990 =
35,980 samples/second to make a complete record. The song is 3 minutes
(i.e. 180 seconds) long, so the total number of samples required is 180 ×
35,980 = 6·47 million.

Question 2.  The only knowledge we have about the signal is confined to
the 1 minute interval, , we've recorded. This means that the information
carried by the observed pattern is completely indistinguishable from that
we'd get from a periodic signal which repeats itself with a period, . We
can therefore apply Fourier methods to obtain a spectrum showing the
amplitudes and phases at a series of frequencies, 0, , , , etc, where

. This means we can't resolve spectral details which are closer
together in frequency than an interval, . In this case  seconds, so
the resolution will be th of a Hertz. (Note that this result
applies because we have no �extra� knowledge about the signal so it
consists of an otherwise unpredictable pattern of frequencies. In some
specific cases we may already �know� something else about the signal. We
might, for example, already have reason to know that the signal is �really�
a single sinewave. Under these conditions we can process the spectrum
further to obtain a more accurate determination of its frequency,

T

T

f 0 2f 0 3f 0

f 0 = 1 / T
f 0 T = 60

f 0 = 1 / 60



Information and Measurement - 288 - Free PDF version

amplitude, and phase. Such a measurement would be limited only by the
signal/noise ratio of the input signal. However we can't do this without
the �extra� knowledge about the signal's form. The point is that such a
single sinewave signal with a frequency  will produce an  0, ,

, , ..., spectrum which is indistinguishable � during the limited
observation time � from one produced by some other suitable
combination .)

f ≠ nf 0 f 0

2f 0 3f 0

Chapter 8

Question 1.  The S/N power ratio is equal to the square of the ratio of the
signal/noise voltages. Knowing this we use equation 8.13 to say that the
data capacity is

C = 10000 × log2 {1 + ( 1

0·001)
2} = 199,314 bits per second

(N.B. this answer assumes that . If we use the
easier to remember approximation of  we get
the less accurate result of 199,800 bps. In practice this slight difference
isn't likely to lead to problems, but you should bear in mind that the
accuracy of the result is affected when you use the rougher
approximation.)

log2 {x } = 3·3219 × log10 {x }
log2 {x } = 3·33 × log10 {x }

Question 2.  The bandwidth is 100 kHz, hence the channel can carry a
serial stream of 2×100,000 bps. Since each sample requires 8 bits this
means the channel can carry up to 200,000/8 = 25,000 samples per
second. From equation 8.21 we can say that the number of bits per sample
we can get through a given channel will be such that

m ≤
S

3kT W
This result arises from the requirement that the channel's data capacity
must at least equal the data rate.

 is the bandwidth of the signal we're sampling,  is the signal power,
is the noise temperature, and  is Boltzmann's constant. Since the
sampling rate is 25,000 per second  must equal 25,000/2 = 12,500 Hz
(i.e. 1/8th of the channel bandwidth � no surprise since we're sending 8
bits per sample). Rearranging the above we discover that the noise
temperature must be

W S T
k

W

T ≤
S

3kW m
=

10 − 6

3 × 1·38 × 10 − 23 × 12500 × 8
= 2·4 × 10

11
K
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(Remember that this isn't the �real� temperature of the system. It is the
temperature a thermal noise source would need in order to produce the
same amount of noise.)

The same argument applied to an analog signal means that we now
require

I ≤ C ana l o g

which, from expressions 8.17 and 8.15, is equivalent to saying that

2mW ≤ W log2 {1 +
S

kT W }
which can be rearranged into the inequality

T ≤
S

(22m − 1) kW
Using the values provided in the question this leads to a noise
temperature of 88 million K. Comparing the digital and analog results we
can see that an analog transmission requires a much lower channel noise
level to equal the performance of the digital system.

Chapter 9

Question 2.  Since CD uses 16-bit samples it is able to indicate 216 distinct
voltage (or sound pressure) levels. This means that the ratio between the

largest and smallest variations it can indicate will be around
65,536. It is conventional to express S/N ratios and dynamic ranges as
power ratios in decibels. The above value corresponds to a power ratio of
65,5362 or  96·3 dB. The bandwidth can be up to half the sampling rate,
i.e. up to 22·05 kHz. Taking 44,100 samples per second, for two audio
channels, with 16-bit samples means we generate audio data at the rate of
1,411,200 bps. 1 hour corresponds to 3600 seconds so the total number of
audio bits recorded on a 1 hour CD will be 5·08 × 109 bits. 

(216 : 1) =

Chapter 12

Question 1.  The reference level for LP recording is a peak velocity of 5
cm/s. For a sinewave this corresponds to an rms velocity of
cm/s. The cartridge's sensitivity is 0·2 mV/cm/s, so it will produce an
output of 3·53 × 0·2 = 0.707 mV rms when playing a 0 dB reference level
signal. A +26 dB signal has a power times that of a 0 dB
tone. Since the voltage varies with the square root of the power we can

5 / 2 = 3·53

1026/10 = 398 
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expect the +26 dB signal to have a velocity and voltage level
times greater than a 0 dB signal. Hence when playing this tone the
cartridge will produce an output of  mV rms. 

398 = 19·95

0·707 × 19·95 = 14·1

Question 2.  The peak velocity of the above sinewave signal will be 5 ×
19·95 = 99·75 cm/s. From expression 12.4 we can see that this peak
velocity corresponds to the factor  where  is the peak amplitude and
 is the sinewave frequency. We can therefore work out that  0·0158

cm. The recorded modulation can therefore swing over a range of
 cm or 31,751 steps of 10 nm. Ignoring any smoothing effects

produced by the stylus resting on many molecules this implies a dynamic
ratio of 317512 = 90 dB.

2πf A A
f A =

2A = 0·0317

Chapter 13

Question 2.  To work out the noise factor we can assume that the source
produces a thermal noise spectral density of 

e 2
s = 4kT R = 4 × 1.38 × 10

−23
× 300 × 22000 = 3·64 × 10

−16
V2 / Hz

The values given in the question tell us that  = (5 × 10�9)2 = 2·5 × 10�17

V2/Hz, and  = (10�12)2 = 10�24 A/Hz. Using expression 13.10 we can
therefore say that the amplifier's noise factor value when used in this
situation will be

e 2
n

i 2
n

F =
3·64 × 10−16 + + 10−24 × (22000)2

3·64 × 10−16
= 2·39

2·5 × 10�17

From expression 13.13 we can say that the amplifier's noise temperature
value will be

T n =
e 2

n + i 2
nR 2

s

4kRs
= 419  K

Chapter 14

Question 2.  The optimum S/N will occur when we arrange for the source
resistance presented to the amplifier to be equal to . This means we
require a resistance

e n / i n

Rs′ =
e n

i n
=

4 × 10−9

10−13
= 40,000 Ω

The actual source resistance is  10 kΩ. When using a turns ratio of βRs =
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the transformed resistance is  so we can say that the required
turns ratio must be

Rs ′ = β2Rs

1 : β = 1 :
Rs′
Rs

= 1 : 2

The best signal power transfer would occur if we arranged for a
transformed source resistance which equals the amplifier's input
resistance, i.e.

Rs′ = β
2
R = Rin

Since  10 kΩ and  100 kΩ this means we require a value of
 = 3·16, i.e. a turns ratio of 1:3·16.

Rs = Rin =
β = 10

Question 3.  Using the transformer which provides optimum S/N
performance we have a source resistance � as seen by the amplifier � of

 kΩ. The amplifier doesn't know the transformer exists. So far as
it is concerned it has a 40 kΩ source connected to its input which is
generating thermal noise. The noise spectral density from the source
therefore appears to be

Rs ′ = 40

e 2
s = 4kT Rs ′ = 6·6 × 10

−16 V2 / Hz

By looking back at section 13.3 we can find expression 13.5 which tells us
the output noise spectral density, , as a function of the amplifier's noise,
its gain, and the source resistance and noise level. Using the above value
for source noise, recognising that the effective source resistance is 40 kΩ,
and taking the amplifier noise and resistance values from question 2 we
can therefore work out that  18 µV/ . 

E2
0

E0 = Hz

Question 4.  To answer this question we can use expression 14.13. This
produces the total noise factor value

F = 1·1 +
2·5 − 1

10
= 1·25

Chapter 15

Question 2.  The time constant value equals the resistance × the
capacitance. In this case this produces the value 100,000 × 0·00001 = 1.
The units of Ohms and Farads are defined such that Farads × Ohms =
Seconds, so the time constant in this case is 1 second.
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The analog integrator's power gain value can be worked out using
expression 15.8. Using the values given in the question we get

G {1 kHz} =
Sin2 {π × 5·25 × 10}

( π × 5·25 × 1)2
=  0·003676

This corresponds to �24 dB. The integrator therefore strongly attenuates
signal fluctuations at this frequency.

Question 3.  To answer this question we can use expression 15.12. This
tells us the signal to noise power ratio we'll obtain from a given sequence
of analog integrations in the presence of white noise. In this case we're
looking for the signal power which we would be able to observe with a
signal to noise ratio of unity. We can rearrange 15.12 to obtain

v =
S PS

2pt N

where  is the input signal voltage,  is the number of integrations,  is the
duration of each integration,  is the output (i.e. integrated) signal
power, and  is the output signal power.  is the input noise power
spectral density. Note that since this is a power spectral density, it should
be in units of W/Hz. As is common in engineering, however, we have
been given a noise level, , in units of volts per root hertz. The standard
relationship between voltages and powers is that  where  is
the resistance across which the voltage appears. We can therefore work
out the noise power spectral density using the expression

v p t
PS

N S

e n

P = V 2 / R R

S = e 2
n / R

As was stated at the start of chapter 15, the expressions derived in the
chapter have been simplified by assuming that the load/source resistances
everywhere are one Ohm. We can therefore say that

. (By assuming throughout the argument that all load/source
resistances are one Ohm we have, in fact, produced a set of expressions
where the noise spectral densities are essentially in units of volts squared
per Hertz so the above is equivalent to  =  =10�16  V2/Hz.)

S = e 2
n = 10−16

W/Hz

S e 2
n

In this case we're considering the situation when  which means
that the observed input signal voltage will be

PS / N = 1

v =
S

2pt

Using the values provided this leads to an input of  = 0·7 nanovolts.v
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Chapter 18

Question 3.  Since there are four symbols we need at least 4 distinct
patterns of bits to represent them. A fixed length representation therefore
requires at least n bits where  i.e. we require n  = 2 bits (or more).2n ≥ 4,

A

B

C

D

0·2

0·05

0·22

0·53

0·25

BA

A B C
0·47

1

1

1

0

0

0

B = 110

A = 111

C = 10

D = 0

Huffman Code

produced by the tree.

The �tree� diagram shown above can be used to generate a Huffman code
for the four-symbol set described in the question. A typical message 512
symbols long would contain 0·2 × 512 = 102·4 's, 0·05 × 512 = 25·6 's,

's, and 's. Using the Huffman
code we have obtained means we need to send 1 bit per D, 2 bits per C,
and 3 bits per A or B. The total number of bits required for an average 512
symbol message will therefore be

A B
0·22 × 512 = 112·6 C 0·53 × 512 = 271·4 D

 . 102·4 × 3 + 25·6 × 3 + 112·6 × 2 + 271·4 × 1 = 880·6

(N. B. We can allow a non-integer number of bits here since we're talking
about an average value.) The specific message described in the question
requires  bits to transmit the 's and  bits to
transmit the 's. Hence it requires a total of 1024 bits.

256 × 3 = 768 A 256 × 1 = 256
D

Chapter 20

Question 3.  A 22-bit shift register can store  different
patterns of �1�s and �0�s. One of these will be the �inaccessible� state which
a maximal length generator must avoid. As a result the system will cycle
through 4,194,303 states before repeating itself. At a clock rate of 100,000
states/second this means that it will take 4,194,303/100,000 = 41·91
seconds before repeating itself.

222 = 4,194,304
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Appendix 2

Programs

The following programs have been written to help you explore some of
the ideas described in this book. Each program is presented in two
versions: a BBC BASIC  version and a �C �one. My personal preference is
for simple programs is BBC BASIC. Unlike most basic �dialects�, the BBC
form is well structured, powerful, and easy to use. For those who (like
me!) aren't highly skilled in programming it also has the advantage of
being easier to read and understand than �C�.

The main disadvantage of BBC BASIC is that it's use is much less
widespread than �C�. This is a pity since it � and the RISC OS computers
which are its main home � have many practical advantages over more
common machines and languages. The BASIC programs are therefore
provided for those who, like me, are not professional computer
programmers, and for those fortunate enough to have access to a RISC OS
computer. The �C� versions are provided as programs which should be
highly portable, although less readable by mere humans! The chances are
that � whatever computer you use � the �C� versions should run as given
here whereas the BASIC versions will probably need modifying for
computers that don�t use RISC OS. 

Chapter 4 � Getting the message

The last question at the end of chapter 4 invites you to write a computer
program to discover how the number of bits transmitted correctly varies
with the chosen decision level (the level used by the receiver to distinguish
a �1� from a �0�). The main purpose is to show you that the best choice is,
indeed, normally mid-way between the �0� logic level,  and the �1� logic
level, . The following program can be used to answer the question and
satisfy yourself on this point. If you wish you could try modifying the
program and discovering what happens when the numbers of �1�s and �0�s
are different, or the effect of a noise level (sigma) which differs for �1�s
and �0�s. You should then find that � under these �non-symmetric�
conditions the mid-level isn't always the best choice!

V 0

V 1
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�C� program showing number of bits received correctly
#include <stdio.h>

#include <math.h>

int n1,n0,bits;

float v1,v0,sigma,v_step;

float r2,v_decide,correct;

float erf(float);

float compute(void);

main()

{

  r2=sqrt(2.0);

  printf("Enter v0 and v1 > ");

  scanf("%f %f",&v0,&v1);

  v_step=(v1-v0)/20.0;

  printf("\nEnter sigma = ");

  scanf("%f",&sigma);

  printf("\nEnter total number of
bits > ");

  scanf("%i",&bits);

  n0=bits/2;

  n1=bits/2;

  v_decide=v0;

  printf(" v_decide   #bits ok\n");

  do

  {

    correct=compute();

    printf("%6.3f

%6.0f\n",v_decide,correct);

    v_decide+=v_step;

  } while (v_decide <= v1);

}

float compute(void)

{

  float c1,c0,answer;

  c1=r2*(v1-v_decide)/sigma;

  c0=r2*(v_decide-v0)/sigma;

  c1=0.5*(1.0+erf(c1));

  c0=0.5*(1.0+erf(c0));

  answer=n0*c0+c1*n1;

  return answer;

}

float erf(float xin)

{

  float t;

  t=1.0/(1.0+0.47*xin);

  t=1-(0.348*t-0.0958*t*t+0.748*t*t*
t)/exp(xin*xin);

  return t;

}

  

BBC BASIC program showing number of bits received correctly
INPUT "Input v0 and v1",v0,v1

v_step=(v1-v0)/20

INPUT "Sigma = ",sig

INPUT " enter number of bits", bits%

n0%=bits%/2

n1%=bits%/2

v_decide=v0

PRINT" v_decide    #bits ok"

WHILE v_decide<=v1

  correct%=FNcompute

  PRINT v_decide,correct%

  v_decide+=v_step

ENDWHILE

END

:

DEFFNcompute

C1=SQR(2)*(v1-v_decide)/sig

C0=SQR(2)*(v_decide-v0)/sig

C1=0.5*(1+FNerf(C1))

C0=0.5*(1+FNerf(C0))

=n0%*C0+n1%*C1

:

DEFFNerf(xin)

t=1/(1+0.47*xin)

=1-(0.348*t-0.0958*t*t+0.748*t*t*t)/
EXP(xin*xin)

Chapter 7 � Fourier Transforms

The following illustrates how we can use a Fourier Transform to compute
the spectrum of a signal observed over a specific interval. The program
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takes an input sinewave and generates 64 data samples. These samples are
then transformed to produce a spectrum of  and  values (sin and cos
amplitude components) which could be used to reconstruct the waveform
using an expression like 7.3. A simple �fitting� method is used to indicate
how the spectrum can be used to estimate the actual frequency of the
input sinewave. Note that this fitting only means something if we already
�know� that the input is a portion of a single sinewave. Note also that the
numerical methods used in this program are deliberately fairly simple.
The program therefore lacks both elegance and accuracy! Much better
methods can be found by looking in appropriate books on applied maths
or computer programming. In particular you're strongly recommended to
use one of the Fast Fourier Transform (FFT) routines listed in computing
textbooks whenever you want to process more than a few data points.
Various FFT routines are available, all with their own good/bad points.
However, they're all much quicker than the �slow� methods used here.
Their main disadvantage is that the way they work is very difficult to
understand! An example of an FFT program is included after the �slow�
example listed below.

An Bn

�C� program showing the use of a Fourier Transform
#include <stdio.h>

#include <math.h>

float generate(void);

float fourier(void);

float fit(void);

float get_mean(void);

float get_level(int);

int points=64;

int now;

float data[65], cos_amp[65],
sin_amp[65];

float pi=3.1415927;

float f_in;

float f0,f;

float dc;

main()

{

  f0=2.0*pi/64.0;

  printf("N.B. All frequencies in
number of cycles\nduring observed
interval.\n\n");

  printf("Enter i/p frequency
(cycles) > ");

  scanf("%f",&f_in);

  generate();

  dc=get_mean();

  fourier();

  fit();

}

/* Generate creates data points from

   the frequency & phase provided.

*/

float generate(void)

{

  now=0;

  printf("\n\nData points are :-\n");

  do

  {

    data[now]=sin(f_in*f0*now);

    printf("%5.2f  ",data[now]);

    if ( now%8==7 ) printf("\n");

    now++;

  } while (now < 64);

}

/*  Get_mean recovers and suppresses
the d.c. level

*/

float get_mean(void)

{

  float disc;
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  now=0;

  disc=0.0;

  do

  {

    disc+=data[now];

    now++;

  } while ( now < 64 );

  disc=disc/64.0;

  now=0;

  do

  {

    data[now]-=disc;

    now++;

  } while ( now < 64 );

  return disc;

}

  

/*  Fourier works out the spectrum in
the form

    cos_amp*COS + sin_amp*SIN
components

    and prints the results.

*/

float fourier(void)

{

  float cnow,snow;

  int fn;

  cos_amp[0]=0;

  sin_amp[0]=0;

  fn=1;

  f=f0;

  do

  {

    cnow=0.0;

    snow=0.0;

    now=0;

    do

    {

      snow+=data[now]*sin(f*now);

      cnow+=data[now]*cos(f*now);

      now++;

     } while ( now < 64 );

   cos_amp[fn]=cnow/32.0;

   sin_amp[fn]=snow/32.0;

   fn++;

   f=fn*f0;

 } while ( fn < 63 );

 fn=0;

 f=0.0;

 printf("\n\n  freq  sin_amp  cos_amp
");

 printf("  freq  sin_amp  cos_amp
");

 do

 {

   printf("%2i %6.3f %6.3f
",fn,sin_amp[fn],cos_amp[fn]);

   fn++;

   f=fn*f0;

   printf("%2i %6.3f
%6.3f\n",fn,sin_amp[fn],cos_amp[fn]);

   fn++;

   f=fn*f0;

 } while ( fn < 32 );

}

/* 

   Fit locates the spectral point
having the

   greatest power and uses the levels
of the

   two point either side to roughly
estimate

   the frequency of the input
sinewave. 

*/

float fit(void)

{

  float up,down,power,f_fitted;

  float dp,dm,a,peak;

  int now,peak_at;

  now=1;

  peak=0.0;

  do

  {

    power=get_level(now);

    if ( power > peak )

    {

      peak_at=now;

      peak=power;

    }

    now++;

  } while ( now < 33 );

  up=get_level(peak_at+1);

  down=get_level(peak_at-1);

  power=get_level(peak_at);

  dp=up-power;

  dm=power-down;

  a=2.0*dm/(dp-dm);

  f_fitted=peak_at-1.0-a;

  printf(" peak component at f = %3i
cycles.\n",peak_at);

  printf(" f fitted = %6.3f
cycles.\n",f_fitted);

}
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/*  get_level provides the modulus of
the power  */

float get_level(int now_at)

{

  float answer;

  answer=cos_amp[now_at]*
cos_amp[now_at];

  answer+=sin_amp[now_at]*
sin_amp[now_at];

  return sqrt(answer);

}

BASIC version of Fourier demonstration program
REM BASIC Fourier Demonstation

points%=64

DIM
data(points%),cos_amp(points%),sin_am
p(points%)

f0=2.0*PI/points%

PRINT "N. B. All frequencies in
numbers of cycles"

PRINT "during the observed interval."

INPUT "Enter i/p frequency (cycles) >
",f_in

PROCgenerate

dc=FNget_mean

PROCfourier

PROCfit

END

:

DEFPROCgenerate

now%=0

PRINT CHR$(13)+CHR$(13)+"Data points
are :-"

REPEAT

  data(now%)=SIN(f_in*f0*now%)

  PRINT FNpoint(data(now%),2);

  IF now%MOD8 = 7 : PRINT

  now%+=1

UNTIL now%=points%

ENDPROC

:

DEFFNget_mean

disc=0.0 : now%=0

REPEAT

  disc+=data(now%)

  now%+=1

UNTIL now%=points%

disc=disc/points%

data()=data()-disc

=disc

:

DEFPROCfourier

cos_amp(0)=0 : sin_amp(0)=0

fn%=1 : f=f0

REPEAT

  cnow=0.0 : snow=0.0

  now%=0

  REPEAT

    snow+=data(now%)*SIN(f*now%)

    cnow+=data(now%)*COS(f*now%)

    now%+=1

  UNTIL now%=points%

  cos_amp(fn%)=cnow*2.0/points%

  sin_amp(fn%)=snow*2.0/points%

  fn%+=1

  f=fn%*f0

UNTIL fn% = (points%-1)

fn%=0

f=0.0

PRINT : PRINT

PRINT "  freq    sin_amp    cos_amp
";

PRINT "    freq    sin_amp
cos_amp"

REPEAT

PRINT fn%;"
";FNpoint(sin_amp(fn%),3);"
";FNpoint(cos_amp(fn%),3);"   ";

fn%+=1

f=fn%*f0

PRINT "    ";fn%;"
";FNpoint(sin_amp(fn%),3);"
";FNpoint(cos_amp(fn%),3)  

fn%+=1

f=fn%*f0

UNTIL fn%>=32

ENDPROC

:

DEFPROCfit

now%=1

peak=0.0

REPEAT

  power=FNget_level(now%)

  IF power>peak : peak_at%=now% :
peak=power

  now%+=1

UNTIL now%=33

up=FNget_level(peak_at%+1)

down=FNget_level(peak_at%-1)
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power=FNget_level(peak_at%)

dp=up-power

dm=power-down

a=2.0*dm/(dp-dm)

f_fitted=peak_at%-1.0-a

PRINT "Peak component at f =
";peak_at%;"  cycles"

PRINT " f fitted =
";FNpoint(f_fitted,3);"  cycles"

ENDPROC

:

DEFFNget_level(inow%)

answer=cos_amp(inow%)^2+
sin_amp(inow%)^2

=SQR(answer)

:

REM   The ‘point’ function lets us
print out

REM   in a flexible float format &
mimics

REM   the control provided by
‘printf’.

:

DEFFNpoint(pval,after%)

pthis$=STR$(pval)

com%=INSTR(pthis$,".",0)

pfront$=LEFT$(pthis$,com%+after%)

com%=INSTR(pthis$,"E",1)

IF com%>0 THEN

  pend$=RIGHT$(pthis$,LEN(pthis$)-
com%+1)

  pfront$=pfront$+pend$

ENDIF

=pfront$

:

Fast Fourier transformation

The following program shows a specific example of an FFT routine. The
�C� program example shows how the fft() routine can be used to
produce the spectrum produced by a sinewave input.  The BBC BASIC
version just lists the fft and bit_rev procedures which do all the work.
Note that the method used requires the input data to be stored in an array
in the form:

x[1] = first data point; x[3]= second data point; x[5] = third data point;
etc, with the even-numbered array locations all initially holding zeros. 

The output spectrum appears in the form:

x[1] = sin amplitude term, 1 cycle during observation; x[2] = cos
amplitude term, 1 cycle; x[3] = sin ampl. 2 cycles; etc.

As with most FFT methods, the program requires the number of data
point (n or n%) to be an integer power of 2. The array must, of course, be
at least twice as big as n to satisfy this requirement. The following example
uses just 256 values, but the method can be used with many more points if
required. When used to process many thousands of data points the FFT is
likely to prove much swifter than the �slow� transform method illustrated
earlier.

�C� example of the use of an FFT routine

#include <stdio.h>

#include <math.h>



Information and Measurement - 300 - Free PDF version

void fft(void);

void bit_rev(void);

int n=256;

int nn=512;

float x[514];

int here,here2,fcount;

float f,f0,pi,phase;

float rpart,ipart;

main()

{

  pi=3.1415927;

  f0=2.0*pi/256;

  printf("Input number cycles > ");

  scanf("%f",&f);

  f=f*f0;

  here=0;

  here2=0;

  do

  {

    x[here2]=sin(f*(here-1));

    here2++;

    x[here2]=0.0;

    here2++;

    here++;

  } while ( here2 < 513 );

  fft();

  here=1;

  fcount=0;

  do 

  {

    rpart=x[here]/128.0;

    here++;

    ipart=x[here]/128.0;

    here++;

    printf("%3i  %6.3f
%6.3f\n",fcount,rpart,ipart);

    fcount++;

  } while ( fcount < 16 );

} 

    

void fft(void)

{

  int mmax,istep,m,i,j;

  float theta,wpi,wpr;

  float wi,wr,tr,ti,wtemp;

  

  mmax=2;

  theta=2.0*pi/mmax;

  

  bit_rev();

  

  while ( nn > mmax )

  {

   istep=2*mmax;

   theta=2.0*pi/mmax;

   wpr=-2.0*sin(0.5*theta)*sin(0.5*
theta);

   wpi=sin(theta);

   wr=1.0;

   wi=0.0;

   m=1;

   do

   {

     i=m;

     do

     {

       j=i+mmax;

       tr=wr*x[j]-wi*x[j+1];

       ti=wr*x[j+1]+wi*x[j];

       x[j]=x[i]-tr;

       x[j+1]=x[i+1]-ti;

       x[i]=x[i]+tr;

       x[i+1]=x[i+1]+ti;

       i+=istep;

     } while ( i < nn );

     wtemp=wr;

     wr=wr*wpr-wi*wpi+wr;

     wi=wi*wpr+wtemp*wpi+wi;

     m+=2;

   } while ( m < mmax );

   mmax=istep;   

  }

}

/* bit_rev shuffles the data before
transforming  */

void bit_rev(void)

{

  int i,j,m;

  float tr,ti;

  j=1;

  i=1;

  do

  {

    if ( j > i )

    {

      tr=x[j];

      ti=x[j+1];

      x[j]=x[i];

      x[j+1]=x[i+1];

      x[i]=tr;

      x[i+1]=ti;

    }

    m=nn/2;
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    while ( m >= 2 && j > m )

    {

      j-=m;

      m=m/2;

    }

    j=j+m;   

    i+=2;

  } while ( i < nn );

}

The following BASIC program just consists of the procedures which are
required to carry out the FFT.

BBC BASIC FFT procedures

DEFPROCfft

PROCbit_rev

mmax%=2

WHILE nn%>mmax%

istep%=2*mmax%

theta=2*PI/mmax%

wpr=-2*SIN(0.5*theta)^2

wpi=SIN(theta)

wr=1

wi=0

FOR m%=1TOmmax%STEP2

FOR i%=m%TOnn%STEPistep%

j%=i%+mmax%

tr=wr*X(j%)-wi*X(j%+1)

ti=wr*X(j%+1)+wi*X(j%)

X(j%)=X(i%)-tr

X(j%+1)=X(i%+1)-ti

X(i%)=X(i%)+tr

X(i%+1)=X(i%+1)+ti

NEXT

wtemp=wr

wr=wr*wpr-wi*wpi+wr

wi=wi*wpr+wtemp*wpi+wi

NEXT

mmax%=istep%

ENDWHILE

ENDPROC

:

DEFPROCbit_rev

j%=1

FOR i%=1TOnn%STEP2

IF j%>i% THEN

tR=X(j%)

tI=X(j%+1)

X(j%)=X(i%)

X(j%+1)=X(i%+1)

X(i%)=tR

X(i%+1)=tI

ENDIF

m%=nn%/2

WHILE m%>=2 AND j%>m%

j%=j%-m%

m%=m%/2

ENDWHILE

j%=j%+m%

NEXT

ENDPROC

Sinc oversampling

The following program demonstrates how it is possible to use the Sinc
function to generate interpolated �oversamples� from a set of data
samples. The program only performs summation over a few data points
generated from a few randomly chosen sinewave components. The
resulting values are �plotted� using a fairly crude method, chosen purely
because it is likely to work on most computers. Better results can, of
course, be obtained by modifying the program to increase the summing
range and a graphical output which exploits the features of your
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particular computer.

�C� program showing Sinc function interpolation
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int k=64;  /* number of samples  */

int r=4;   /* oversampling ratio */

float T=1.0; /* signal length      */

int c=3;   /* number components  */

int i_range=8; /* sinc calc. range */

float f0,dt,ddt;

float norm,two_pi;

float x[65]; /* sampled values     */

float fr[3]; /* freq values        */

float am[3]; /* amplitude values   */

float ph[3]; /* phase values       */

char slice[51];/* display slice    */

void generate_components(void);

void generate_signal(void);

void display(void);

float level(float);

void oversamples(int);

float sinc(float);

main()

{   

  f0=1.0/T; /* scale frequency    */

  dt=T/k;/*timestep between samples*/

  ddt=dt/r; /*timestep oversamples */

  two_pi=2.0*3.1415927;

  generate_components();

  generate_signal();

  display();

  printf("\n\n   *  = actual samples
o = sinc fitted oversamples\n\n");

}

void generate_components(void)

{

  int i=0;

  char dummy;

  norm=0.0;

  while ( i < c )

  {

    fr[i]=f0*k*(rand()%1000)/8000;

    ph[i]=two_pi*(rand()%1000)/1000;

    am[i]=(rand()%1000)/1000.0;

    norm+=am[i];

    printf("f = %6.3f  a = %6.3f  ph
= %6.3f\n",fr[i],am[i],ph[i]);

    i++;

  }

  norm=1.0/norm;

  printf("\nnorm = %6.3f\n\n Press
return\n",norm);

  dummy=getchar();

}

void generate_signal(void)

{

  int i;

  float this,now;

  i=0;

  this=0.0;

  now=0.0;

  while ( i < 64 )

  {

    this=0.0;

    now=dt*i;

    x[i]=level(now);

    i++;

  }

}

float level(float time)

{

  int j;

  float answer;

  j=0;

  answer=0.0;

  while ( j < c )

  {

    answer+=am[j]*sin(two_pi*fr[j]*
time+ph[j]);

    j++;

  }

  answer=answer*norm;

  return answer;

}

void display(void)

{

  int i,j,i_stop;

  int here;

  i=0;

  i_stop=64-i_range;

  while ( i < 50)

  {

    slice[i]=' ';

    i++;

  }

  i=i_range;  

  while ( i < i_stop )
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  {

    slice[25]='|';

    here=24*x[i]+25;

    printf("\n %6.3f ",x[i]);

    if (here>=0)

    {

      slice[here]='*';

      j=0;

      while ( j < 50 )

      {

        printf("%c",slice[j]);

        j++;

      }

      slice[here]=' ';

      oversamples(i);

    }

    i++;

  }

}

void oversamples(int o_start)

{

  float time_now,t_then;

  float answer,x_then;

  int i_offset,h,j;

  int count=1;

  while ( count < r )

  {

    time_now=o_start*dt+count*ddt;

    answer=0.0;

    i_offset=-i_range;

    while ( i_offset < i_range)

    {

      x_then=x[o_start+i_offset];

      t_then=dt*(o_start+i_offset);

      answer+=x_then*sinc(3.1415927*
(time_now-t_then)/dt);

      i_offset++;

    }

    

    slice[25]='|';

    h=24*answer+25;

    printf("\n %6.3f ",answer);

    if (h>=0)

    {

      slice[h]='o';

      j=0;

      while ( j < 50 )

      {

        printf("%c",slice[j]);

        j++;

      }

      slice[h]=' ';

    }

    count++;

  }

}

     

float sinc(float sc)

{

  float answer;

  if ( sc != 0.0 )

  {

    answer=sin(sc)/sc;

  }

  else

  {

    answer=1.0;

  }

  return answer;

}

BBC BASIC version of sinc oversampling program
K%=64 : R%=4 : C%=3

T=1.0 :

DIM x(65),fr(3),am(3),ph(3)

DIM slice% 51

slice%?51=13

f0=1/T : dt=T/K% : ddt=dt/R%

two_pi=2*PI

i_range%=8

PROCgenerate_components

PROCgenerate_signal

PROCdisplay

PRINT : PRINT

PRINT "  * = actual samples     o =
sinc fitted oversamples "

END

:

DEFPROCgenerate_components

I%=0 : norm=0.0

REPEAT

  fr(I%)=f0*K%*RND(1)/8

  ph(I%)=two_pi*RND(1)

  am(I%)=RND(1)

  norm+=am(I%)

  PRINT "f = ";fr(I%);"  a =
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";am(I%);"  ph = ";ph(I%)

  I%+=1

UNTIL I%=C%

norm=1.0/norm

PRINT : PRINT

PRINT "norm = ";norm

PRINT " press return "

wait$=GET$

ENDPROC

:

DEFPROCgenerate_signal

LOCAL I%,this,now

I%=0 : this=0.0 : now=0.0

REPEAT

  this=0.0

  now=dt*I%

  x(I%)=FNlevel(now)

  I%+=1

UNTIL I% = 64

ENDPROC

:

DEFFNlevel(time)

LOCAL J%,answer

J%=0 : answer=0.0

REPEAT

  answer+=am(J%)*SIN(two_pi*fr(J%)*
time+ph(J%))

  J%+=1

UNTIL J%=C%

answer=answer*norm

=answer

:

DEFPROCdisplay

LOCAL i%,j%,i_stop%,here%

i%=0

i_stop%=63-i_range%

REPEAT

 slice%?i%=ASC" "

 i%+=1

UNTIL i%=51

slice%?i%=13

i%=i_range%

REPEAT

  slice%?25=ASC"|"

  here%=24*x(i%)+25

  PRINT FNpoint(x(i%),3)+" ";

  IF (here%>0) THEN

    slice%?here%=ASC"*"

    PRINT $slice%

    slice%?here%=ASC" "

    PROCoversamples(i%)

  ENDIF

  i%+=1

UNTIL i%=i_stop%

ENDPROC

:

DEFPROCoversamples(o_start%)

LOCAL time_now,t_then,answer,x_then

LOCAL i_offset%,h%,j%,count%

count%=1

REPEAT

  time_now=o_start%*dt+count%*ddt

  answer=0

  i_offset%=-i_range%

  REPEAT

    x_then=x(o_start%+i_offset%)

    t_then=dt*(o_start%+i_offset%)

    answer+=x_then*FNsinc(PI*
(time_now-t_then)/dt)

    i_offset%+=1

  UNTIL i_offset%=i_range%

  slice%?25=ASC"|"

  h%=24*answer+25

  PRINT FNpoint(answer,3)+" ";

  IF (h%>=0) AND (h%<51) THEN

    slice%?h%=ASC"o"

    PRINT $slice%

    slice%?h%=ASC" "

    ELSE

    PRINT "out range answer =
";answer;"   h = ";h%

  ENDIF

  count%+=1

UNTIL count%=R%

ENDPROC

:

DEFFNsinc(input)

LOCAL answer

IF input=0 THEN

  answer=1

  ELSE

  answer=SIN(input)/input

ENDIF

=answer

:

DEFFNpoint(pval,after%)

pthis$=STR$(pval)

com%=INSTR(pthis$,".",0)

pfront$=LEFT$(pthis$,com%+after%)

com%=INSTR(pthis$,"E",1)

IF com%>0 THEN

  pend$=RIGHT$(pthis$,LEN(pthis$)-
com%+1)

  pfront$=LEFT$(pfront$,2)

  pfront$=pfront$+pend$

ENDIF

IF LEFT$(pfront$,1)<>"-" : pfront$="
"+pfront$

=pfront$
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Chapter 21 � Encrypting information

The following program is a simple example of an encryption and de-
encryption process based on the RSA method described in Chapter 21.
Note that, as shown below, the encryption isn't very good since the input
text is only grouped into pairs before encryption. As a result, assuming
that text consists of the standard English set of less than 100 characters (a,
b, c, ... plus A, B, C, plus normal punctuation) there are less than 10,000
legal character pairs. Hence an encoded message a few thousand
characters long would be vulnerable to entropic attack. A practical system
would gather the characters into larger groups before encrypting them to
avoid this problem. However, this requires the program to cope with very
large integer values and necessitates more involved methods to achieve
the same basic result. This is because of the finite precision with which
digital computers store and processes integer values. For the same reason
the program shown below only works correctly on most machines when
given primes whose values are less than 255.

‘C’ encryption program

#include <stdio.h>

#include <math.h>

int n,p,q,s,t,r,e;

int here, count, ok;

char in_text[256];

int numbers[128];

int text_to_numbers(void);

int show_numbers(void);

int choose_primes(void);

int encrypt(void);

int decrypt(void);

int numbers_back_to_text(void);

main()

{

  printf("Input line of text to
encode >");

  gets(&in_text);

  count=text_to_numbers();

  printf("Count = %i\n",count);

  printf("Text converted to integers
>\n");

  show_numbers();

  ok=0;

  while (ok==0)

  {

  ok=choose_primes();

  encrypt();

  printf("\n\nEncrypted numbers >
\n");

  show_numbers();

  decrypt();

  printf("\n\nDecrypted numbers >
\n");

  show_numbers();

  numbers_back_to_text();

  }

}

/*   The proceedure converts the text
characters into a series of integers
in the range 1-99, pairs them, and
stores the resulting values.    */

int text_to_numbers(void)

{

  int first,second,so_far;

  here=0;

  so_far=0;

  do



Information and Measurement - 306 - Free PDF version

  {

    first=in_text[here];

    second=in_text[here+1];

    if (first > 31 ) first=first-30;

    if (second > 31 ) second=second-
30;

    numbers[so_far]=first+100*second;

    so_far++;

    here=here+2;

  } while( first!=0 && second!=0);

  return so_far;

}

/*  The following prints out the
current set of numbers.*/

int show_numbers(void)

{

  int so_far, this_number;

  so_far=0;

  do

  {

    this_number=numbers[so_far];

    printf("%i  ",this_number);

    so_far++;

  } while (so_far < count);

}

/*  The following reads in the chosen
prime values.*/

int choose_primes(void)

{

  int answer;

  printf("Input a pair of primes \n
(Suggest 107 103) > ");

  scanf("%i %i",&p,&q);

  n=p*q;

  s=(p-1)*(q-1);

  printf("\nModulus  n = %i\n",n);

  printf("Input a new value prime
w.r.t %i and %i \n(decode key
value).\n",p,q);

  printf(" (Suggest 101) > ");

  scanf("%i",&r);

  e=0;

  do

  {

    e++;

    t=(e*r)%s;

  } while ( t!=1 && e<=s );

  if (t==1)

  {

    answer=1;

    printf("\n OK, the encode key is;
e = %i\n",e);

  }

  else

  {

    answer=0;

    printf("\n NO key found !\n");

  }

  return answer;

}  

/*  The following encrypts the
information using the public key
values of the modulus, n, and the
value, e.*/

int encrypt(void)

{

  int so_far=0;

  unsigned long int

  temp,y,times;

  do

  {

    temp=numbers[so_far];

    y=temp;

    times=1;

    do

    {

      y=(y*temp)%n;

      times++;

    } while (times < e );

    numbers[so_far]=y;

    so_far++;

  } while ( so_far < count );

}

/*  This de-encrypts the encyphered
numbers by using the public modulus,
n, and the SECRET value, r.*/

int decrypt(void)

{

  int so_far=0;

  unsigned long int temp,x,times;

  do

  {

    temp=numbers[so_far];

    x=temp;

    times=1;

    do

    {

      x=(x*temp)%n;

      times++;

    } while ( times < r );

    numbers[so_far]=x;

    so_far++;
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  } while ( so_far < count );

}

/*  The following turns the recovered
numbers back into text.*/

int numbers_back_to_text(void)

{

  int so_far=0;

  int first,second,this;

  printf("\n Recovered text > \n");

     do

     {

       this=numbers[so_far];

       first=this%100;

       second=this/100;

       if (first > 0)

       {

          first=first+30;

          printf("%c",first);

        }

       if (second> 0)

       {

         second=second+30;

         printf("%c",second);

       }

       so_far++;

     } while (so_far < count);

}

BBC BASIC encryption program 

DIM in_text% 256, numbers%(256)

FOR I%=0 TO 256

  in_text%?I%=0:numbers%(I%)=0

NEXT

:

REM **** Now the main routine

:

PRINT "Input line of text to encode >
"

INPUTLINE $in_text%

count%=FNtext_to_numbers

PRINT "Count = ";count%

PRINT "Text converted to integers >"

PRINT

PROCshow_numbers

ok%=0

WHILE (ok%=0)

  ok%=FNchoose_primes

  PROCencrypt

  PRINT CHR$(13)+CHR$(13)+"Encrypted
numbers >"+CHR$(13)

  PROCshow_numbers

  PROCdecrypt

  PRINT CHR$(13)+CHR$(13)+"Decrypted
numbers >"+CHR$(13)

  PROCshow_numbers

  PROCnumbers_back_to_text

ENDWHILE

END

:

REM **** Routines named and used like
'C' version

:

DEFFNtext_to_numbers

LOCAL first%,second%

LOCAL so_far%,stop%

here%=0 : so_far%=0

stop%=FALSE

REPEAT

  first%=in_text%?here%

  second%=in_text%?(here%+1)

  IF (first%=13) THEN

    first%=0  : stop%=TRUE

  ENDIF

  IF (second%=13) THEN

  second%=0 : stop%=TRUE 

  ENDIF   

  IF (first%>31) : first%-=30

  IF (second%>31): second%-=30

  numbers%(so_far%)=first%+100*
second%

  so_far%+=1

  here%+=2

UNTIL stop% OR (here%>250)

=so_far%

:

DEFPROCshow_numbers

LOCAL so_far%

so_far%=0

REPEAT

  PRINT numbers%(so_far%);"  ";

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

:

DEFFNchoose_primes

LOCAL answer%

PRINT "Input a pair of primes"

INPUT "(Suggest 107,103) > ",p%,q%
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n%=p%*q%

s%=(p%-1)*(q%-1)

PRINT "Modulus n = ";n%

PRINT "Input a new prime w.r.t.
";p%;" and ";q%

PRINT "(Decode key value) "

INPUT "(Suggest 101) > ",r%

e%=0

REPEAT

  e%+=1

  t%=(e%*r%)MODs%

UNTIL (t%=1) OR (e%>=s%)

IF t%=1 THEN

  answer%=1

  PRINT "OK, the decode key is;  e =
";e%

  ELSE

  answer%=0

  PRINT "NO key found !"

ENDIF

=answer%

:

DEFPROCencrypt

LOCAL so_far%,temp%,y%,times%

so_far%=0

REPEAT

  temp%=numbers%(so_far%)

  y%=temp%

  times%=1

  REPEAT

    y%=(y%*temp%)MODn%

    times%+=1

  UNTIL times%=e%

  numbers%(so_far%)=y%

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

:

DEFPROCdecrypt

LOCAL so_far%,temp%,x%,times%

so_far%=0

REPEAT

  temp%=numbers%(so_far%)

  x%=temp%

  times%=1

  REPEAT

    x%=(x%*temp%)MODn%

    times%+=1

  UNTIL times%=r%

  numbers%(so_far%)=x%

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

:

DEFPROCnumbers_back_to_text

LOCAL so_far%,first%,second%,this%

so_far%=0

PRINT CHR$(13)+"Recovered text >"+
CHR$(13)

REPEAT

  this%=numbers%(so_far%)

  first%=this%MOD100

  second%=this%DIV100

  IF (first%>0) AND (first%<>13) THEN

    first%+=30

    PRINT CHR$(first%);

  ENDIF

  IF (second%>0) AND (second%<>13)
THEN

    second%+=30

    PRINT CHR$(second%);

  ENDIF

  so_far%+=1

UNTIL so_far%=count%

ENDPROC

Finding prime numbers

In order to use the above programs you need to select a suitable trio of
prime numbers. The following program provides a simple way to locate
prime integers in a given range. The program asks for the maximum and
minimum values which limit the range to search. It then prints out all the
primes it finds in the given range.

�C� prime number lister.
/* finds primes in given range */

#include <stdio.h>

#include <math.h>

int min,max,now;
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int ia,ib,ic, iremain;

float x,y,z, stop_at;

main()

{

  printf("Input max and min integers
>");

  scanf("%i %i",&max,&min);

  if (min>=max)

  {

    now=max;

    max=min;

    min=now;

  }

  printf("Max = %i\n",max);

  printf("Min = %i\n",min);

  now=min;

  for (now=min; now<max; now++)

  {

    stop_at=sqrt(now);

    ia=1;

    do

    {

      ia++;

      iremain=now%ia;

    } while (ia<stop_at && iremain!=
0);

    if (iremain!=0) printf(" %i PRIME
***\n",now);

  }

}

BBC BASIC prime finding program
REM Finds primes

:

PRINT "Input max and min integers >
";

INPUT min%,max%

IF min%>max% : SWAP min%,max%

PRINT "Max = ";max%

PRINT "Min = ";min%

now%=min%

REPEAT

  stop_at=SQR(now%)

  ia%=1

  REPEAT

    ia%+=1

    iremain%=now%MODia%

  UNTIL (iremain%=0) OR (ia%>stop_at)

  IF iremain%<>0 : PRINT now%;" is
PRIME ***"

  now%+=1

UNTIL now%>max%

END
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